Differential transcendence of elliptic hypergeometric functions through Galois theory¹

Carlos E. Arreche² (joint with Thomas Dreyfus and Julien Roques)

The University of Texas at Dallas

¹arXiv: 1809.05416 ²Partially supported by NSF grant CCF-1815108.

Introduction

The theory of elliptic hypergeometric functions has been studied in the mathematical physics community since the early 2000s.

These are analogues/generalizations of the classical Gauss hypergeometric functions, related to elliptic curves.

They find applications in:

- representation theory (connected to math. physics, and conjecturally to reps. of "elliptic quantum groups");
- four-dimensional sypersymmetric quantum field theories;
- exactly solvable models in statistical mechanics;

• • • •

We have shown (with Dreyfus and Roques) that most of these special functions do not satisfy any algebraic differential equations with elliptic function coefficients.

Theta functions

Let $p \in \mathbb{C}^*$ such that |p| < 1, and denote $(z; p)_{\infty} = \prod_{j \ge 0} (1 - zp^j)$. We define the *theta function*

$$heta(z; p) = (z; p)_{\infty}(pz^{-1}; p)_{\infty} \in \mathcal{M}er(\mathbb{C}^*).$$

Note that

 $heta(z_0; p) = 0$ if and only if $z_0 \in p^{\mathbb{Z}} = \{p^n \mid n \in \mathbb{Z}\},\$

and we have the functional equation

$$\theta(pz;p) = \theta(z^{-1};p) = -z^{-1}\theta(z;p).$$

p-periodic functions and theta functions

We say that
$$f(z) \in \mathcal{M}er(\mathbb{C}^*)$$
 is *p*-periodic if $f(pz) = f(z)$.

The field of *p*-periodic functions is identified with the field of meromorphic functions $\mathcal{M}er(E)$ on the elliptic curve $E = \mathbb{C}^*/p^{\mathbb{Z}}$.

• If $\tau \in \mathbb{C}$ is such that $\operatorname{Im}(\tau) > 0$ and $\Lambda = \mathbb{Z} + \tau \mathbb{Z}$, then

$$\mathbb{C} \to \mathbb{C}^* : w \mapsto \exp(2\pi i w)$$

induces an isomorphism $\mathbb{C}/\Lambda \simeq \mathbb{C}^*/p^{\mathbb{Z}}$, where $p = \exp(2\pi i \tau)$.

If $a_1,\ldots,a_m,b_1,\ldots,b_m\in\mathbb{C}^*$ satisfy the balancing condition

$$\prod_{j=1}^{m} a_j = \prod_{j=1}^{m} b_j, \quad \text{the function} \quad c \frac{\prod_{j=1}^{m} \theta(a_j z; p)}{\prod_{j=1}^{m} \theta(b_j z; p)} \quad (c \in \mathbb{C})$$

is *p*-periodic. Any *p*-periodic function can be so expressed.

Elliptic gamma functions

Now letting $q \in \mathbb{C}^*$ such that |q| < 1 and $p^{\mathbb{Z}} \cap q^{\mathbb{Z}} = \{1\}$, we denote $(z; p, q)_{\infty} = \prod_{j,k \ge 0} (1 - zp^j q^k)$.

We define the elliptic Gamma function

$$\Gamma(z;p,q)=\frac{(pq/z;p,q)_{\infty}}{(z;p,q)_{\infty}}.$$

Note that

$$\Gamma(pz; p, q) = \theta(z; q)\Gamma(z; p, q)$$

and

$$\Gamma(qz; p, q) = \theta(z; p)\Gamma(z; p, q).$$

- ► Elliptic analogues of the classical Euler Gamma function Γ(z) with Γ(z + 1) = zΓ(z).
- Classical Gauss hypergeometric functions can be defined in terms of the Euler Gamma function (Barnes integral formula).

Elliptic hypergeometric functions

For $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_8)$ satisfying the *balancing condition*

$$\prod_{j=1}^{8} \varepsilon_j = p^2 q^2, \tag{1}$$

the elliptic hypergeometric function $f_{\varepsilon}(z) \in \mathcal{M}er(\mathbb{C}^*)$ is defined in terms of elliptic gamma functions (with a formula analogous to the Barnes integral formula in the classical setting).

Theorem (A.-Dreyfus-Roques)

If every multiplicative relation among $\varepsilon_1, \ldots, \varepsilon_8$, p, q is induced from (1), then $f_{\varepsilon}(z)$ is differentially transcendental over Mer(E).

Remark

Hypothesis: $\varepsilon_1, \ldots, \varepsilon_8, p, q$ are "as independent as possible".

$\sigma\delta$ -fields of elliptic functions

As before, we let $p, q \in \mathbb{C}^*$ such that:

$$|p| < 1, \quad |q| < 1, \quad ext{and} \quad p^{\mathbb{Z}} \cap q^{\mathbb{Z}} = \{1\}.$$

The last condition means that $q \pmod{p^{\mathbb{Z}}}$ is of infinite order in the abelian group $E = \mathbb{C}^*/p^{\mathbb{Z}}$.

<u>Base field</u>: K = Mer(E), the field of meromorphic functions on E.

Difference operator: The automorphism $\sigma : f(z) \mapsto f(qz)$.

Differential operator: The invariant derivation δ on E is $\delta = z \frac{d}{dz}$.

With this, *K* is a $\sigma\delta$ -field: $\sigma \circ \delta = \delta \circ \sigma$.

Difference-differential Galois theory (Hardouin-Singer)

Let K be a $\sigma\delta$ -field such that $C = K^{\sigma}$ is δ -closed, and consider a linear difference equation

$$a_n \sigma^n(y) + a_{n-1} \sigma^{n-1}(y) + \dots + a_1 \sigma(y) + a_0 y = 0,$$
 (2)

where $a_n, \ldots, a_0 \in K$ and $a_n a_0 \neq 0$.

To (2) is associated a $\sigma\delta$ -PV extension R, generated as K-algebra by a C-basis of solutions $y_1, \ldots, y_n \in R$ together with³ their iterates under σ and δ .

The $\sigma\delta$ -Galois group is

$$\operatorname{Gal}_{\sigma\delta}(R/K) := \{ \gamma \in \operatorname{Aut}_{K\text{-}\mathsf{alg}}(R) \mid \gamma \circ \sigma = \sigma \circ \gamma, \ \gamma \circ \delta = \delta \circ \gamma \};$$

gets identified with a linear differential algebraic group in $GL_n(C)$.

³And also $\det(\sigma^{i-1}(y_j))^{-1}$, where $1 \le i, j \le n$.

Linear differential algebraic groups

Definition

If C is a δ -field, we write $C^{\delta} := \{c \in C \mid \delta(c) = 0\}.$

A linear differential algebraic group is a subgroup of $GL_n(C)$ defined by polynomial differential equations in the matrix entries.

Examples:

- algebraic groups over C;
- algebraic groups over C^{δ} ;

Let
$$\mathcal{L} = \sum_{i=0}^{n} c_i \delta^i$$
 with $c_n, \ldots, c_0 \in C$.

Theorem (Cassidy)

Every δ -algebraic subgroup of $\mathbb{G}_a(C)$ or $\mathbb{G}_m(C)$ is as above.

Main Result

[Under mild conditions on the otherwise arbitrary $\sigma\delta$ -field K.]

Theorem (A.-Dreyfus-Roques) Let $f \neq 0$ be a solution of

$$\sigma^2(f) + a\sigma(f) + bf = 0,$$

where $a, b \in K$ and $b \neq 0$. Assume that:

- There is no $u \in K$ such that $\sigma(u)u + au + b = 0$.
- ▶ There are no $c_0, ..., c_n \in C$ with $c_n \neq 0$ and $h \in K$, such that

$$c_n\delta^n\left(\frac{\delta b}{b}\right)+\cdots+c_0\frac{\delta b}{b}=\sigma(h)-h.$$

Then f is differentially transcendental over K.

Difference equation for elliptic hypergeometric functions

Theorem (Spiridonov)

The elliptic hypergeometric function $f_{\varepsilon}(z)$ satisfies

$$A(z)(\sigma(f_{\varepsilon}) - f_{\varepsilon}) + A(z^{-1})(\sigma^{-1}(f_{\varepsilon}) - f_{\varepsilon}) + \nu f_{\varepsilon} = 0, \qquad (3)$$

where

1

$$A(z) = \frac{1}{\theta(z^2; p)\theta(qz^2; p)} \prod_{j=1}^8 \theta(\varepsilon_j z; p), \quad \nu = \prod_{j=1}^6 \theta(\varepsilon_j \varepsilon_8/q; p).$$

- It follows from the balancing condition ∏⁸_{j=1} ε_j = p²q² that the coefficients A(z), A(z⁻¹) ∈ Mer(E) = K.
- ► Hence, (3) is equivalent to a second-order linear difference equation over K.

Proving differential transcendence of $f_{\varepsilon}(z)$

To prove differential transcendence of the elliptic hypergeometric function $f_{\varepsilon}(z)$, we verified the conditions of our Main Result assuming that $\varepsilon_1, \ldots, \varepsilon_8, p, q$ are "as independent as possible".

► Earlier work of Dreyfus-Roques provides criteria to decide existence of solutions u ∈ Mer(E) to the Riccati equation

$$\sigma(u)u+au+b=0,$$

depending on the divisors of $a, b \in \mathcal{M}er(E)$.

The non-existence of a telescoper 0 ≠ L ∈ C[δ] and certificate h ∈ Mer(E) such that

$$\mathcal{L}\left(\frac{\delta(b)}{b}\right) = \sigma(h) - h$$

is also proved by analyzing the divisor of $b \in \mathcal{M}er(E)$.

Sketch of proof: Main Result (1/2)

One of the following three cases occurs for the $\sigma\delta$ -Galois group G.

- 1. *G* is conjugate to a group of upper triangular matrices. This happens if and only if there exists a solution $u \in K$ to the Riccati equation $\sigma(u)u + au + b = 0$.
- 2. G is conjugate to a subgroup of

$$\left\{ \begin{pmatrix} \alpha & \mathbf{0} \\ \mathbf{0} & \beta \end{pmatrix} \middle| \alpha, \beta \in \mathbf{C}^{\times} \right\} \bigcup \left\{ \begin{pmatrix} \mathbf{0} & \gamma \\ \mu & \mathbf{0} \end{pmatrix} \middle| \gamma, \mu \in \mathbf{C}^{\times} \right\}.$$

3. G contains $SL_2(C)$.

No solutions to Riccati equation \Rightarrow *G* is irreducible.

Sketch of proof: Main Result (2/2)

No telescoper $\Rightarrow \det(G) = \mathbb{G}_m(C) \Rightarrow G$ is either

•
$$\left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \mid \alpha, \beta \in C^{\times} \right\} \bigcup \left\{ \begin{pmatrix} 0 & \gamma \\ \mu & 0 \end{pmatrix} \mid \gamma, \mu \in C^{\times} \right\};$$

• $\operatorname{GL}_2(C).$

In either case, G is sufficiently large to guarantee that any one solution $f \neq 0$ is differentially transcendental over K.