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The Problem
Given a polynomial differential equation

F(x,y,y',y'',y''',..) = 0 

determine (algorithmically) if all its solutions are algebraic.

We are mainly interested on ordinary equations linear on 
y' (first order and of first degree). 

Pencil sketches of phase flows of vector fields by Eugene Zhang 
( http://web.engr.oregonstate.edu/~zhange/vecfld_design.html)

Cubic in y'.
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Gauss hypergeometric equation

Schwarz's List
List of parameters for which all 
solutions of Gauss hypergeometric 
equation are algebraic.



  

Why Schwarz succeeded ?
A Gauss hypergeometric equation is a linear 
differential equation over the Riemann sphere 
with 3 poles. 

Its monodromy is a representation of the 
punctured sphere in GL(2). 

If all the solutions are algebraic then the local 
monodromies are of finite order. 
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Generalizations

A lot of activity on the problem followed in the course of 
subsequent years. There are contributions on the subject by 
Fuchs, Jordan, Poincaré, Painlevé, Boulanger, Pépin, 
Frobenius, Halphen and others. 

In particular, motivated by this problem, Jordan proved that any 
finite subgroup of GL(n) has an abelian normal subgroup of 
index bounded by a computable function J(n).
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which possess altogether algebraic solutions.''

And then, three pages later, he concludes:
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of this paragraph, fully solved''

A lot of activity on the problem followed in the course of 
subsequent years. There are contributions on the subject by 
Fuchs, Jordan, Poincaré, Painlevé, Boulanger, Pépin, 
Frobenius, Halphen and others. 

In particular, motivated by this problem, Jordan proved that any 
finite subgroup of GL(n) has an abelian normal subgroup of 
index bounded by a computable function J(n).

By the end of XIXth  century the problem for linear differential 
equations was considered completely solved.
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singularities are either 
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provided an explicit 
bound for the degree 
of the general 
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Poincaré Problem [after Cerveau-Lins Neto] 
Bound the degree of algebraic curves invariant by 
foliations of the projective plane in function of the 
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Negative result by Lins Neto. 
There exist one parameter families of foliations of fixed 
degree and fixed analytical type of singularities such that 
for a dense set of parameters the foliations are by 
algebraic leaves and the degree is unbounded. 

Later shown by McQuillan to be quotients of linear 
flows on abelian surfaces
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wheter the solutions of y'=a(x)y are algebraic 
or not by considering reduction to positive 
characteristic of the equations involved. 

This  completes the solution of our 
problem for linear differential equations.

A conjecture  by Grothendieck-
Katz   predicts that all solutions of  
a linear differential equation over a 
field of characteristic zero are 
algebraic if and only if the same 
holds  true for almost every 
reduction modulo p of the 
equation.
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Effective non-vanishing of 
adjoint linear series 
(Demailly, Kóllar, Ein-
Lazarsfeld)

Zariski decomposition of 
the canonical bundle of a 
relatively minimal foliation  
(McQuillan)

Bound on the multiplicities of 
irreducible components of 
relatively minimal hyperbolic 
fibrations 
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