STRUCTURAL IDENTIFIABILITY OF

RATIONAL ODE MODELS IN

 BIOLOGICAL SYSTEMS:a real-world application of differential
algebra
M.P. Saccomani

Dept. Information Engineering, Padova, Italy

- The identifiability problem
- Why is it important in biological and biomedical studies?
- Mathematical formulation
- A differential algebra identifiability method for rational dynamic models -Identifiability of models with given initial conditions
- Checking structural identifiability in combination with practical id.
- Case studies
- Conclusions

THE CONTEXT OF THE PROBLEM

- Complex dynamics, non-linear interaction mechanisms in cellular processes are modeled according to physico-chemical laws.
- Ordinary differential equations (ODE) involving parameters such as reaction rates are commonly used.
- In general ODE parameters can only be measured indirectly. Their recovery can then only be approached indirectly as a parameter estimation problem starting from external input-output measurements.
- Structural Identifiability is the first step in model identification, necessary to correctly solve the parameter estimation problem from the experimental data.

The system-experiment model

$$
\left\{\begin{array}{l}
\dot{x}(t)=f[x(t), p, u(t)] \\
y(t)=h[x(t), p]
\end{array}\right.
$$

Initial conditions:

$$
x\left(t_{0}\right)=x_{0}
$$

where

- $\quad x$ is the n -dimensional state variable,
- u is the m-dimensional input function
- y is the r-dimensional output function
- p is the constant unknown k-dimensional parameter vector
- f and h polynomial or rational functions (i.e. saturation process, Michaelis-Menten kinetics), for the time being.

NOTE: Our ident. method can be applied to study some nonpolynomial equations models, e.g. exponential models.

STRUCTURAL IDENTIFIABILITY PROBLEM

HYPOTHESIS: noise-free data.
(known) INPUT
OUTPUT (measurable)

PROBLEM:

Given u and y, how many parameter values p satisfy the I-O map?

- one (Global identifiability)
- > one $\left\{\begin{array}{l}p \text { has a finite number of solutions (Local Id.) } \\ p \text { has an infinite number of solutions (Non Id.) }\end{array}\right.$

DEFINITIONS

$$
y=h\left[x\left(t, u, p, x_{0}\right), p\right]:=\phi_{x_{0}}(p, u) \quad \text { Input-Output Map }
$$

- The system is structurally globally (or uniquely) identifiable from input-output data if, for at least a generic set of points $p^{*} \in P$, there exists at least one input function u such that $\phi_{x_{0}}(p, u)=\phi_{x_{0}}\left(p^{*}, u\right)$
has only one solution $p=p^{*}$ for all x_{0} in a generic subset of R^{n}.

DEFINITION 2

The system is structurally locally identifiable from input-output data at $p^{*} \in P$, if there exists at least one input function u and an open neighborhood $U_{p^{*}}$ of p^{*}, such that eq. (1) has a unique solution $p^{*} \in U_{p^{*}}$ for all x_{0} in a generic subset of $\in R^{n}$.

For a system which is not even locally identifiable, equation (1) has generically an infinite number of solutions for at least one input u. This is called non-identifiability.

Why check structural id. of biological models?

A simple locally identifiable model:

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=-\left(k_{01}+k_{21}\right) x_{1}(t)+k_{13} x_{3}(t)+u(t) \\
\dot{x}_{2}(t)=k_{21} x_{1}(t)-k_{32} x_{2}(t)+k_{23} x_{3}(t) \\
\dot{x}_{3}(t)=k_{32} x_{2}(t)-\left(k_{13} x_{2}+k_{23}\right) x_{3}(t) \\
y(t)=x_{2}(t)
\end{array}\right.
$$

The unknown parameter vector is

$p=\left[k_{01}, k_{21}, k_{13}, k_{32}, k_{23}\right]$.

Differential algebra identifiability results: the model has 3 parameter solutions equivalently describing the I/O experimental data.

cont.

State trajectories of the two unobservable compartments determined for the three locally identifiable parameterization.

For example, this can lead to an erroneous therapeutic decision.

cont.

A simple non-identifiable model:

$$
\begin{cases}\dot{x}_{1}(t)=-\left(k_{01}+k_{21}\right) x_{1}(t)+k_{12} x_{2}(t)+u(t) & x_{1}(0)=x_{10} \\ \dot{x}_{2}(t)=k_{21} x_{1}(t)-\left(k_{02}+k_{12}\right) x_{2}(t) & x_{2}(0)=0 \\ y(t)=x_{1}(t) & \end{cases}
$$

The unknown parameter vector is
$p=\left[k_{01}, k_{21}, k_{12}, k_{02}\right]$.

For example, this can lead to an erroneous therapeutic decision.

STATE OF THE ART FOR NONLINEAR MODELS

STRUCTURAL IDENTIFIABILITY

- Taylor series expansion of $y(p, t)$ (Pohjampalo 1978)
- Generating Series (Walter et al. 1982)
- Similarity transformation approach (Godfrey et al. 1989).
- Differential algebra methods (Ollivier 1990, Ljung et al. 1994, Joly-Blanchard et al. 1998, Margaria et al. 2001, IEEE Trans. Biomed. Eng. 2001).
- Identifiability of nonlinear models from given initial conditions (Automatica 2003).
- Structural identifiability software
- DAISY (Comp. Meth. and Progr. in Biomedicine 2007)
- GenSSI (Chis et al. 2011)
- EAR (Anguelova, 2012)
- COMBOS (Meshkat et al. 2014)
- SIAN (Hong et al. 2019 to appear)

EXAMPLE: A SIMPLE NONLINEAR MODEL (1) (Michaelis-Menten kinetics)

where $p=\left(\boldsymbol{K}_{m}, V_{M}, V\right)$
K_{m} and V_{m} are the Michaelis-Menten parameters,
V denotes the distribution volume of the accessible pool.

EXAMPLE: A SIMPLE NONLINEAR MODEL (2)

(Michaelis-Menten kinetics)

$$
\left\{\begin{array}{l}
\dot{x}(t)=-\frac{V_{M} x(t)}{K_{m}+x(t)}+u(t) \quad x(0)=d \\
y(t)=x(t) / V
\end{array}\right.
$$

Taylor series expansion: $\quad y(t)=y(0)+t \dot{y}(0)+\frac{t^{2}}{2} \ddot{y}(0)+\ldots$
known from the designed experiment
$y(0)=\frac{x_{1}(0)}{V}=\frac{d}{V} \quad \Rightarrow \quad V$ has one solution

$$
\begin{aligned}
\dot{y}(0)= & \frac{\dot{x}_{1}(0)}{V}=-\frac{1}{V} \frac{V_{M} x_{1}(0)}{K_{m}+x_{1}(0)}+u(0)=\frac{1}{V} \frac{V_{M} d}{K_{m}+d}+u(0) \\
\ddot{y}(0)= & \frac{\ddot{x}_{1}(0)}{V}=-\frac{1}{V} \frac{V_{M} \dot{x}_{1}(0)\left[K_{m}+x_{1}(0)\right]-V_{M} x_{1}(0) \dot{x}_{1}(0)}{\left(K_{m}+x_{1}(0)\right)^{2}}+\dot{u}(0)= \\
& -\frac{1}{V} \frac{K_{m} V_{M} \dot{x}_{1}(0)}{\left(K_{m}+x_{1}(0)\right)^{2}}+\dot{u}(0)=-\frac{K_{m} V_{M} \dot{y}(0)}{\left(K_{m}+d\right)^{2}}+\dot{u}(0) \\
\dddot{y}(0)= & \frac{\dddot{1}_{1}(0)}{V}=-\frac{1}{V} \frac{V_{M} K_{m} \ddot{x}_{1}(0)\left[K_{m}+x_{1}(0)\right]^{2}-2 V_{M} K_{m} \dot{x}_{1}^{2}(0)\left[K_{m}+x_{1}(0)\right]}{\left(K_{m}+x_{1}(0)\right)^{4}}+\ddot{u}(0)= \\
& -\frac{K_{m} V_{M}\left[\ddot{y}(0)\left(K_{m}+d\right)-2 \dot{y}(0)^{2}\right]}{\left(K_{m}+d\right)^{3}}+\dot{u}(0)
\end{aligned}
$$

$K_{m}, V_{M}, V \quad$ are globally identifiable.

1. Compute the I/O map of the system (in its implicit form).

This is formed by a set of differential polynomials in the variables $u, \dot{u}, \ddot{u}, \ldots, y, \dot{y}, \ddot{y}, \ldots$

HOW? By elimination of x.
TOOL (from differential algebra): Ritt Algorithm (1950) to calculate the characteristic set of the ideal generated by the polynomials defining our dynamic model.
2. Check that the parameterisation of the I/O relation(s) is injective. HOW?

By calculating the Gröbner basis of the algebraic system to be solved.

TOOL (from computer algebra): Buchberger Algorithm.

DIFFERENTIAL ALGEBRA

Differential polynomial ring: $K\left[z_{1}, \ldots, z_{n}\right]$

- Ranking among the variables and their derivatives
- Ranking among the polynomials $A_{i j}, a_{j} \in K\left[z_{1}, \ldots, z_{n}\right]$

DEFINITIONS

- The leader u_{i} of a polynomial A_{j} is the highest ranking derivative of the variables appearing in $A_{j \text {. }}$
- The order of the leader is its maximum order of derivation.
- A_{j} is of lower rank than A_{i} if $u_{j}<u_{i}$ or, whenever $u_{j}=u_{i}$ and $\operatorname{deg}\left(u_{j}\right) \leq \operatorname{deg}\left(u_{i}\right)$.
- A_{i} is reduced with respect to A_{j} if does not contain neither the leader of A_{j} with equal or greater algebraic degree, nor its derivatives.
- If A_{i} is not reduced w.r.t. to A_{j} it can be reduced by using the pseudodivision algorithm among polynomials (suggested by Ritt, 1950).
- A set of differential polynomials $A=\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ that are all reduced with respect to each other, is called an autoreduced set.
- A lowest rank autoreduced set that can be formed with polynomials from a given set S of differential polynomials, is called a characteristic set of S.

DIFFERENTIAL ALGEBRA AND IDENTIFIABILITY

The differential polynomials

$$
\left\{\begin{array}{l}
\dot{x}-f(x, p, u) \\
y-h(x, p)
\end{array}\right.
$$

generate a (prime) differential ideal / in the ring $\mathrm{R}(\mathbf{p})[\mathbf{u}, \mathbf{y}, \mathbf{x}]$.
Ranking: $u<\dot{u}<\ddot{u}<\ldots<y<\dot{y}<\ddot{y}<\ldots<x_{1}<x_{2}<\ldots<x_{n}<\dot{x}_{1}<\dot{x}_{2}<\ldots<\dot{x}_{n}<\ldots$
Characteristic set (Ritt algorithm, 1950)
For simplicity scalar output:

$$
\begin{array}{ll}
\left.A_{0}(p, u, y)\right) & \text { INPUT-OUTPUT RELATION } \\
A_{1}\left(p, u, y, x_{1}\right) & \text { Differential polynomial obtained } \\
A_{2}\left(p, u, y, x_{1}, x_{2}\right) & \begin{array}{l}
\text { after elimination of the state } \\
\vdots
\end{array} \\
\begin{array}{l}
\text { variables, hence represents } \\
A_{n}\left(p, u, y, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array} & \begin{array}{l}
\text { exactly the pairs (u,y) described } \\
\text { by the original system. }
\end{array}
\end{array}
$$

Cont.

- The input-output relation is:

$$
\begin{equation*}
A_{0}(p, u, y)=\sum_{i=1}^{v} c_{i}(p) f_{i}(u, \dot{u}, \ldots, y, \dot{y}, \ldots) \tag{1}
\end{equation*}
$$

- The exhaustive summary (Ollivier) of the model is:

$$
\begin{equation*}
c_{i}(p) \quad i=1, \ldots, v \tag{2}
\end{equation*}
$$

To test global identifiability check the unique solvability (injectivity) of the algebraic nonlinear system:

$$
\begin{equation*}
c_{i}(p)=c_{i}^{*} \quad i=1, \ldots, v \tag{3}
\end{equation*}
$$

Cont.

- We use the Buchberger algorithm, a computer algebra algorithm for computing with multivariate polynomials
$K\left[p_{1}, p_{2}, \ldots, p_{k}\right]$
- Generalizes well-known algorithms:
- Gaussian elimination
- Euclidean algorithm
- Calculates the reduced Gröbner basis of system (2)
- A Gröbner basis for an ideal I is a set of generator for I having certain property with respect to an ordering < on the monomials.
- The reduced Gröbner basis minimally generates I.
- If the term order < is fixed, then every ideal $/$ in $K\left[p_{1}, p_{2}, \ldots, p_{k}\right]$ has a unique reduced Gröbner basis.

EXAMPLE: A SIMPLE NONLINEAR MODEL (3)

$$
\left\{\begin{array}{l}
\dot{x}+\frac{V_{M}}{K_{m}+x} x-u \\
y-x / V
\end{array}\right.
$$

Standard ranking: $\quad u<\dot{u}<\ddot{u}<y<\dot{y}<\ddot{y}<x<\dot{x}<\ldots$

The characteristic set is:

Checking the injectivity of the exhaustive summary leads to a system of nonlinear algebraic equations in the unknown K_{m}, V_{M} and V (Buchberger algorithm to calculate the reduced Gröbner basis).

$$
\left\{\begin{array}{l}
V_{M}=c_{4} / c_{2} \\
K_{m}=c_{1} / c_{2} \\
V=1 / c_{2}
\end{array} \quad \begin{array}{c}
\text { One solution } \\
\text { (global id.) }
\end{array}\right.
$$

IDENTIFIABILITY WITH INITIAL STATE CONDITIONS (1/2)

HYPOTHESIS: Algebraic Observability

DEFINITION: A state component is algebraically observable if its derivative does not appear in the last n equations of the characteristic set.
$A_{0}(p, u, y)$
$A_{1}\left(p, u, y, x_{1}\right)$
$A_{2}\left(p, u, y, x_{1}, x_{2}\right)$
:
These last n polynomials are evaluated at time $t=0$.

The identifiability test with given initial conditions is based on the exhaustive summary $c(p)$ together with polynomials:
$A_{1}\left(p, u(0), y(0), x_{1}(0)\right)$
$A_{2}\left(p, u(0), y(0), x_{1}(0), x_{2}(0)\right)$
"Augmented" exhaustive summary
$A_{n}\left(p, u(0), y(0), x_{1}(0), x_{2}(0), \ldots, x_{n}(0)\right)$

IDENTIFIABILITY WITH INITIAL STATE CONDITIONS (1/2)

1. Known initial conditions

Polynomials (${ }^{*}$) are in the unknown p with coefficients which are monomials in the known data $x(0), u(0), \dot{u}(0), \ldots, y(0), \dot{y}(0), \ldots$
2. Some information on initial conditions

Polynomials (${ }^{*}$) are in the unknowns p and x_{0}.

In both cases:

1. the corresponding equations of the augmented exhaustive summary is solved by the Buchberger algorithm
2. the new reduced Gröbner basis provides the parameter identifiability results from input-state-output data.

$$
\begin{aligned}
& \dot{x}=\lambda-d x-\beta x v, \\
& y \dot{y}=\beta x v-a y y, \\
& \dot{v}=k y y-u u v, \\
& \dot{w}=c x y y w-c q y y w-b w, \\
& \dot{z}=c q y y w-h z \\
& y_{1}=w, \\
& y_{2}=z
\end{aligned}
$$

$\boldsymbol{x}=[x, y y, v, w, z]$ state variables;
y_{1} and y_{2} measured outputs;
$\boldsymbol{p}=[\beta, \lambda, a, b, c, d, h, k, q, u u]$ unknown parameters;
$\boldsymbol{x}(0)=[\underbrace{x^{*}, y y^{*}, v^{*}}, \underbrace{w^{*}, z^{*}}]$ initial conditions.
unknown known

A chemical reaction model (Conradi et al., 2018)

$$
\begin{aligned}
& \dot{x}_{1}=-k_{1} x_{1} x_{2}+k_{2} x_{4}+k_{4} x_{6}, \\
& \dot{x}_{2}=k_{1} x_{1} x_{2}+k_{2} x_{4}+k_{3} x_{4}, \\
& \dot{x}_{3}=k_{3} x_{4}+k_{5} x_{6}-k_{6} x_{3} x_{5}, \\
& \dot{x}_{4}=k_{1} x_{1} x_{2}-k_{2} x_{4}-k_{3} x_{4}, \\
& x_{5}=k_{4} x_{6}+k_{5} x_{6}-k_{6} x_{3} x_{5}, \\
& \dot{x}_{6}=-k_{4} x_{6}-k_{5} x_{6}-k_{6} x_{3} x_{5}, \\
& y_{1}=x_{2}, \\
& y_{2}=x_{3}
\end{aligned}
$$

where $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]$ state variables;
y_{1} and y_{2} measured outputs;
$\boldsymbol{p}=\left[k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}\right]$ unknown parameters;
$\boldsymbol{x}(0)=\left[x_{1}{ }^{*}, x_{2}{ }^{*}, x_{3}{ }^{*}, x_{4}{ }^{*}, x_{5}{ }^{*}, x_{6}{ }^{*}\right]$ initial conditions
($x_{2} *$ and $x_{3} *$ known from the output functions).

PROBLEM

The input-state-output identifiability method may not work when the system is started at "special" initial conditions.

OSS: This happens whenever method is used to check identifiability

IMPORTANT STRUCTURAL PROPERTIES

MINIMALITY

OBSERVABILITY: if the model is non algebraically observable, the known initial conditions cannot be used in the identifiability test.
ACCESSIBILITY: Accessibility may fail for many biosystems starting from known but "non generic" initial conditions

DEFINITION: A system is accessible from x_{0} if, for suitable input $u(t)$, the state $x(t)$ can reach an open set of full dimension of the state space.

ACCESSIBILITY RANK CONDITION

For analytic, in particular polynomial, models

$$
\left\{\begin{array}{l}
\dot{x}=f[x(t), p]+\sum_{i=1}^{m} g_{i}[x(t), p] u_{i}(t) \\
y(t)=h[x(t), u(t), p]
\end{array} \quad x(t) \in R^{n}\right.
$$

a necessary and sufficient condition for accessibility from x_{0} is

$$
\operatorname{dim} \Delta_{C}\left(x_{0}\right)=n
$$

where Δ_{C} is the distribution associated to the Control Lie Algebra, i.e. the smallest Lie algebra C containing the vector fields f, g_{1}, \ldots, g_{m} and invariant under Lie bracketing with f, g_{1}, \ldots, g_{m}.

IDENTIFIABILITY AND ACCESSIBILITY (1/2)

THEOREM 1. If the system is accessible from all initial states x_{0} from which it may have been started, then the characteristic set does not change and provides the correct identifiability test.

THEOREM 2. If the system is accessible except from a "thin set" T of measure zero and $x_{0} \in T$.
Let $\left\{\phi_{k}(x)=0 ; k=1, \ldots, d\right\}$ be the set of algebraic equations defining the invariant manifold T containing x_{0}.
Then the characteristic set can change.
The correct answer is given by the identifiability test applied to the original model equations plus equations $\phi_{k}(x)=0$.

EXAMPLE

$$
\begin{cases}\dot{x}_{1}=-p_{0} u-p_{2} x_{1}-p_{3} x_{2} & x_{1}(0)=x_{10} \\ \dot{x}_{2}=p_{3} x_{1} x_{2}-p_{1} x_{1} & x_{2}(0)=x_{20} \\ y=x_{1} & \end{cases}
$$

where $p_{0}, p_{1}, p_{2}, p_{3}$, are the unknown parameters.
The system is generically accessible, i.e. $\operatorname{dim} \Delta_{C}\left(x_{0}\right)=2$ for all $x_{0} \notin T$
where T is the invariant manifold defined by $\phi(x)=\left\{p_{3} x_{2}-p_{1}=0\right\}$
Thus, if $x_{0} \notin T$, the characteristic set of the ideal generated by the polynomials defining the system shows that the model is glob. identifiable.

If $x_{0} \in T$ the system solution evolves in the invariant set T.
From Theorem 2, equation $p_{3} x_{2}-p_{1}=0$ has to be added to the polynomials defining the original dynamic system, in order to correctly check identifiability. In this case the model is nonidentifiable.

IDENTIFIABILITY AND ACCESSIBILITY (1/2)

In case of systems non-accessible from everywhere, the system evolves in a lower dimension manifold defined by a co-distribution orthogonal to Δ_{C}.

THEOREM 3. If the system is non-accessible from all initial states x_{0} from which it may have been started, then the characteristic set does not change and provides the correct identifiability test.

A Model of erythroproietin (Epo) receptor V. Becker et al. Science 2010.

The model describes the nonlinear processes of ligand-receptor (Epo-EpoR) interaction and trafficking kinetics. In particular the biochemical processes underlying the EpoR endocytosis, that is the process of engulfing substances outside the cell with a membrane and transporting them into cytoplasm.
Six species are incorporated in the model, $x_{i} i=1, \ldots, 6$ being the relative concentrations, and all interactions are modeled by mass-action kinetics.

$$
\left\{\begin{array}{lll}
\dot{x}_{1}(t)=b_{\max } k_{1}-k_{1} x_{1}-k_{2} x_{1} x_{2}+k_{3} x_{3}+k_{4} x_{4} & \\
\dot{x}_{2}(t)=-k_{2} x_{1} x_{2}+k_{3} x_{3}+k_{4} x_{4} & \Rightarrow \dot{x}_{2}=-\dot{x}_{3} \Rightarrow x_{2}=-x_{3}+p_{2} \\
\dot{x}_{3}(t)=k_{2} x_{1} x_{2}-k_{3} x_{3}-k_{5} x_{3} & & \\
\dot{x}_{4}(t)=k_{5} x_{3}-\left(k_{4}+k_{6}+k_{7}\right) x_{4} & & \\
\dot{x}_{5}(t)=k_{6} x_{4} & \Rightarrow \dot{x}_{6}=\frac{k_{7}}{k_{6}} \dot{x}_{5} \Rightarrow x_{6}=\frac{k_{7}}{k_{6}} x_{5} \\
\dot{x}_{6}(t)=k_{7} x_{4} & & \\
y_{1}(t)=x_{2}+x_{6} & & \\
y_{2}(t)=x_{3} & & \\
y_{3}(t)=x_{4}+x_{5} & &
\end{array}\right.
$$

with initial condition $x(0)=\left[x_{10}, x_{20}, 0,0,0,0\right]$.

DAISY input file

WRITE "CORE MODEL, Becker SCIENCE 2010 Suppl. mat. pg.17"\$

```
% B_ IS THE VARIABLE VECTOR
B_:={y1,y2,y3,x3,x5,x4,x1}$
FOR EACH EL_IN B_DO DEPEND EL_,T$
%B1_IS THE UNKNOWN PARAMETER VECTOR
B1_:={k1,k2,k3,k4,k5,k6,k7,bmax,p2}$
%NUMBER OF STATE(S)
NX_:=4$
%NUMBER OF INPUT(S)
NU_:=0$
%NUMBER OF OUTPUT(S)
NY_:=3$
%MODEL EQUATION(S)
C_:={df(x1,t)=bmax*k1-k1*x1-k2*x1*(-x3+p2)+k3*x3+k4*x4,
% df(x2,t)=-k\mp@subsup{2}{}{*}x\mp@subsup{1}{}{*}(-x3+p2)+k3*x3+k4*x4,
        df(x3,t)=k2*x1*(-x3+p2)-k3*x3-k5*x3,
        df(x4,t)=k5*x3-(k4+k6+k7)*x4,
        df(x5,t)=k6*x4,
% df(x6,t)=k7*x4,
        y1=(-x3+p2)+(k7/k6)*x5,
        y2=x3,
        y3=x4+x5}$
FLAG_:=1$
DAISY()$
%VALUES OF INITIAL CONDITIONS ARE GIVEN
ICK_:={X3=0,X4=0,X5=0}$
ICUNK_:={X1=X10}$
CONDINIZ()$
END$
```


NON-POL YNOMIAL MODELS?

EXAMPLE

$$
\left\{\begin{array}{l}
\dot{x}_{1}=a \exp \left(-x_{2}\right)+u \\
\dot{x}_{2}=-b x_{1}
\end{array}\right.
$$

where $p=[a, b]$.
By introducing a new state $x_{3}=a \exp \left(-x_{2}\right)$ and by differentiating x_{3} one obtains:

$$
\dot{x}_{3}=-\dot{x}_{2} x_{3}
$$

This additional differential equation will turn into the third order system which is trivially globally nonaccessible since the evolution of this augmented system is constrained to take place in some invariant submanifold:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{3}+u \\
\dot{x}_{2}=-b x_{1} \\
\dot{x}_{3}=b x_{1} x_{3}
\end{array}\right.
$$

polynomial
globally nonaccessible

EXAMPLE OF TIME-VARYING MODELS

- In many biological and physiological applications, often in the differential equations describing the phenomena, time-varying coefficients appear with a known functional form but depending on some unknown parameters. For example:

$$
\dot{x}_{1}=a \exp (-b t) x_{1}+u
$$

By introducing a new state

$$
x_{2}=\exp (-b t)
$$

and differentiating

$$
\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1} x_{2}+u \\
\dot{x}_{2}=-b x_{2}
\end{array}\right.
$$

polynomial
globally nonaccessible
time-invariant

SOME OBSERVATIONS

- Diff. Alg. Id. provide the exact number of model parameter solutions.
- In case of nonidentifiability, it provides the analytical form of the functional dependence (invariants) of the nonidentifiable parameters.
- Structural identifiability analysis avoids to waste resources in performing useless experiments.
- There is no way that all parameters of a non identifiable model can be numerically estimated with good precision in a real situation.
- Obviously, although necessary, structural id. is not sufficient to guarantee an accurate identification of the model from the real input/output data.
- The analytical nature of the structural id. algorithms imposes restrictions on the size and complexity of the systems.

IDEA

Joint use of structural and practical identifiability

Practical id. analysis, based on optimization algorithms can take advantage of information provided by structural id.

I. Local identifiability case

- To calculate all the multiple solutions of the model.

II. Nonidentifiability case

- To exploit the analytical relations among nonidentifiable parameters described by the Gröbner bases to use these invariants as constraints in the optimization algorithm.

PRACTICAL IDENTIFIABILITY

$P=\left\{\hat{p} \mid \nabla_{p^{2}} S S(\hat{p})=0 \wedge \nabla_{p^{2}}^{2} S S(\hat{p})>0\right\} \quad$ global and local minima
where $S S$ is a cost function defined in an optimization algorithm.

- For local identifiable models (multiple global minima), multi-start searches require many optimization steps starting from different initial conditions.

They can avoid local minima but cannot guarantee to find ALL global minima.

Joint use of structural and practical identifiability

1. structural id. calculates the exact number of parameter solutions
2. find a numerical solution p^{*} with the practical identifiability
3. use p^{*} to analytically calculate all the equivalent parameter solutions p_{i}, with the differential algebra method.

When possible, checking structural identifiability first, decrease the number
of searches generally required by practical id.

cont. A simple locally identifiable model

Suppose:

$$
p^{*}=[0.02374,0.00181,0.01331,0.03089,0.01729]
$$

Table 1. Admissible solutions for the first randomized parameter vector

	p_{1}	p_{2}	p_{3}
k_{01}	0.02374	0.03581	0.0008737
k_{13}	0.00181	0.003971	0.02117
$k_{21}{ }^{a}$	0.01331	0.01331	0.01331
k_{23}	0.04089	0.02873	0.01153
k_{32}	0.01729	0.005225	0.04016

a globally identifiable parameter.

cont.
 A simple locally identifiable model

Suppose now:
$p^{*}=[0.02324,0.001834,0.1202,0.03072,0.01632]$

Table 2. Non admissible solutions for the second randomized parameter vector

		p_{1}	p_{2}
k_{01}	0.02324	-0.000422	-0.07089
k_{13}	0.001834	-0.04121	$-8.88 \cdot 10^{-5}$
$k_{21}{ }^{\mathrm{a}}$	0.1202	0.1202	0.1202
k_{23}	0.03072	0.07377	0.00264
k_{32}	0.01632	0.03998	0.1104

a globally identiffable parameter.

ATT.: The additional two solutions do not belong to the admissible parameter space.

This is a favourable situation in which additional solutions can be rejected, showing, in practice, model global identiability.

II. Case of local identifiability

A pharmacokinetics model of Zalypsis®

a cytotoxic agent having a significant killing action in several tumour sites.
Craig et al.J. Theor. Biol. (2015).

A four-dimensional HIV\AIDS model

$$
\left\{\begin{array}{l}
\dot{T}=s-\mu_{T} T+r T\left(1-\frac{T+T^{*}+T^{* *}}{T_{\max }}\right)-k_{1} V T \\
\dot{T} *=k_{1} V T-\mu_{T} T^{*}-k_{2} T^{*} \\
\dot{T} \dot{T}^{*}=k_{2} T^{*}-\mu_{b} T^{* *} \\
\dot{V}=N \mu_{b} T^{* *}-k_{1} V T-\mu_{V} V \\
y_{1}=T \\
y_{2}=V
\end{array}\right.
$$

T concentration of uninfected cells;
T^{*} concentration of latently infected cells;
$T^{* *}$ concentration of actively infected cells;
V concentration of free infectious virus particles;
y_{1} and y_{2} measured outputs;
$\boldsymbol{p}=\left[s, \mu_{T}, r, T_{\max }, k_{1}, k_{2}, \mu_{b}, N, \mu_{V}\right]$ unknown parameters.

Table 3. The two solutions of the HIV model

Parameter	Units	p_{1}	p_{2}
s	$\left(\right.$ day $\left.^{-1} \mathrm{~mm}^{-3}\right)$	10	10
r	$\left(\right.$ day $\left.^{-1}\right)$	0.03	0.09
$T_{\text {max }}$	$\left(\right.$ ma $\left.^{-3}\right)$	1500	1500
μ_{T}	$\left(\right.$ day $\left.^{-1}\right)$	0.02	0.02
μ_{b}	$\left(\right.$ day $\left.^{-1}\right)$	0.24	0.023
μ_{u}	$\left(\right.$ day $\left.^{-1}\right)$	2.4	2.4
k_{1}	$\left(\mathrm{~mm}^{3} \mathrm{day}^{-1}\right)$	$2.4 \cdot 10^{-5}$	$2.4 \cdot 10^{-5}$
k_{2}	$\left(\right.$ day $\left.^{-1}\right)$	0.009	0.22
N		1400	199.21

Cont. A four-dimensional HIV\AIDS model

THE DAISY SOFTWARE

- Our differential algebra method has been implemented in the software package DAISY, coded in the symbolic language Reduce.
- High-level programming languages, mathematics and computer algebra will not be prerequisites for using the software.
- A new beta version is now available with a user-friendly interface on the temporary website
https://daisy-reduce.shinyapps.io/daisy/
the final one will be: http://daisy.dei.unipd.it/

