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Introduction

The theory of elliptic hypergeometric functions has been studied in
the mathematical physics community since the early 2000s.

These are analogues/generalizations of the classical Gauss
hypergeometric functions, related to elliptic curves.

They find applications in:

I representation theory (connected to math. physics, and
conjecturally to reps. of “elliptic quantum groups”);

I four-dimensional sypersymmetric quantum field theories;

I exactly solvable models in statistical mechanics;

I · · ·

We have shown (with Dreyfus and Roques) that most of these
special functions do not satisfy any algebraic differential equations
with elliptic function coefficients.



Theta functions

Let p ∈ C∗ such that |p| < 1, and denote (z ; p)∞ =
∏
j≥0

(1− zpj).

We define the theta function

θ(z ; p) = (z ; p)∞(pz−1; p)∞ ∈Mer(C∗).

Note that

θ(z0; p) = 0 if and only if z0 ∈ pZ = {pn | n ∈ Z},

and we have the functional equation

θ(pz ; p) = θ(z−1; p) = −z−1θ(z ; p).



p-periodic functions and theta functions

We say that f (z) ∈Mer(C∗) is p-periodic if f (pz) = f (z).

The field of p-periodic functions is identified with the field of
meromorphic functions Mer(E ) on the elliptic curve E = C∗/pZ.

I If τ ∈ C is such that Im(τ) > 0 and Λ = Z + τZ, then

C→ C∗ : w 7→ exp(2πiw)

induces an isomorphism C/Λ ' C∗/pZ, where p = exp(2πiτ).

If a1, . . . , am, b1, . . . , bm ∈ C∗ satisfy the balancing condition

m∏
j=1

aj =
m∏
j=1

bj , the function c

∏m
j=1 θ(ajz ; p)∏m
j=1 θ(bjz ; p)

(c ∈ C)

is p-periodic. Any p-periodic function can be so expressed.



Elliptic gamma functions

Now letting q ∈ C∗ such that |q| < 1 and pZ ∩ qZ = {1}, we
denote (z ; p, q)∞ =

∏
j ,k≥0(1− zpjqk).

We define the elliptic Gamma function

Γ(z ; p, q) =
(pq/z ; p, q)∞

(z ; p, q)∞
.

Note that
Γ(pz ; p, q) = θ(z ; q)Γ(z ; p, q)

and
Γ(qz ; p, q) = θ(z ; p)Γ(z ; p, q).

I Elliptic analogues of the classical Euler Gamma function Γ(z)
with Γ(z + 1) = zΓ(z).

I Classical Gauss hypergeometric functions can be defined in
terms of the Euler Gamma function (Barnes integral formula).



Elliptic hypergeometric functions

For ε = (ε1, . . . , ε8) satisfying the balancing condition

8∏
j=1

εj = p2q2, (1)

the elliptic hypergeometric function fε(z) ∈Mer(C∗) is defined in
terms of elliptic gamma functions (with a formula analogous to the
Barnes integral formula in the classical setting).

Theorem (A.-Dreyfus-Roques)

If every multiplicative relation among ε1, . . . , ε8, p, q is induced
from (1), then fε(z) is differentially transcendental over Mer(E ).

Remark
Hypothesis: ε1, . . . , ε8, p, q are “as independent as possible”.



σδ-fields of elliptic functions

As before, we let p, q ∈ C∗ such that:

|p| < 1, |q| < 1, and pZ ∩ qZ = {1}.

The last condition means that q (mod pZ) is of infinite order in
the abelian group E = C∗/pZ.

Base field: K =Mer(E ), the field of meromorphic functions on E .

Difference operator: The automorphism σ : f (z) 7→ f (qz).

Differential operator: The invariant derivation δ on E is δ = z d
dz .

With this, K is a σδ-field: σ ◦ δ = δ ◦ σ.



Difference-differential Galois theory (Hardouin-Singer)

Let K be a σδ-field such that C = Kσ is δ-closed, and consider a
linear difference equation

anσ
n(y) + an−1σ

n−1(y) + · · ·+ a1σ(y) + a0y = 0, (2)

where an, . . . , a0 ∈ K and ana0 6= 0.

To (2) is associated a σδ-PV extension R, generated as K -algebra
by a C -basis of solutions y1, . . . , yn ∈ R together with3 their
iterates under σ and δ.

The σδ-Galois group is

Galσδ(R/K ) := {γ ∈ AutK -alg(R) | γ ◦ σ = σ ◦ γ, γ ◦ δ = δ ◦ γ};

gets identified with a linear differential algebraic group in GLn(C ).

3And also det(σi−1(yj))
−1, where 1 ≤ i , j ≤ n.



Linear differential algebraic groups

Definition
If C is a δ-field, we write C δ := {c ∈ C | δ(c) = 0}.
A linear differential algebraic group is a subgroup of GLn(C )
defined by polynomial differential equations in the matrix entries.

Examples:

I algebraic groups over C ;

I algebraic groups over C δ;

Let L =
∑n

i=0 ciδ
i with cn, . . . , c0 ∈ C .

I {α ∈ Ga(C ) | L(α) = 0};
I {α ∈ Gm(C ) | L( δ(α)α ) = 0}.

Theorem (Cassidy)

Every δ-algebraic subgroup of Ga(C ) or Gm(C ) is as above.



Main Result

[Under mild conditions on the otherwise arbitrary σδ-field K .]

Theorem (A.-Dreyfus-Roques)

Let f 6= 0 be a solution of

σ2(f ) + aσ(f ) + bf = 0,

where a, b ∈ K and b 6= 0. Assume that:

I There is no u ∈ K such that σ(u)u + au + b = 0.

I There are no c0, . . . , cn ∈ C with cn 6= 0 and h ∈ K, such that

cnδ
n

(
δb

b

)
+ · · ·+ c0

δb

b
= σ(h)− h.

Then f is differentially transcendental over K.



Difference equation for elliptic hypergeometric functions

Theorem (Spiridonov)

The elliptic hypergeometric function fε(z) satisfies

A(z)(σ(fε)− fε) + A(z−1)(σ−1(fε)− fε) + νfε = 0, (3)

where

A(z) =
1

θ(z2; p)θ(qz2; p)

8∏
j=1

θ(εjz ; p), ν =
6∏

j=1

θ(εjε8/q; p).

I It follows from the balancing condition
∏8

j=1 εj = p2q2 that

the coefficients A(z),A(z−1) ∈Mer(E ) = K .

I Hence, (3) is equivalent to a second-order linear difference
equation over K .



Proving differential transcendence of fε(z)

To prove differential transcendence of the elliptic hypergeometric
function fε(z), we verified the conditions of our Main Result
assuming that ε1, . . . , ε8, p, q are “as independent as possible”.

I Earlier work of Dreyfus-Roques provides criteria to decide
existence of solutions u ∈Mer(E ) to the Riccati equation

σ(u)u + au + b = 0,

depending on the divisors of a, b ∈Mer(E ).

I The non-existence of a telescoper 0 6= L ∈ C [δ] and certificate
h ∈Mer(E ) such that

L
(
δ(b)

b

)
= σ(h)− h

is also proved by analyzing the divisor of b ∈Mer(E ).



Sketch of proof: Main Result (1/2)

One of the following three cases occurs for the σδ-Galois group G .

1. G is conjugate to a group of upper triangular matrices. This
happens if and only if there exists a solution u ∈ K to the
Riccati equation σ(u)u + au + b = 0.

2. G is conjugate to a subgroup of{(
α 0
0 β

) ∣∣∣∣ α, β ∈ C×
}⋃{(

0 γ
µ 0

) ∣∣∣∣ γ, µ ∈ C×
}
.

3. G contains SL2(C ).

No solutions to Riccati equation ⇒ G is irreducible.



Sketch of proof: Main Result (2/2)

No telescoper ⇒ det(G ) = Gm(C )⇒ G is either

I

{(
α 0
0 β

) ∣∣∣∣ α, β ∈ C×
}⋃{(0 γ

µ 0

) ∣∣∣∣ γ, µ ∈ C×
}

;

I GL2(C ).

In either case, G is sufficiently large to guarantee that any one
solution f 6= 0 is differentially transcendental over K .


