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For the purposes of this talk, all fields in sight have characteristic 0.
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Hardy fields

o field of germs at infinity of real valued functions that is closed under
differentiation
@ Examples:
» Q, R(x), R(v/x), R(x, e*,logx), Hardy’s LE-functions
» definable unary functions in an o-minimal expansion of R

natural ordering on germs

ordering induces valuation with valuation ring

O = {[f]:|f| < c, eventually}

satisfy “L'Hopital’s Rule at oo™

. f(x . f'(x)
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@ Hardy's field of LE-functions lacks closure properties, e.g., solutions
to various ODEs or the compositional inverse of (log x)(log log x)

o T is real closed and closed under exponentiation, integration,
composition, compositional inversion, and resolution of certain ODEs

> example series:
7eex+ex/2+ex/4+... _ 3€X2 + 5X\/§ _ (IOg X)Tr +42 +X_1 -|—X_2 + . + e—X

@ satisfies valuation analogue of “L’Hopital’s Rule at 00"

@ introduced by Ecalle in proving Dulac’s conjecture and Dahn—Goring
in studying models of the reals with exponentiation

@ studied also by Aschenbrenner, van den Dries, and van der Hoeven:

> axiomatization
» model completeness in ordered valued differential field language
» quantifier elimination in language expanded by three extra predicates
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Theorem (Ax—Kochen, Ershov)

Let K1 and K> be henselian valued fields. Then

Ki= K> <~ ki =k, and 1 =T5.

Tools:

@ maximal immediate extensions of K are isomorphic over K
@ K is henselian <= it is algebraically maximal
© K has a henselization
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A valued field is a field K with a surjective map v: K — I' U {oco}, where
[" is an ordered abelian group and I' < oo, satisfying:

Q v(x) =00 <= x=0;
Q@ v(xy) = v(x) + v(y);
@ v(x+y) > min{v(x), v(y)}
Notation:
o writef < gifvf >vgand f <gif vf > vg
e O = {f:f <1} is the valuation ring

e 0 :={f:f <1} is the (unique) maximal ideal of O
e k= O/o is the residue field
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Differential fields

A differential field is a field K with a map d9: K — K satisfying
0 J(f +g) =(f) +(g);
Q J(fg) =d(f)g + fa(g).
Notation:
o f':=09(f)
o C = {f:f"=0}is the constant field of K
o K{Y} = K[Y,Y', Y" ...]is the differential polynomial ring over K
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Basic properties

@ Assume K has small derivation: 9o C o.

» 5o d is continuous and induces a derivation on k

@ extension abbreviates “valued differential field extension with small
derivation.”

@ an extension of K is immediate if it has the same value group and
residue field as K

@ K is maximal if it has no proper immediate extensions

o K is d-algebraically maximal if it has no proper d-algebraic immediate
extensions
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Differential-henselianity

e K is d-henselian if for all P € O{Y},
degP=1 = PhasazeroinO

o k is linearly surjective if every 1+ agY +a1Y' 4+ ---+a,Y("), a; € k,
a, #0, has a zero in k
@ Note: K is d-henselian = k is linearly surjective
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Uniqueness of maximal immediate extensions

Theorem (Aschenbrenner—van den Dries—van der Hoeven)

There is a valued differential field with continuum-many maximal
immediate extensions that are pairwise nonisomorphic.

Conjecture (Aschenbrenner—van den Dries—van der Hoeven)

If k is linearly surjective, then any two maximal immediate extensions of K
are isomorphic over K.

This has been proven for monotone K by Aschenbrenner, van den Dries,
and van der Hoeven, and for K whose value group has finite archimedean
rank by van den Dries and PC.
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Uniqueness of maximal immediate extensions for
asymptotic fields

K is asymptotic if for all nonzero f, g <1,

<1 <= — < 1.
g

g
Note that then C C O.

Theorem (PC)

Suppose K is asymptotic and k is linearly surjective. Then any two
maximal immediate extensions are isomorphic over K.
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maximality

Theorem (Aschenbrenner—van den Dries—van der Hoeven)

If k is linearly surjective and K is d-algebraically maximal, then K is
d-henselian.

The converse is false in general, even in the monotone case.

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.

This was first proven in the monotone case by Aschenbrenner, van den
Dries, and van der Hoeven.
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Differential-henselizations

L is a d-henselization of K if:
@ it is a d-henselian immediate extension of K;

@ it embeds over K into every d-henselian immediate extension of K.

Theorem (Aschenbrenner—van den Dries—van der Hoeven)

If K is asymptotic and k is linearly surjective, then K has a minimal
d-henselian d-algebraic immediate extension.

Theorem (PC)

If K is asymptotic and k is linearly surjective, then K has a d-henselization.




Summary

Theorem (PC)

Suppose K is asymptotic and k is linearly surjective. Then:
@ any two maximal immediate extensions of K are isomorphic over K;
@ if K is d-henselian, then it is d-algebraically maximal;

© K has a d-henselization.
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Proof sketch of (2)

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.

Key properties of d-henselian asymptotic fields:

e Each P € O[Y,Y’,..., Y] does not have r + 2 distinct zeroes in a
certain configuration.

e If P € O{Y} with deg P =1, and E is an immediate extension of K,
then P has the same zeroes in Of as in O.

Proof sketch of theorem:

@ take f in an immediate extension of K, so f is the pseudolimit of a
pseudocauchy sequence (f,) over K;

@ find minimal P such that P € O{Y}, P(f,) ~ 0, and P(f) =0;

© use pseudocauchy sequence to find infinitely many zeroes of P in
configuration as above, contradicting the key property.
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Main step

Step (3) is difficult:

Proposition

Suppose K is asymptotic and henselian, and k is linearly surjective. Let
(f,) be a pseudocauchy sequence in K and P is minimal with P(f,) ~» 0.
Then the degree of P in the cut corresponding to (f,) is 1.

@ proof is technical
@ involves developing a differential newton diagram method

@ problem: v(f) does not really control v(f’)



Thank you!



