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For the purposes of this talk, all fields in sight have characteristic 0.



Hardy fields

field of germs at infinity of real valued functions that is closed under
differentiation

Examples:
I Q, R(x), R(

√
x), R(x , ex , log x), Hardy’s LE-functions

I definable unary functions in an o-minimal expansion of R
natural ordering on germs

ordering induces valuation with valuation ring

O = {[f ] : |f | 6 c , eventually}

satisfy “L’Hôpital’s Rule at ∞”:

lim
x→∞

f (x)

g(x)
= lim

x→∞

f ′(x)

g ′(x)
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Transseries

Hardy’s field of LE-functions lacks closure properties, e.g., solutions
to various ODEs or the compositional inverse of (log x)(log log x)

T is real closed and closed under exponentiation, integration,
composition, compositional inversion, and resolution of certain ODEs

I example series:

7ee
x+ex/2+ex/4+...− 3ex

2

+ 5x
√
2− (log x)π + 42 + x−1 + x−2 + · · ·+ e−x

satisfies valuation analogue of “L’Hôpital’s Rule at ∞”

introduced by Écalle in proving Dulac’s conjecture and Dahn–Göring
in studying models of the reals with exponentiation

studied also by Aschenbrenner, van den Dries, and van der Hoeven:
I axiomatization
I model completeness in ordered valued differential field language
I quantifier elimination in language expanded by three extra predicates
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introduced by Écalle in proving Dulac’s conjecture and Dahn–Göring
in studying models of the reals with exponentiation

studied also by Aschenbrenner, van den Dries, and van der Hoeven:
I axiomatization
I model completeness in ordered valued differential field language
I quantifier elimination in language expanded by three extra predicates



Transseries

Hardy’s field of LE-functions lacks closure properties, e.g., solutions
to various ODEs or the compositional inverse of (log x)(log log x)

T is real closed and closed under exponentiation, integration,
composition, compositional inversion, and resolution of certain ODEs

I example series:

7ee
x+ex/2+ex/4+...− 3ex

2

+ 5x
√
2− (log x)π + 42 + x−1 + x−2 + · · ·+ e−x

satisfies valuation analogue of “L’Hôpital’s Rule at ∞”
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Model theory of valued fields: Ax–Kochen/Ershov

Theorem (Ax–Kochen, Ershov)

Let K1 and K2 be henselian valued fields. Then

K1 ≡ K2 ⇐⇒ k1 ≡ k2 and Γ1 ≡ Γ2.

Tools:

1 maximal immediate extensions of K are isomorphic over K

2 K is henselian ⇐⇒ it is algebraically maximal

3 K has a henselization
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Valued fields

A valued field is a field K with a surjective map v : K → Γ ∪ {∞}, where
Γ is an ordered abelian group and Γ <∞, satisfying:

1 v(x) =∞ ⇐⇒ x = 0;

2 v(xy) = v(x) + v(y);

3 v(x + y) > min{v(x), v(y)}.

Notation:

write f 4 g if vf > vg and f ≺ g if vf > vg

O := {f : f 4 1} is the valuation ring

O := {f : f ≺ 1} is the (unique) maximal ideal of O
k := O/O is the residue field
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Differential fields

A differential field is a field K with a map ∂ : K → K satisfying

1 ∂(f + g) = ∂(f ) + ∂(g);

2 ∂(fg) = ∂(f )g + f ∂(g).

Notation:

f ′ := ∂(f )

C := {f : f ′ = 0} is the constant field of K

K{Y } := K [Y ,Y ′,Y ′′, . . . ] is the differential polynomial ring over K
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Basic properties

Assume K has small derivation: ∂O ⊆ O.

I so ∂ is continuous and induces a derivation on k

extension abbreviates “valued differential field extension with small
derivation.”

an extension of K is immediate if it has the same value group and
residue field as K

K is maximal if it has no proper immediate extensions

K is d-algebraically maximal if it has no proper d-algebraic immediate
extensions
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Differential-henselianity

K is d-henselian if for all P ∈ O{Y },

degP = 1 =⇒ P has a zero in O

k is linearly surjective if every 1 + a0Y + a1Y
′ + · · ·+ arY

(r), ai ∈ k ,
ar 6= 0, has a zero in k
Note: K is d-henselian =⇒ k is linearly surjective
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Uniqueness of maximal immediate extensions

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

There is a valued differential field with continuum-many maximal
immediate extensions that are pairwise nonisomorphic.

Conjecture (Aschenbrenner–van den Dries–van der Hoeven)

If k is linearly surjective, then any two maximal immediate extensions of K
are isomorphic over K .

This has been proven for monotone K by Aschenbrenner, van den Dries,
and van der Hoeven, and for K whose value group has finite archimedean
rank by van den Dries and PC.
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Uniqueness of maximal immediate extensions for
asymptotic fields

K is asymptotic if for all nonzero f , g ≺ 1,

f

g
≺ 1 ⇐⇒ f ′

g ′ ≺ 1.

Note that then C ⊆ O.

Theorem (PC)

Suppose K is asymptotic and k is linearly surjective. Then any two
maximal immediate extensions are isomorphic over K .
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Differential-henselianity and differential-algebraic
maximality

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If k is linearly surjective and K is d-algebraically maximal, then K is
d-henselian.

The converse is false in general, even in the monotone case.

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.

This was first proven in the monotone case by Aschenbrenner, van den
Dries, and van der Hoeven.
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Differential-henselizations

L is a d-henselization of K if:

1 it is a d-henselian immediate extension of K ;

2 it embeds over K into every d-henselian immediate extension of K .

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If K is asymptotic and k is linearly surjective, then K has a minimal
d-henselian d-algebraic immediate extension.

Theorem (PC)

If K is asymptotic and k is linearly surjective, then K has a d-henselization.
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Summary

Theorem (PC)

Suppose K is asymptotic and k is linearly surjective. Then:

1 any two maximal immediate extensions of K are isomorphic over K ;

2 if K is d-henselian, then it is d-algebraically maximal;

3 K has a d-henselization.



Proof sketch of (2)

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.

Key properties of d-henselian asymptotic fields:

Each P ∈ O[Y ,Y ′, . . . ,Y (r)] does not have r + 2 distinct zeroes in a
certain configuration.

If P ∈ O{Y } with degP = 1, and E is an immediate extension of K ,
then P has the same zeroes in OE as in O.

Proof sketch of theorem:

1 take f in an immediate extension of K , so f is the pseudolimit of a
pseudocauchy sequence (fρ) over K ;

2 find minimal P such that P ∈ O{Y }, P(fρ) 0, and P(f ) = 0;

3 use pseudocauchy sequence to find infinitely many zeroes of P in
configuration as above, contradicting the key property.
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Main step

Step (3) is difficult:

Proposition

Suppose K is asymptotic and henselian, and k is linearly surjective. Let
(fρ) be a pseudocauchy sequence in K and P is minimal with P(fρ) 0.

Then the degree of P in the cut corresponding to (fρ) is 1.

proof is technical

involves developing a differential newton diagram method

problem: v(f ) does not really control v(f ′)
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Thank you!


