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THE CONTEXT OF THE PROBLEM

« Complex dynamics, non-linear interaction mechanisms in cellular

processes are modeled according to physico-chemical laws.

« Ordinary differential equations (ODE) involving parameters such as

reaction rates are commonly used.

* In general ODE parameters can only be measured indirectly. Their
recovery can then only be approached indirectly as a parameter

estimation problem starting from external input-output measurements.

« Structural Identifiability is the first step in model identification,
necessary to correctly solve the parameter estimation problem from

the experimental data.



MATHEMATICAL FORMULATION

The system-experiment model
JX(t) = f[x(t), p,u(t)] Initial conditions:
Ly(t) =h[x(t), p] X(t,) = X,
where

- X Is the n-dimensional state variable,

u is the m-dimensional input function

y is the r-dimensional output function

p is the constant unknown k-dimensional parameter vector

f and h polynomial or rational functions (i.e. saturation process,
Michaelis-Menten kinetics), for the time being.

NOTE: Our ident. method can be applied to study some
nonpolynomial equations models, e.g. exponential models.



STRUCTURAL IDENTIFIABILITY PROBLEM
HYPOTHESIS: noise-free data.

(known) INPUT OUTPUT (measurable)
u,(t) Input-Output map: y, () |
L0 | y=0,(pu) —
Un (8) .yr(t) :
PROBLEM:

Given u and y, how many parameter values p satisfy the I-O map?

* one (Global identifiability)

p has a finite number of solutions (Local Id.)
* >o0ne

p has an infinite number of solutions (Non Id.)



DEFINITIONS

y =h[x(t,u, p, %), pl==¢, (P,u)  Input-Output Map
DEFINITION 1

— The system is structurally globally (or uniquely) identifiable
from Input-output data If, for at least a generic set of points
*e P, there exists at least one input function u such that

¢XO(|O u)=4¢, (p*,u) (1)

has only one solution p = p* for all X, in a generic subset of
R".

DEFINITION 2

The system is structurally locally identifiable from input-output
data at p*e P, If there exists at least one input function u and an
open neighborhood U. of p*, such that eq. (1) has a unique
solution p*e U, for all x, in a generic subset of € R".

For a system which is not even locally identifiable, equation (1) has

generically an infinite number of solutions for at least one input u.
This is called non-identifiability.



Why check structural id. of biological models?

y
A simple locally identifiable model: -9

(1) = (ko + )X (0)+ ki () +U (Y

X, (1) = Ky X, (1) —Kg, X (1) + Koys X, (1) . kot
4 X5 (1) = Kap X, (1) — (KX, + Kog ) X5 () 8 8
\y(t) =X, (t) @3

The unknown parameter vector is

P=[Ko1,Ko1,K13,Kgp Kozl

Differential algebra identifiability results: &

- -

the model has 3 parameter solutions e . D }
' : ———

equivalently describing the 1/O 1 = p,

experimental data. g / , , . o

Halt)




State trajectories of the two
unobservable compartments
determined for the three
locally identifiable
parameterization.

For example, this can lead to an

erroneous therapeutic decision.
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cont.

A simple non-identifiable model:

r).(l (t) = _(k01 T k21)X1 (t) + k12)(2 (t) T U(t) X (O) RAT
Xz (t) = k21X1 (t) — (koz + k12)X2 (t) X, (O) =0
Ly(t) =x(t)

N\

“— k01
<— k02

The unknown parameter vector is

P=[Ko1,Ka1,K12, Kool

X1
00 02 04 06 08 1.0

time time
For example, this can lead to an erroneous therapeutic decision.



STATE OF THE ART FOR NONLINEAR MODELS

STRUCTURAL IDENTIFIABILITY
Taylor series expansion of y(p,t) (Pohjampalo 1978)
« Generating Series (Walter et al. 1982)
« Similarity transformation approach (Godfrey et al. 1989).

- Differential algebra methods (Ollivier 1990, Ljung et al. 1994,
Joly-Blanchard et al. 1998, Margaria et al. 2001, IEEE Trans.
Biomed. Eng. 2001).

 |dentifiability of nonlinear models from given initial conditions
(Automatica 2003).
 Structural identifiability software
- DAISY (Comp. Meth. and Progr. in Biomedicine 2007)
- GenSSl (Chis et al. 2011)
- EAR (Anguelova, 2012)
- COMBOS (Meshkat et al. 2014)
- SIAN (Hong et al. 2019 to appear)



EXAMPLE: A SIMPLE NONLINEAR MODEL (1)
(Michaelis-Menten kinetics)

- u(t) oy(t)
X(t) = — Vi X(t) +u(t) x(0) =d ’
] K., +X(t)
y(t) =x(t)/V <,
\ le+x (¥

where p = (K, ,Vy,V)
K, and V_ are the Michaelis-Menten parameters,

V denotes the distribution volume of the accessible pool.



EXAMPLE: A SIMPLE NONLINEAR MODEL (2)

(Michaelis-Menten kinetics)

(o VyX(t) -
X(t) = <+ x() +u(t) x(0)=d

y(t) = x(t)/V

Taylor series expansion: y(t) =t...

-

the designed
experiment

x,(0) _d
VARRY,

y(0) = = V has one solution




Cont.

0 %@ 1 Vyx(© o 1 Vyd

1
V VK, +x(0) V K_+d

+u(0)

j(0) = %@ _ _ 1 Vi X OIK, + X )]V, % (0)%(0)
vV (K, +%,(0))?

_i KmVMxl(O) +U(0)— K V y(O)
V (Ky +%(0)° (K, +d)*

+U(0) =

+(0)

X (0) 1V, K% (0K, + % O)F - 2V,, K K O)[K, + % (0)]
Y (Kp +%,(0))°
KV [YO)(K, +d)-2y(0)’]
(K, +d)°

y0) ==~ +0i(0) =

+(0)

K. .Vyu.V are globally identifiable.

ATTENTION: only a sufficient condition!




HOW DO WE CHECK IDENTIFIABILITY?

1. Compute the I/0O map of the system (in its implicit form).

This is formed by a set of differential polynomials in the variables
u,u,u,...,v,v, VY,...

HOW? By elimination of x.

TOOL (from differential algebra): Ritt Algorithm (1950) to calculate the

characteristic set of the ideal generated by the polynomials

defining our dynamic model.

2. Check that the parameterisation of the 1/O relation(s) is injective.

HOW?

By calculating the Grébner basis of the algebraic system to be solved.

TOOL (from computer algebra): Buchberger Algorithm.

14



DIFFERENTIAL ALGEBRA

Differential polynomial ring: K[z, ...,z]

Ranking among the variables and their derivatives
Ranking among the polynomials A;, a; € K[z,...,z]

DEFINITIONS

The leader u; of a polynomial A, is the highest ranking derivative of the variables
appearing in A

The order of the leader is its maximum order of derivation.
A Is of lower rank than A; if u<u; or, whenever u=u; and deg(u;)<deg(u;).

A Is reduced with respect to A, if does not contain neither the leader of A with equal
or greater algebraic degree, nor its derivatives.

If A; is not reduced w.r.t. to A it can be reduced by using the pseudodivision
algorithm among polynomials (suggested by Ritt, 1950).

A set of differential polynomials A={A, A,,..., A} that are all reduced with respect to
each other, is called an autoreduced set.

A lowest rank autoreduced set that can be formed with polynomials from a given set
S of differential polynomials, is called a characteristic set of S. 15



DIFFERENTIAL ALGEBRA AND IDENTIFIABILITY

The differential polynomials
x—f(x, p,u)

3

LY —h(x, p)

generate a (prime) differential ideal | in the ring R(p)[u,y,X].

Ranking: U<l <li<.<y<y<P<..<X <X, <...<X <X <X <..<X <..

Characteristic set (Ritt algorithm, 1950)

For simplicity scalar output:

@) > INPUT-OUTPUT RELATION

AP0, Y, %) Diﬁerentﬁal_ po_lynomial obtained
A (DU, Y, X, X,) after elimination of the state
AR variables, hence represents
' exactly the pairs (u,y) described

AP UL Y X, X, X)) by the original system.




cCont.

* The input-output relation is:

Apu,y)=2 c(p)fiUu..y,y..) @
i=1
polynomials in p known monomials in I/O variables

« The exhaustive summary (Ollivier) of the model is:
c(p) i=l..v (2)

To test global identifiability check the unique solvability
(injectivity) of the algebraic nonlinear system:

c(p)=c  i=1..v (3)



Cont.

We use the Buchberger algorithm, a computer algebra

algorithm for computing with multivariate polynomials
K[p11p2! sy pk]

Generalizes well-known algorithms:
- Gaussian elimination
- Euclidean algorithm

« Calculates the reduced Grobner basis of system (2)

A Grobner basis for anideal | is a set of generator for |

having certain property with respect to an ordering < on the
monomials.

The reduced Grobner basis minimally generates |I.

If the term order < is fixed , then every ideal | in K[p4,p,, ---,Pl
has a unique reduced Grobner basis.



EXAMPLE: A SIMPLE NONLINEAR MODEL (3) 0
u(t) Y
Vi

X + X—U \ ’
3 K., + X @
y—x/V

Standard ranking: U<U<U<Yy<y<y<X<X<...

The characteristic set is:

VAN Vv L O
{ yy @ y©u y@u + @y (normalized) input-output relation

-X+ yV
Checking the injectivity of the exhaustive summary leads to a system

of nonlinear algebraic equations in the unknown K_, V,, and V
(Buchberger algorithm to calculate the reduced Grébner basis).

.

Vu =¢, /¢, One solu_tion
<K, =¢,/c, (global id.)

V =1/c,




IDENTIFIABILITY WITH INITIAL STATE
CONDITIONS (1/2)

HYPOTHESIS: Algebraic Observability

DEFINITION: A state component is algebraically observable if its derivative
does not appear in the last n equations of the characteristic set.

A (P, U, Y)
A(p,U, Y, %)

A (P, U, Y, %, X,) These last n polynomials
: are evaluated at time t = 0.

An(p!u1y;X1,X2,...,Xn)

The identifiability test with given initial conditions is based on the
exhaustive summary c(p) together with polynomials:

A (p,u(0), y(0),x,(0)) | |
.AZ(p’ u(0), y(0), x,(0), x,(0)) Augmented

(*) exhaustive
summary

A, (p,u(0),y(0),%.(0), x;(0)...., x,(0))



IDENTIFIABILITY WITH INITIAL STATE
CONDITIONS (1/2)

1. Known initial conditions
Polynomials (*) are in the unknown p with coefficients which are

monomials in the known data  X(0),u(0),u(0),..., y(0), y(0),...

2. Some Information on initial conditions

Polynomials (*) are in the unknowns p and X,,.

In both cases:

1. the corresponding equations of the augmented exhaustive summary is
solved by the Buchberger algorithm

2. the new reduced Grdbner basis provides the parameter identifiability

results from input-state-output data.



A HIV model (Wodarz et al., 2002)

X=A-dXx-6xv,

yy = fXv-ayy,

V =Kyy—uuv,
W=cxyyw—-cqyyw—-bw,
2 =cqyyw-hz

Y. = W,

Y, = ¢

X=[X, VY, V, W, z] state variables;

y, and y, measured outputs;

pP=[p, 4, a, b, c, d, h, k, g, uu] unknown parameters;
X(O):!:X*, yy*, v*, w*, z*] initial conditions.

o J
Y Y
unknown known

22



A chemical reaction model (Conradi et al., 2018)
X, =- kKX X, + K, x, + K, X,
= K XX, + K, X, + K;X,,

<
|

= KX, + KoXg - Ko X X,

w

D

= K, X; + KX - KX X,

o1

X
X
X, = KXX, - KX, - KX,
X
X

.6 — - k4X6 B ksxe } k6X3X5’
Y1 = X,
Y, = X

where X=[Xy, X,, X3, X4, Xg, X¢] State variables;
y, and y, measured outputs;
pP=[Kkq, Ky, K3, Ky, Kz, Ks] unknown parameters;
X(0)=[X{*, X,*, X5*, X,*, Xs*, Xz*] initial conditions

(X,* and X3* known from the output functions).



PROBLEM

The input-state-output identifiability method may not work when the
system is started at “special” initial conditions.

OSS: This happens whenever method is used to check identifiability

IMPORTANT STRUCTURAL PROPERTIES

MINIMALITY

OBSERVABILITY: if the model is non algebraically observable, the
known initial conditions cannot be used in the identifiability test.
ACCESSIBILITY: Accessibility may fall for many biosystems
starting from known but “non generic” initial conditions

DEFINITION: A system is accessible from x, If, for suitable
iInput u(t), the state x(t) can reach an open set of
full dimension of the state space.



ACCESSIBILITY RANK CONDITION
For analytic, in particular polynomial, models

= FIX(O, 01+ 37, 00 PO )
y(®) = hIx(®),u(t), ]

a necessary and sufficient condition for accessibility from x, is
dimA.(X,)=n

where A. is the distribution associated to the Control Lie Algebra,
l.e. the smallest Lie algebra C containing the vector fields
f,d¢,-..,9, and invariant under Lie bracketing with f,g,,...,g,.

25



IDENTIFIABILITY AND ACCESSIBILITY (1/2)

THEOREM 1. If the system is accessible from all initial states

X, from which it may have been started, then the
characteristic set does not change and provides the correct
identifiability test.

THEOREM 2. If the system is accessible except from a “thin
set" T of measure zero and X,eT.

Let {4(x) =0; k=1,...,d} be the set of algebraic equations
defining the invariant manifold T containing X,,.

Then the characteristic set can change.

The correct answer is given by the identifiability test applied
to the original model equations plus equations ¢ (x) =0.



EXAMPLE

()‘(1 =~ Pl = P2 X, = P3X; X (0) = Xy
1% = PgXXp = PyX X, (0) = Xy
Y =%

where p,, P1, Py, P3, are the unknown parameters.

The system is generically accessible, i.e. dimA.(X,) =2 for all x, T
where T is the invariant manifold defined by #(X) = {p,X, — p, = 0}

Thus, if Xy & T, the characteristic set of the ideal generated by the

polynomials defining the system shows that the model is glob. identifiable.

If X, € T the system solution evolves in the invariant set T.

From Theorem 2, equation P;X, — P, =0 has to be added to the

polynomials defining the original dynamic system, in order to correctly
27

check identifiability. In this case the model is nonidentifiable.



IDENTIFIABILITY AND ACCESSIBILITY (1/2)

In case of systems non-accessible from everywhere, the

system evolves in a lower dimension manifold defined by a
co-distribution orthogonal to A...

THEOREM 3. If the system is non-accessible from all initial

states X, from which it may have been started, then the
characteristic set does not change and provides the correct
identifiability test.

28



A Model of erythroproietin (Epo) receptor
V. Becker et al. Science 2010.

The model describes the nonlinear processes of ligand-receptor (Epo-EpoR)
interaction and trafficking kinetics. In particular the biochemical processes
underlying the EpoR endocytosis, that is the process of engulfing substances
outside the cell with a membrane and transporting them into cytoplasm.

Six species are incorporated in the model, x;i = 1,...,6 being the relative
concentrations, and all interactions are modeled by mass-action kinetics.

(X (t)=b__k —kxX —K, XX, +K. X, +K,X,

X (1) = =KX, X, + KaXg + K, X, = X=X = X =-X+P,
X3 (1) = KX, X, —KaXg —KgX

X, (1) = KeXy — (K, + kg +K;)X,

I3 (0) = k. X,
% (1) =KX, = )'(6:%)'(5: XGZ%XS
y1(t):X2+X6 6 6
Y, (t) = X3

k)’3('[) =Xy + X5

with initial condition X(0)=[X;4,X50,0,0,0,0].



DAISY input file
WRITE "CORE MODEL, Becker SCIENCE 2010 Suppl. mat. pg.17"$

% B_ IS THE VARIABLE VECTOR
B _:={yl,y2,y3,x3,x5,x4,x1}$
FOR EACHEL_IN B_DO DEPEND EL_,T$

%B1_ 1S THE UNKNOWN PARAMETER VECTOR
B1_:={k1,k2,k3,k4,k5,k6,k7,bmax,p2)$

%NUMBER OF STATE(S)
NX :=4%

%NUMBER OF INPUT(S)
NU :=0%

%NUMBER OF OUTPUT(S)
NY :=3$%

%MODEL EQUATION(S)
C_:={df(x1,t)=bmax*k1-k1*x1-k2*x1*(-x3+p2)+k3*x3+k4*x4,
% df(x2,t)=-k2*x1*(-x3+p2)+k3*x3+k4*x4,
df(x3,t)=k2*x1*(-x3+p2)-k3*x3-k5*x3,
df(x4,t)=k5*x3-(k4+k6+k7)*x4,
df(x5,t)=k6*x4,
% df(x6,t)=k7*x4,
y1=(-x3+p2)+(k7/k6)*x5,
y2=xX3,
y3=x4+x5}$

FLAG :=1%
DAISY()$

%VALUES OF INITIAL CONDITIONS ARE GIVEN
ICK_:={X3=0,X4=0,X5=0}$

ICUNK_:={X1=X10}$

CONDINIZ()$

END$



NON-POLYNOMIAL MODELS?

EXAMPLE
X, =aexp(—x,)+u
XZ — —le

where p = [a, b].
By introducing a new state x;=a exp(-x,) and by differentiating x, one obtains:
X3 = =X, Xg

This additional differential equation will turn into the third order system which
IS trivially globally nonaccessible since the evolution of this augmented

system is constrained to take place in some invariant submanifold:

X =X+l polynomial
< Xy =—bXy globally nonaccessible
\X3 — bX1X3 31



EXAMPLE OF TIME-VARYING MODELS

* In many biological and physiological applications, often in the
differential equations describing the phenomena, time-varying
coefficients appear with a known functional form but depending
on some unknown parameters. For example:

X, =aexp(-bt)x, +u

By introducing a new state

X, = exp(-bt)
and differentiating
X, = ax X, +U polynomial
. = —Px globally nonaccessible
2 2 time-invariant

32



SOME OBSERVATIONS

Diff. Alg. 1d. provide the exact number of model parameter solutions.

In case of nonidentifiability, it provides the analytical form of the functional
dependence (invariants) of the nonidentifiable parameters.

Structural identifiability analysis avoids to waste resources in performing
useless experiments.

There is no way that all parameters of a non identifiable model can be
numerically estimated with good precision in a real situation.

Obviously, although necessary, structural id. is not sufficient to guarantee an
accurate identification of the model from the real input/output data.

The analytical nature of the structural id. algorithms imposes
restrictions on the size and complexity of the systems.



IDEA

Joint use of structural and practical identifiability

Practical id. analysis, based on optimization algorithms can
take advantage of information provided by structural id.

|. Local identifiability case

« To calculate all the multiple solutions of the model.

ll. Nonidentifiability case

« To exploit the analytical relations among nonidentifiable parameters
described by the Grobner bases to use these Iinvariants as
constraints in the optimization algorithm.



PRACTICAL IDENTIFIABILITY
P={p

A\ 2 A ..
V,SS(p)=0 A szSS(p) >0} global and local minima
where SS is a cost function defined in an optimization algorithm.

 For local identifiable models (multiple global minima), multi-start
searches require many optimization steps starting from different

Initial conditions.

They can avoid local minima but cannot guarantee to find ALL global minima.

SS A




IDEA
Joint use of structural and practical identifiability

1. structural id. calculates the exact number of parameter
solutions

2. find a numerical solution p* with the practical identifiability

3. use p” to analytically calculate all the equivalent parameter
solutions p; , with the differential algebra method.

SS

" P

When possible, checking structural identifiability first, decrease the number
36

of searches generally required by practical id.



cont. A simple locally identifiable model

o

A

Suppose:
p* =[0.02374, 0.00181, 0.01331, 0.03089, 0.01729]

Table 1. Admi==ible solutions for the first ran-
domized parameter vector

P1 P> M3
K1 002374 0.03581 OLUSETAT
ey | 000181 OUGEOT] LOZ1L1T
ka1® | 0.01331 001331 01331
fegs | OUO30ES 002873 01153
kg | 001729 OUO5225 L4016

9 globally identifiable parametar,

H_

I:I.IEEI 0

-
P

P3

¥o(t)
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0 Q05 0310 Qs

(1)
2 04 08 08 10

— e ST e

i

PS——

B0
time (min)



cont. A simple locally identifiable model

Suppose now:
p* =[0.02324, 0.001834, 0.1202, 0.03072, 0.01632]

Table 2. Mon admissible solutions for the sec-
ond randomized parameter vector

P1 P2 M3
ka1 0.02324 —0.000422 —0.070Eg
kig | 0001834 —0.04121 —8.88.10°°
ko™ | 0.1202 0.1202 0,120
kg 0.03072 0.07377 0,08 264
ksa 0.01632 0, 0300 0.1 104

& ghbally 1dentifiable parametar.

ATT.: The additional two solutions do not belong to the admissible parameter
space.
This is a favourable situation in which additional solutions can be rejected,

showing, in practice, model global identiability. 38



Il. Case of local identifiability

A pharmacokinetics model of Zalypsis®

a cytotoxic agent having a significant killing action in several tumour sites.
Craig et al.J. Theor. Biol. (2015).
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N

A four-dimensional HIVAAIDS model
(Perelson et al., Math. Biosci. 1993)

(. * **
T :s—,uTT-IrI’T(l—T+TT ull )—kVT

T*=KVT — 1, T*—Kk,T*
Tr* =K, T*—p, T**

V =Ny T**—kVT — 1,V
y, =T

Y, =V

T concentration of uninfected cells;

T* concentration of latently infected cells;

T** concentration of actively infected cells;

V concentration of free infectious virus particles;
y, and y, measured outputs;

P=[S, tp 1y Trae Kio Koy 24, N, 24,] UNKknown parameters.

40



cont.

A four-dimensional HIVAAIDS model

Table 3. The two solutions of the HIV model

Parametar Unita Py P2
2 (day—'mm—=) 10 10
r (day—1) 0.03 0.03%
Tmaz (mm—3) 1500 1500
LT (day—1) 0.02 0.02
s (day—1) 0.24 0.023
Ly (day—1) 2.4 2.4
k1 (mm® day—') | 2.4.10°% 2.4.10°°
kz (day—1) 0.1003 0.22
N 1400 194,21

41



Cont. A four-dimensional HIVMAIDS model

% J 2 | (TTTTT TS
F=E L. N I
Sg o '
@ = =t EB- X = o
3 5 I
" 8 3z !
E ; : -I_ : : ' [ —-—-—.‘i‘f
S 2 4 8 B 10 g 2 a 8 g 10
years {1 = T_tot/T_max) years

5
p_T
L
= - =
T3]
0
8
= ﬁ_ — mi % -
T i - 1] == m
8- L %a-
= N e —————
0 . 4 B B |I|:|. 1] F 4 i} & 10

years years



THE DAISY SOFTWARE

- Our differential algebra method has been implemented in
the software package DAISY, coded in the symbolic
language Reduce.

- High-level programming languages, mathematics and
computer algebra will not be prerequisites for using the
software.

- A new beta version is now available with a user-friendly

interface on the temporary website

https://daisy-reduce.shinyapps.io/daisy/

the final one will be: http://daisy.dei.unipd.it/


https://daisy-reduce.shinyapps.io/daisy/

