Integration in Finite Terms with Special Functions: Error Functions, Logarithmic Integrals and Polylogarithmic Integrals.

Yashpreet Kaur, V. Ravi Srinivasan*

IISER Mohali, INDIA

March 22, 2019

Notations and terminologies

- Throughout, a field always means a field of characteristic zero.
- Differential fields: A field F with an additive map $': F \to F$ that satisfies the Leibnitz rule, i.e (fg)' = fg' + f'g for all $f, g \in F$.
- The kernel of the map ' is denoted by C_F , called the field of constants.
- Differential field extension: A differential field E is said to differential field extension of F if E is a field extension of F and the derivation map of E restricted to F coincides with the derivation map of F.

Let E be a differential field extension of F having the same field of constants as F.

Problem

When an element $\alpha \in F$ admits an antiderivative in E?

We will be working with differential field extensions of the form $E = F(\theta_1, \ldots, \theta_n)$, $F_0 := F$, $F_i = F_{i-1}(\theta_i)$, $C_E = C_F$ such that for each *i*, one of the following holds:

We will be working with differential field extensions of the form $E = F(\theta_1, \ldots, \theta_n)$, $F_0 := F$, $F_i = F_{i-1}(\theta_i)$, $C_E = C_F$ such that for each *i*, one of the following holds:

(i) θ_i is algebraic over F_{i-1} .

(ii) $\theta'_i = u'\theta_i$ for $u \in F_{i-1}$ (i.e. $\theta_i = e^u$, called an exponential of u).

We will be working with differential field extensions of the form $E = F(\theta_1, \ldots, \theta_n)$, $F_0 := F$, $F_i = F_{i-1}(\theta_i)$, $C_E = C_F$ such that for each *i*, one of the following holds:

(i) θ_i is algebraic over F_{i-1} .

(ii) $\theta'_i = u'\theta_i$ for $u \in F_{i-1}$ (i.e. $\theta_i = e^u$, called an exponential of u).

(iii) $\theta'_i = u'/u$ for $u \in F_{i-1}$ (i.e. $\theta_i = \log(u)$, called a logarithm of u).

(iv) $\theta'_i = u' / \log u$, where $u, \log u \in F_{i-1}$ (i.e. $\theta_i = \ell i(u)$, called logarithmic integral of u).

We will be working with differential field extensions of the form $E = F(\theta_1, \ldots, \theta_n)$, $F_0 := F$, $F_i = F_{i-1}(\theta_i)$, $C_E = C_F$ such that for each *i*, one of the following holds:

(i) θ_i is algebraic over F_{i-1} .

(ii) $\theta'_i = u'\theta_i$ for $u \in F_{i-1}$ (i.e. $\theta_i = e^u$, called an exponential of u).

- (iv) $\theta'_i = u' / \log u$, where $u, \log u \in F_{i-1}$ (i.e. $\theta_i = \ell i(u)$, called logarithmic integral of u).
- (v) $\theta'_i = u'e^{-u^2}$, where $u, e^{-u^2} \in F_{i-1}$ (i.e. $\theta_i = erf(u)$, called error function of u).

We will be working with differential field extensions of the form $E = F(\theta_1, \ldots, \theta_n)$, $F_0 := F$, $F_i = F_{i-1}(\theta_i)$, $C_E = C_F$ such that for each *i*, one of the following holds:

(i) θ_i is algebraic over F_{i-1} .

(ii) $\theta'_i = u'\theta_i$ for $u \in F_{i-1}$ (i.e. $\theta_i = e^u$, called an exponential of u).

- (iv) $\theta'_i = u'/\log u$, where $u, \log u \in F_{i-1}$ (i.e. $\theta_i = \ell i(u)$, called logarithmic integral of u).
- (v) $\theta'_i = u'e^{-u^2}$, where $u, e^{-u^2} \in F_{i-1}$ (i.e. $\theta_i = erf(u)$, called error function of u).
- (vi) $\theta'_i = -\log(1-u)u'/u$, where $u, \log(1-u) \in F_{i-1}$ (i.e. $\theta_i = \ell_2(u)$, called dilogarithmic integral of u).

We will be working with differential field extensions of the form $E = F(\theta_1, \ldots, \theta_n)$, $F_0 := F$, $F_i = F_{i-1}(\theta_i)$, $C_E = C_F$ such that for each *i*, one of the following holds:

(i) θ_i is algebraic over F_{i-1} .

(ii) $\theta'_i = u'\theta_i$ for $u \in F_{i-1}$ (i.e. $\theta_i = e^u$, called an exponential of u).

- (iv) $\theta'_i = u' / \log u$, where $u, \log u \in F_{i-1}$ (i.e. $\theta_i = \ell i(u)$, called logarithmic integral of u).
- (v) $\theta'_i = u'e^{-u^2}$, where $u, e^{-u^2} \in F_{i-1}$ (i.e. $\theta_i = erf(u)$, called error function of u).
- (vi) $\theta'_i = -\log(1-u)u'/u$, where $u, \log(1-u) \in F_{i-1}$ (i.e. $\theta_i = \ell_2(u)$, called dilogarithmic integral of u).
- (vii) $\theta'_i = \ell_2(u)u'/u$, where $u, \ell_2(u) \in F_{i-1}$ (i.e. $\theta_i = \ell_3(u)$, called trilogarithmic integral of u).

Elementary Extensions

A differential field extension $E = F(\theta_1, \ldots, \theta_n)$ of F is called an elementary extension if each θ_i is either algebraic, exponential or logarithmic over F_{i-1} . Elements of an elementary extension field are called elementary functions

• The problem of integration in finite terms for elementary functions was considered by J. Liouville (1834-35) and by J.F. Ritt (1948).

- The problem of integration in finite terms for elementary functions was considered by J. Liouville (1834-35) and by J.F. Ritt (1948).
- M. Rosenlicht (1968) was the first to give a purely algebraic solution to the problem.

• J. Moses (1969).

- J. Moses (1969).
- Error functions and logarithmic integrals, G. Cherry (1985-86).

- J. Moses (1969).
- Error functions and logarithmic integrals, G. Cherry (1985-86).
- \mathscr{CL} -elementary functions, M. Singer, B. Saunders and B. Caviness (1985). Polylogarithmic integrals do not belong to this class.

- J. Moses (1969).
- Error functions and logarithmic integrals, G. Cherry (1985-86).
- *&L*-elementary functions, M. Singer, B. Saunders and B. Caviness (1985). Polylogarithmic integrals do not belong to this class.
- Dilogarithmic integrals, J. Baddoura (2006).

• We extend Liouville's theorem to include error functions, logarithmic integrals, dilogarithmic and trilogarithmic integrals in its field of definition.

- We extend Liouville's theorem to include error functions, logarithmic integrals, dilogarithmic and trilogarithmic integrals in its field of definition.
- We obtain a simpler proof of Baddoura's theorem which neither assumes that F is a liouvillian extension of C_F nor that C_F is an algebraically closed field.

- We extend Liouville's theorem to include error functions, logarithmic integrals, dilogarithmic and trilogarithmic integrals in its field of definition.
- We obtain a simpler proof of Baddoura's theorem which neither assumes that F is a liouvillian extension of C_F nor that C_F is an algebraically closed field.
- Our results contain both necessary and sufficient conditions and therefore, these results will help in formulating algorithms for integration in finite terms with special functions.

Theorem (Rosenlicht, 1968)

Let $E \supset F$ be an elementary field extension of F with $C_E = C_F$. If there is an element $u \in E$ with $u' \in F$ then there are \mathbb{Q} -linearly independent constants c_1, \ldots, c_n and elements g_1, \ldots, g_n, w in F such that

$$u' = \sum_{i=1}^{n} c_i \frac{g'_i}{g_i} + w'.$$

Dilogarithmic Integrals and \mathcal{DEL} -Expressions

Recall that dilogarithmic integral of an element $g \in F - \{0, 1\}$ is defined as

$$l_2(g) = -\int \frac{g'}{g} \log(1-g).$$

Dilogarithmic Integrals and \mathcal{DEL} -Expressions

Recall that dilogarithmic integral of an element $g \in F - \{0, 1\}$ is defined as

$$l_2(g) = -\int \frac{g'}{g} \log(1-g).$$

A differential field extension $E = F(\theta_1, \ldots, \theta_n)$ is called a transcendental \mathcal{DEL} -extension if $C_E = C_F$ and each θ_i is transcendental over F_{i-1} and satisfies one of the following:

- (i) θ_i is an exponential over F_{i-1} .
- (ii) θ_i is a logarithm over F_{i-1} .
- (iii) θ_i is an error function over F_{i-1} .
- (iv) θ_i is a logarithmic integral over F_{i-1} .
- (v) θ_i is a dilogarithmic integral over F_{i-1} .

\mathcal{DEL} -Extensions and \mathcal{DEL} -Expressions

We say that $v \in F$ admits a \mathcal{DEL} -expression over F if there are some finite indexing sets I, J, K and elements $w, r_i, g_i, u_j, \log(u_j), v_k, e^{-v_k^2}$ in F and constants a_j, b_k for all i, j, k in I, J, K respectively such that

$$v = \sum_{i \in I} r_i \frac{g'_i}{g_i} + \sum_{j \in J} a_j \frac{u'_j}{\log(u_j)} + \sum_{k \in K} b_k v'_k e^{-v_k^2} + w',$$

where for each *i*, there is an integer n_i such that $r'_i = \sum_{l=1}^{n_i} c_{il} h'_{il} / h_{il}$ for some constants c_{il} and elements $h_{il} \in F$.

\mathcal{DEL} -Extensions and \mathcal{DEL} -Expressions

We say that $v \in F$ admits a \mathcal{DEL} -expression over F if there are some finite indexing sets I, J, K and elements $w, r_i, g_i, u_j, \log(u_j), v_k, e^{-v_k^2}$ in F and constants a_j, b_k for all i, j, k in I, J, K respectively such that

$$v = \sum_{i \in I} r_i \frac{g'_i}{g_i} + \sum_{j \in J} a_j \frac{u'_j}{\log(u_j)} + \sum_{k \in K} b_k v'_k e^{-v_k^2} + w',$$

where for each *i*, there is an integer n_i such that $r'_i = \sum_{l=1}^{n_i} c_{il} h'_{il} / h_{il}$ for some constants c_{il} and elements $h_{il} \in F$.

A \mathcal{DEL} -expression is called

(a) a special \mathcal{DEL} -expression if for each i, $r'_i = c_i(1-g_i)'/(1-g_i)$ for some constant c_i .

\mathcal{DEL} -Extensions and \mathcal{DEL} -Expressions

We say that $v \in F$ admits a \mathcal{DEL} -expression over F if there are some finite indexing sets I, J, K and elements $w, r_i, g_i, u_j, \log(u_j), v_k, e^{-v_k^2}$ in F and constants a_j, b_k for all i, j, k in I, J, K respectively such that

$$v = \sum_{i \in I} r_i \frac{g'_i}{g_i} + \sum_{j \in J} a_j \frac{u'_j}{\log(u_j)} + \sum_{k \in K} b_k v'_k e^{-v_k^2} + w',$$

where for each *i*, there is an integer n_i such that $r'_i = \sum_{l=1}^{n_i} c_{il} h'_{il} / h_{il}$ for some constants c_{il} and elements $h_{il} \in F$.

A \mathcal{DEL} -expression is called

(a) a special \mathcal{DEL} -expression if for each i,

 $r'_i = c_i(1-g_i)'/(1-g_i)$ for some constant c_i .

(b) a \mathcal{D} -expression if it is special and for all $j, k, a_j = b_k = 0$.

A differential field extension E of F will be called a logarithmic extension of F if $C_E = C_F$ and there are elements h_1, \ldots, h_m in F such that $E = F(\log h_1, \ldots, \log h_m)$.

A differential field extension E of F will be called a logarithmic extension of F if $C_E = C_F$ and there are elements h_1, \ldots, h_m in F such that $E = F(\log h_1, \ldots, \log h_m)$.

A transcendental \mathcal{DEL} -extension will be called transcendental dilogarithmic-elementary extension of F if for each i, θ_i is either an exponential or logarithm or dilogarithmic integral over F_{i-1} .

Theorem (YK-VRS, J. Symb. Comp, 94 (2019) 210-233.)

Let $E \supset F$ be a transcendental \mathcal{DEL} -extension of F. Suppose that there is an element u in E with u' in F then u' admits a special \mathcal{DEL} -expression over some logarithmic extension of F.

Theorem (YK-VRS, J. Symb. Comp, 94 (2019) 210-233.)

Let $E \supset F$ be a transcendental \mathcal{DEL} -extension of F. Suppose that there is an element u in E with u' in F then u' admits a special \mathcal{DEL} -expression over some logarithmic extension of F. Furthermore, if E is a transcendental dilogarithmic-extension of F then u' admits a \mathcal{D} -expression over some logarithmic extension of F.

Theorem (YK-VRS, J. Symb. Comp, 94 (2019) 210-233.)

Let $E \supset F$ be a transcendental \mathcal{DEL} -extension of F. Suppose that there is an element u in E with u' in F then u' admits a special \mathcal{DEL} -expression over some logarithmic extension of F. Furthermore, if E is a transcendental dilogarithmic-extension of F then u' admits a \mathcal{D} -expression over some logarithmic extension of F.

The theorem follows from the next lemma.

Lemma (YK-VRS, J. Symb. Comp, 94 (2019) 210-233.)

Let $F(\theta) \supset F$ be a transcendental \mathcal{DEL} -extension of F. If $v \in F$ admits a special \mathcal{DEL} -expression over the differential field $F(\theta)(\log y_1, \ldots, \log y_n)$, where each $y_i \in F(\theta)$, having the same field of constants as F then there is a differential field $M = F(\log h_1, \ldots, \log h_m, \theta)$, where each $h_i \in F$, having the same field of constants as F such that each v admits a special \mathcal{DEL} -expression over M.

Example

Let $F = \mathbb{C}\left(z, \log(z+1), \log(z(z-1)(z^2+z-1))\right)$ and $E = F(\log z, \ell_2(1-z), \ell_2(1-z(z+1)))$ be differential fields with the derivation ' := d/dx. Let $v = -\log(z+1)\frac{(1-z(z+1))'}{1-z(z+1)} + \log\left(z(z-1)(z^2+z-1)\right)\frac{z'}{z} + w' \in F$, where $w \in F$ is arbitrary. Then we have the following:

Example

Let $F = \mathbb{C}\left(z, \log(z+1), \log(z(z-1)(z^2+z-1))\right)$ and $E = F(\log z, \ell_2(1-z), \ell_2(1-z(z+1)))$ be differential fields with the derivation ' := d/dx. Let $v = -\log(z+1)\frac{(1-z(z+1))'}{1-z(z+1)} + \log\left(z(z-1)(z^2+z-1)\right)\frac{z'}{z} + w' \in F$, where $w \in F$ is arbitrary. Then we have the following:

• E is a dilogarithmic-elementary extension of F.

- $u := \ell_2(1 z(z+1)) + \ell_2(1-z) + v_0 \in E, u' = v \in F.$
- Over the field $F(\log z)$, for element $v_0 = -(1/2)\log^2(z) + \log(z(z-1)(z^2+z-1))\log(z) + w$ in $F(\log z)$, we can rewrite v as

$$u' = -\frac{(1 - z(z+1))'}{1 - z(z+1)} \log(z(z+1)) - \frac{(1-z)'}{1-z} \log z + v'_0$$

which is a \mathcal{D} -expression over $F(\log z)$.

• u' cannot be written as a \mathcal{D} -expression over F.

Integration in Finite Terms: DEL-Extensions

Theorem (YK, PhD Thesis, IISERM)

Let $E \supset F$ be a transcendental \mathcal{DEL} -extension of F. Then there is an element $u \in E$ with $u' \in F$, if and only if u' satisfies the following \mathcal{DEL} -expression over F:

$$u' = \sum_{i \in I} r_i \frac{g'_i}{g_i} + \sum_{l \in L} s_l \frac{h'_l}{h_l} + \sum_{j \in J} a_j \frac{u'_j}{\log(u_j)} + \sum_{k \in K} b_k v'_k e^{-v_k^2} + w',$$

where for each $i, p \in I$ and $l, t \in L$, there are constants a_{ip}, b_{lt} , c_{ip} and d_{il} with $c_{ii} \neq 0$ such that

$$\begin{aligned} r'_{i} &= \sum_{p \in I} c_{ip} \frac{(1 - g_{p})'}{1 - g_{p}} + \sum_{p \in I} a_{ip} \frac{g'_{p}}{g_{p}} + \sum_{l \in L} d_{il} \frac{h'_{l}}{h_{l}} \quad and \\ s'_{l} &= \sum_{i \in I} d_{il} \frac{g'_{i}}{g_{i}} + \sum_{t \in L} b_{lt} \frac{h'_{t}}{h_{t}}. \end{aligned}$$

Example (converse of the above theorem)

Let the differential field $F := \mathbb{C}(x, \ln(x), \ln(1-x) + 5\ln(1+x))$ with derivation ' := d/dx. Note that

$$v := \left(\ln(1-x) + 5\ln(1+x)\right)\frac{1}{x} + 5\ln(x)\frac{1}{1+x} + w',$$

where $w \in F$ is a \mathcal{DEL} -expression over F of the desired form. Over the differential field $F(\log(1+x))$, we shall rewrite v as

$$v := \ln(1-x)\frac{1}{x} + 5\left(\ln(1+x)\frac{1}{x} + \ln(x)\frac{1}{1+x}\right)' + w'.$$

Thus the dilogarithmic-elementary extension field $F(\ln(1+x), \ell_2(x))$ contains an antiderivative of v, namely,

$$-\ell_2(x) + 5\ln(1+x)\ln(x) + w.$$

The element $D(g) := l_2(g) + (1/2) \log(g) \log(1-g)$ is called the Bloch-Wigner Spence function of g and its derivative is

$$D(g)' = -\frac{1}{2}\frac{g'}{g}\log(1-g) + \frac{1}{2}\frac{(1-g)'}{(1-g)}\log(g).$$

Generalisation of Baddoura's Theorem

Our theorem concerning dilogarithmic integrals leads to a simpler version of Baddoura's theorem (2006):

Theorem (YK-VRS, J. Symb. Comp, 94 (2019) 210-233.)

Let $E \supset F$ be a transcendental dilogarithmic-elementary extension of F. Suppose that there is an element $u \in E$ with $u' \in F$, then

$$u = \sum_{j=1}^{m} c_j D(g_j) + \sum_{i=1}^{n} f_i \log(h_i) + w,$$

where each $f_i, h_i, g_j, w \in F$, c_j are constants and $\log(h_i)$ and $D(g_j)$ belong to some dilogarithmic-elementary extension of F.

Example

Let $F = \mathbb{C}\left(z, \log(z+1), \log(z(z-1)(z^2+z-1))\right)$ and $E = F(\log z, \ell_2(1-z), \ell_2(1-z(z+1)))$ be differential fields with the derivation ' := d/dx. Let $v = -\log(z+1)\frac{(1-z(z+1))'}{1-z(z+1)} + \log\left(z(z-1)(z^2+z-1)\right)\frac{z'}{z} + w' \in F$, where $w \in F$ is arbitrary.

Example

Let $F = \mathbb{C}\left(z, \log(z+1), \log(z(z-1)(z^2+z-1))\right)$ and $E = F(\log z, \ell_2(1-z), \ell_2(1-z(z+1)))$ be differential fields with the derivation ' := d/dx. Let $v = -\log(z+1)\frac{(1-z(z+1))'}{1-z(z+1)} + \log\left(z(z-1)(z^2+z-1)\right)\frac{z'}{z} + w' \in F$, where $w \in F$ is arbitrary.

• For $u := \ell_2(1 - z(z+1)) + \ell_2(1-z) + v_0 \in E, u' = v \in F$, the Bloch Wigner Spence function representation is given by

$$u = D(1 - z(z+1)) + D(1 - z) + \frac{1}{2} \log z \log (z(z-1)(z^2 + z - 1)) + \frac{1}{2} c \log z - \frac{1}{2} \log(z+1) \log(1 - z(z+1)) + v_0.$$

Trilogarithmic Integrals

The trilogarithmic integral of an element $g \in F - \{0, 1\}$ is defined as

$$l_3(g) = \int \frac{g'}{g} l_2(g).$$

The trilogarithmic integral of an element $g \in F - \{0, 1\}$ is defined as

$$l_3(g) = \int \frac{g'}{g} l_2(g).$$

A differential field extension $E = F(\theta_1, \ldots, \theta_n)$ is called a transcendental \mathcal{TEL} -extension if $C_E = C_F$ and each θ_i is transcendental over F_{i-1} and satisfies one of the following:

- (i) θ_i is an exponential over F_{i-1} .
- (ii) θ_i is a logarithm over F_{i-1} .
- (iii) θ_i is an error function over F_{i-1} .
- (iv) θ_i is a logarithmic integral over F_{i-1} .
- (v) θ_i is a dilogarithmic integral over F_{i-1} .
- (vi) θ_i is a trilogarithmic integral over F_{i-1} .

We say that $v \in F$ admits a \mathcal{TEL} -expression over F if there are finite indexing sets I, J, K, L and elements $r_i, g_i, s_l, h_l, u_j, \log(u_j), v_k, e^{-v_k^2}, w \in F$ and constants a_j, b_k for all i, j, k in I, J, K respectively such that

$$v = \sum_{i \in I} r_i \frac{g'_i}{g_i} + \sum_{l \in L} s_l \frac{h'_l}{h_l} + \sum_{j \in J} a_j \frac{u'_j}{\log(u_j)} + \sum_{k \in K} b_k v'_k e^{-v_k^2} + w',$$

where for each i, l, there are integers n_i, m_l such that $r'_i = \sum_{p=1}^{n_i} c_{il} f'_{il} / f_{il}$ and $s'_l = \sum_{q=1}^{m_l} d_{lq} \log(s_{lq}) t'_{lq} / t_{lq}$ for some constants c_{ip}, d_{lq} and elements $f_{il}, s_{lq}, t_{lq} \in F$

We say that $v \in F$ admits a \mathcal{TEL} -expression over F if there are finite indexing sets I, J, K, L and elements $r_i, g_i, s_l, h_l, u_j, \log(u_j), v_k, e^{-v_k^2}, w \in F$ and constants a_j, b_k for all i, j, k in I, J, K respectively such that

$$v = \sum_{i \in I} r_i \frac{g'_i}{g_i} + \sum_{l \in L} s_l \frac{h'_l}{h_l} + \sum_{j \in J} a_j \frac{u'_j}{\log(u_j)} + \sum_{k \in K} b_k v'_k e^{-v_k^2} + w',$$

where for each i, l, there are integers n_i, m_l such that $r'_i = \sum_{p=1}^{n_i} c_{il} f'_{il} / f_{il}$ and $s'_l = \sum_{q=1}^{m_l} d_{lq} \log(s_{lq}) t'_{lq} / t_{lq}$ for some constants c_{ip}, d_{lq} and elements $f_{il}, s_{lq}, t_{lq} \in F$

A \mathcal{TEL} -expression is called (a) a special \mathcal{TEL} -expression if for each i, $r'_i = c_i \log(1 - g_i)g'_i/g_i$ for some constant c_i and for each l, $s'_l = d_l(1 - h_l)'/(1 - h_l)$ for some constant d_l .

We say that $v \in F$ admits a \mathcal{TEL} -expression over F if there are finite indexing sets I, J, K, L and elements $r_i, g_i, s_l, h_l, u_j, \log(u_j), v_k, e^{-v_k^2}, w \in F$ and constants a_j, b_k for all i, j, k in I, J, K respectively such that

$$v = \sum_{i \in I} r_i \frac{g'_i}{g_i} + \sum_{l \in L} s_l \frac{h'_l}{h_l} + \sum_{j \in J} a_j \frac{u'_j}{\log(u_j)} + \sum_{k \in K} b_k v'_k e^{-v_k^2} + w',$$

where for each i, l, there are integers n_i, m_l such that $r'_i = \sum_{p=1}^{n_i} c_{il} f'_{il} / f_{il}$ and $s'_l = \sum_{q=1}^{m_l} d_{lq} \log(s_{lq}) t'_{lq} / t_{lq}$ for some constants c_{ip}, d_{lq} and elements $f_{il}, s_{lq}, t_{lq} \in F$

A *TEL*-expression is called
(a) a special *TEL*-expression if for each *i*, r'_i = c_i log(1 - g_i)g'_i/g_i for some constant c_i and for each *l*, s'_l = d_l(1 - h_l)'/(1 - h_l) for some constant d_l.
(b) a *T*-expression if it is special and for all j, k, a_j = b_k = 0. We call a differential field extension E of F to be a dilogarithmic extension of F if they have same field of constants and there are elements $y_1, \ldots, y_n, z_1, \ldots, z_m \in F$ such that $E = F(\log(y_1), \ldots, \log(y_n), \ell_2(z_1), \ldots, \ell_2(z_m)).$

Lemma

Let $F(\theta) \supset F$ be a transcendental trilogarithmic-elementary extension of F. Suppose there is an element $v \in F$ such that vadmits a special \mathcal{TEL} -expression over a dilogarithmic extension $E = F(\theta)(\log(y_1), \ldots, \log(y_n), \ell_2(z_1), \ldots, \ell_2(z_m))$ where each $y_i, z_i \in F(\theta)$. Then there exists a field $M = F(\log(p_1), \ldots, \log(p_l), \ell_2(q_1), \ldots, \ell_2(q_t), \theta)$, where each $p_i, q_i \in F$, having the same field of constants as F such that vadmits a special \mathcal{TEL} -expression over M.

Proposition

Let $F(\theta) \supset F$ be a transcendental field extension with $C_{F(\theta)} = C_F$. Let f be any element in $F(\theta)$ and $\{\alpha_j; j = 1, \ldots, t\}$ be the set of all zeroes and poles of f and 1 - f in an algebraic closure of F. Also, for some integers a_j , b_j , let $f = \eta \prod_{j=1}^t (\theta - \alpha_j)^{a_j}$ and $1 - f = \xi \prod_{j=1}^t (\theta - \alpha_j)^{b_j}$ then

$$\ell_2(f) = \ell_2(\eta) - \sum_{\substack{j,k=1\\k\neq j}}^t a_j b_k \ell_2 \left(\frac{\theta - \alpha_j}{\theta - \alpha_k}\right) - \frac{1}{2} \sum_{\substack{j,k=1\\j,k=1}}^t a_j b_k \log^2(\theta - \alpha_k)$$
$$- \sum_{k=1}^t a_k \log(\theta - \alpha_k) \log \xi - \sum_{\substack{j,k=1\\k\neq j}}^t a_j b_k \log\left(\frac{\theta - \alpha_j}{\theta - \alpha_k}\right) \log(\alpha_j - \alpha_k).$$

Proposition

Let $F(\theta) \supset F$ be a transcendental field extension with $C_{F(\theta)} = C_F$. Let f be any element in $F(\theta)$ and $\{\alpha_j; j = 1, \ldots, t\}$ be the set of all zeroes and poles of f and 1 - f in an algebraic closure of F. Also, for some integers a_j , b_j , let $f = \eta \prod_{j=1}^t (\theta - \alpha_j)^{a_j}$ and $1 - f = \xi \prod_{j=1}^t (\theta - \alpha_j)^{b_j}$ then

$$\ell_2(f) = \ell_2(\eta) - \sum_{\substack{j,k=1\\k\neq j}}^t a_j b_k \ell_2 \left(\frac{\theta - \alpha_j}{\theta - \alpha_k}\right) - \frac{1}{2} \sum_{\substack{j,k=1\\j,k=1}}^t a_j b_k \log^2(\theta - \alpha_k)$$
$$- \sum_{k=1}^t a_k \log(\theta - \alpha_k) \log \xi - \sum_{\substack{j,k=1\\k\neq j}}^t a_j b_k \log\left(\frac{\theta - \alpha_j}{\theta - \alpha_k}\right) \log(\alpha_j - \alpha_k).$$

J. Baddoura (2006) proved a similar identity for Bloch-Wigner Spence function D(g).

Theorem

Let E be a transcendental \mathcal{TEL} -extension of F. Then an element u in E have u' in F if and only if there are finite indexing sets I, J, K, L and w, $g_i, h_l, r_i, s_l, u_j, \log(u_j), v_k, e^{-v_k^2}$ in F such that

$$\begin{aligned} u' &= \sum_{i \in I} r_i \frac{g'_i}{g_i} + \sum_{l \in L} s_l \frac{h'_l}{h_l} + \sum_{j \in J} a_j \frac{u'_j}{\log(u_j)} + \sum_{k \in K} b_k v'_k e^{-v_k^2} + w', \\ r'_i &= -c_i t_i \frac{g'_i}{g_i} - \sum_{l \in L} r_{il} \frac{h'_l}{h_l}, \quad s'_l = -\sum_{i \in I} r_{il} \frac{g'_i}{g_i} - \sum_{p \in L} s_{lp} \frac{h'_p}{h_p}, \\ t'_i &= \frac{(1 - g_i)'}{1 - g_i} - \sum_{l \in L} c_{il} \frac{h'_l}{h_l}, \quad r'_{il} = -c_i c_{il} \frac{g'_i}{g_i} - \sum_{p \in L} e_{ilp} \frac{h'_p}{h_p} \end{aligned}$$

Theorem (Cont.)

and
$$s'_{lp} = -\sum_{i\in I} e_{ilp} \frac{g'_i}{g_i} - \sum_{q\in L} f_{lpq} \frac{h'_q}{h_q},$$

where each c_i is a non-zero constant, each c_{il} , e_{ilp} , f_{lpq} are some constants and each t_i , r_{il} and s_{lp} are elements in some dilogarithmic extension of F with $e_{ilp} = e_{ipl}$ and $s_{lp} = s_{pl}$ for every l and p.

References

- J. Baddoura, Integration in finite terms with elementary functions and dilogarithms, J. Symbolic Comput., Vol 41, No. 8 (2006), pp.909–942.
- J. Baddoura, A note on symbolic integration with polylogarithms, Mediterr. J. Math, Vol. 8, no. 2 (2011), pp. 229–241.
- G. Cherry Integration in finite terms with special functions: the logarithmic integral, SIAM J. Comput. Vol. 15, no. 1 (1986), pp. 1–21.
- G. Cherry, Integration in finite terms with special functions: the error function, J. Symbolic Comput. Vol 1, no. 3 (1985), pp. 283–302.
- E.R. Kolchin, Algebraic Groups and Algebraic Dependence, Amer. J. of Math, Vol. 90, No.4. (1968), pp.1151-1164.
- J. Moses, The integration of a Class of Special Functions with the Risch Algorithm, ACM SIGSAM Bulletin, No.13 (1969), pp.14-27.

- L. Rubel, M. Singer, Autonomous Functions, Jour. Diff eqns, Vol. 75, (1988), pp. 354-370.
- M. Rosenlicht, *Liouville's theorem on functions with elementary integrals*, Pacific J. Math, Vol. 24, (1968), pp. 153–161.
- M. Rosenlicht, M. Singer, On Elementary, Generalized Elementary, and Liouvillian Extension Fields, Contributions to Algebra, (H. Bass et.al., ed.), Academic Press (1977), pp. 329-342.
- M. Singer, B. Saunders, B. Caviness, An extension of Liouville's theorem on integration in finite terms, SIAM J. Comput., Vol. 14, no. 4 (1985), 966–990.
- Y. Kaur, V. Srinivasan, Integration in Finite Terms with Dilogarithmic Integrals, Logarithmic Integrals and Error Functions, J. Symb. Comput. (2018), https://doi.org/10.1016/j.jsc.2018.08.004

Thank You!