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Introduction

Symmetry group analysis is classical and the most fundamental method for
solving di�erential equations and constructing solutions with particular
properties.

Modern Lie theory has a lot of applications in natural sciences:

automatic (analytical) solvers of ordinary di�erential equations in
computer algebra systems

construction of conservation laws, equivalence mappings for partial
di�erential systems

numerical (Lie) integrators (which preserve symmetries) reveal much
better numerical behavior

pattern recognition in computer vision (based on group equivalence of
boundary curves)
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Two equations

1. Constant coe�cient equation

dny
dxn + an−1

dn−1y
dxn−1 + ...+ a1

dy
dx

+ a0y = 0.

2. Euler equation

dny
dxn + an−1xn−1 dn−1y

dxn−1 + ...+ a1x
dy
dx

+ a0y = 0.
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Two equations

1. Constant coe�cient equation

dny
dxn + an−1

dn−1y
dxn−1 + ...+ a1

dy
dx

+ a0y = 0

admits shifts for x
x̄ = x + a

and dilations for y
ȳ = C · y
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Two equations

2. Euler equation

dny
dxn + an−1xn−1 dn−1y

dxn−1 + ...+ a1x
dy
dx

+ a0y = 0

admits dilations for x
x̄ = A · x

and dilations for y
ȳ = C · y
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Two equations

Transformation of independent variable, which maps dilation into shift

x̄ = A · x → ln(x̄) = ln(A) + ln(x)

de�nes change of variables

t = exp(x),u = y

which maps Euler equation into Constant coe�cient equation.

Remark.

Two equivalent equations have isomorphic symmetry groups.
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Symmetry

Consider di�erential system of general form

4(x , y (n)) = 0 (1)

where x = (x1, ..., xp) ∈ X and y = (y1, ..., yq) ∈ Y are vectors of independent
and dependent variables correspondingly.

De�nition.

The point transformation g : (x , y) 7→ (x̄ , ȳ) of phase space E = X × Y is
called symmetry if it transforms any solution y(x) of (1) into new function
de�ned by ȳ(x̄), which is also solution.
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Symmetry (example)

Trivial second-order ODE
y ′′(x) = 0
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Symmetry (example)

General solution: y = C1x + C2

Symmetry condition means to transform solutions into solutions, which
implies to map straight lines 7→ straight lines on plane.
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Symmetry (example, continue)

Trivial second-order ODE
y ′′(x) = 0

by substitution
[u = f (x , y), t = g(x , y)]

is transformed into

u′′(t) + A3 · (u′)3 + A2 · (u′)2 + A1 · u′ + A0 = 0.

Symmetry condition implies

A3 = 0,A2 = 0,A1 = 0,A0 = 0.
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Symmetry (example, continue)

A3 = −∂
2g
∂y2

∂f
∂y

+
∂2f
∂y2

∂g
∂y

= 0,

A2 = −∂
2g
∂y2

∂f
∂x

+
∂2f
∂x∂y

∂g
∂y

+ 2
∂2f
∂y∂y

∂g
∂x
− 2

∂2g
∂x∂y

∂f
∂y

= 0,

A1 = −∂
2g
∂x2

∂f
∂y

+
∂2f
∂x2

∂g
∂y

+ 2
∂2f
∂x∂y

∂g
∂x
− 2

∂2g
∂x∂y

∂f
∂x

= 0,

A0 = −∂
2g
∂x2

∂f
∂x

+
∂2f
∂x2

∂g
∂x

= 0 .
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Lie symmetry

One of the prominent idea of Sophus Lie is to study symmetry properties
under one-parameter group of transformation.

De�nition.

Set of transformation
ga : (x , y) 7→ (x̄ , ȳ)

is called one-parameter group of transformation of di�erential system

4(x , y (n)) = 0

if
1) ga is symmetry transformation for ∀a,
2) it is a local group: gagb = ga+b, where (a � group parameter).

Typically it leads to overdetermined system of linear partial di�erential
equations of �nite type, which could be e�ciently analyzed symbolically by
means of computer algebra for further reduction and explicit solving.

dmitry.lyakhov@kaust.edu.sa Symbolic Computations May 4, 2018 12 / 25



Lie symmetry (examples)

1. Shift
x̄ = x + a, ȳ = y

2. Dilation
x̄ = ea · x , ȳ = y

3. Rotation [
x̄
ȳ

]
=

[
cos(a) sin(a)
−sin(a) cos(a)

] [
x
y

]
4. Shear

x̄ = x + ay , ȳ = y

5. Projection

x̄ =
x

1− ax
, ȳ =

y
1− ax
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In�nitesimal generators

The important role plays the �rst term in Taylor expansion of one-parameter
group of transformation

x̄ = x + ε ξ(x , y) +O(ε2) , ȳ = y + ε η(x , y) +O(ε2) .

It is equivalent to

ξ(x , y) =
∂x̄(x , y ,a)

∂a

∣∣∣∣
a=0

, η(x , y) =
∂ȳ(x , y ,a)

∂a

∣∣∣∣
a=0

And

x̄ ′(a + b) =
∂x̄(a + b)

∂b
=
∂x̄(x̄(x , y ,a), ȳ(x , y ,a),b)

∂a
, ȳ ′(a + b) = ...

Thus assuming b = 0:

x̄ ′(a) = ξ(x̄ , ȳ), ȳ ′(a) = η(x̄ , ȳ).
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Examples

1. Shift
x̃ = x + a, ỹ = y → ξ = 1, η = 0

2. Dilation
x̃ = ea · x , ỹ = y → ξ = x , η = 0

3. Rotation [
x̃
ỹ

]
=

[
cos(a) sin(a)
−sin(a) cos(a)

] [
x
y

]
→ ξ = y , η = −x

4. Shear
x̃ = x + ay , ỹ = y → ξ = y , η = 0

5. Projection

x̃ =
x

1− ax
, ỹ =

y
1− ax

→ ξ = x2, η = xy
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Symmetry Analysis (example, continue)

g(x , y) := x + a · ξ(x , y) + o(a),

f (x , y) := y + a · η(x , y) + o(a) .

Substitution to symmetry condition

A3 = 0,A2 = 0,A1 = 0,A0 = 0

implies

∂2η

∂x2 = 0,− ∂
2ξ

∂x2 + 2
∂2η

∂x∂y
= 0,

∂2ξ

∂y2 = 0,−∂
2η

∂y2 + 2
∂2ξ

∂x∂y
= 0.

General solution

ξ(x , y) = (C7 · x + C8) · y + C5 · x2 + C3 · x + C4,

η(x , y) = (C5 · y + C6) · x + C7 · y2 + C1 · y + C2 .
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Consider ODE (n ≥ 2) solved with respect to the highest order derivative

y (n) + f (x , y , y ′, . . . , y (n−1)) = 0 , y (k) :=
dk y
dxk (2)

where f is rational function.
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Algorithms

What can we do algorithmically?

generation of determining equations
reduction by integrability conditions
dimension of solution space
structure constants of Lie algebra

Initial value problem are given by �nite number of values:{
∂ l1+m1ξ

∂x l1∂ym1
(x0, y0),

∂ l2+m2η

∂x l2∂ym2
(x0, y0)

}
,

[
ξ
η

]
=

n∑
i,j=0

[
ai,j
bi,j

]
x iy j

Since Lie algebra is closed under Lie bracket, then

X = truncated Taylor series → [Xi ,Xj ] =
m∑

k=1

Ck
i,jXk , 1 ≤ i < j ≤ m .

Remark.

Beautiful point of construction that you actually need only truncated Taylor
series (approximate solution) to obtain exact values of structure constant.
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Linearizability

Theorem.

Eq. (2) with n ≥ 2 is linearizable by a point transformation if and only if one
of the following conditions is ful�lled:

1 n = 2, m = 8;
2 n ≥ 3, m = n + 4;
3 n ≥ 3, m ∈ {n + 1,n + 2} and derived algebra is abelian and has

dimension n.

Proof. According to group classi�cation of linear equations:
1. Trivial equations y (n)(x) = 0 have maximal possible dimension n + 4
2. Constant coe�cients equations have Lie algebra span by operators{

f1(x)
∂

∂y
, f2(x)

∂

∂y
, ..., fn(x)

∂

∂y
,
∂

∂x
, y

∂

∂y

}
3. Generic case corresponds to Lie algebra{

f1(x)
∂

∂y
, f2(x)

∂

∂y
, ..., fn(x)

∂

∂y
, y

∂

∂y

}
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Group classi�cation

The problem of group classi�cation of di�erential equations was �rst posed by
Sophus Lie

He also began to solve the problem of group classi�cation of the second-order
ordinary equation of general form

y ′′ + f (x , y , y ′) = 0
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Group classi�cation

Lev Ovsyannikov considered simpler case of

y ′′ + f (x , y) = 0

and solved the problem of group classi�cation by admissible operators

f X1 X2 X3

f (y)∗ ∂x 0 0
ey ∂x x∂x − 2∂y 0

yk , k 6= −3 ∂x (k − 1)x∂x − 2y∂y 0
±y−3 ∂x 2x∂x + y∂y x2∂x + xy∂y

x−2g(y)∗ x∂x 0 0
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Group classi�cation

∂2η

∂x2 −
∂f
∂x
· ξ − ∂f

∂y
· η + f · (∂η

∂y
− 2

∂ξ

∂x
) = 0,

− ∂
2ξ

∂x2 + 2
∂2η

∂x∂y
− 3f · ∂ξ

∂y
= 0,

∂2ξ

∂y2 = 0,

−∂
2η

∂y2 + 2
∂2ξ

∂x∂y
= 0 .
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Group classi�cation (invariant form)

The form of second-order ODE

y ′′ + f (x , y , y ′) = 0

given by

f = F3(x , y)(y ′)3 + F2(x , y)(y ′)2 + F1(x , y) y ′ + F0(x , y) . (3)

is invariant under point transformation.
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Group classi�cation (linearizable branch)

Sophus Lie showed that only equations of the following form are linearizable
by point transformations if and only if

Theorem.

3(F3)xx − 2(F2)xy + (F1)yy − 3F1(F3)x + 2F2(F2)x

−3F3(F1)x + 3F0(F3)y + 6F3(F0)y − F2(F1)y = 0 , (4)

(F2)xx − 2(F1)xy + 3(F0)yy − 6F0(F3)x + F1(F2)x

−3F3(F0)x + 3F0(F2)y + 3F2(F0)y − 2F1(F1)y = 0 .
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Thank you!
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