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THE CONTEXT OF THE PROBLEM

• Complex dynamics, non-linear interaction mechanisms in cellular 

processes are modeled according to physico-chemical laws.

• Ordinary differential equations (ODE) involving parameters such as    

reaction rates are commonly used.

• Structural Identifiability is the first step in model identification, 

necessary to correctly solve the parameter estimation problem from 

the experimental data.

• In general ODE parameters can only be measured indirectly. Their 

recovery can then only be approached indirectly as a parameter 

estimation problem starting from external input-output measurements.  



MATHEMATICAL FORMULATION
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The system-experiment model

Initial conditions:

where

- x is the n-dimensional state variable, 

- u is the m-dimensional input function 

- y is the r-dimensional output function

- p is the constant unknown k-dimensional parameter vector

- f and h polynomial or rational functions (i.e. saturation process, 

Michaelis-Menten kinetics), for the time being.

NOTE: Our ident. method can be applied to study some 

nonpolynomial equations models, e.g. exponential models. 



STRUCTURAL IDENTIFIABILITY PROBLEM  

• one (Global identifiability)        

p has a finite number of solutions (Local Id.)

p has an infinite number of solutions (Non Id.)

PROBLEM: 

Given u and y, how many parameter values  p satisfy the I-O map?
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HYPOTHESIS: noise-free data.
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DEFINITIONS

DEFINITION 1

– The system is structurally globally (or uniquely) identifiable

from input-output data if, for at least a generic set of points

p*∊ P, there exists at least one input function u such that

DEFINITION 2
The system is structurally locally identifiable from input-output

data at p*∊ P, if there exists at least one input function u and an

open neighborhood Up* of p*, such that eq. (1) has a unique

solution p*∊ Up* for all x0 in a generic subset of ∊ Rn.

For a system which is not even locally identifiable, equation (1) has

generically an infinite number of solutions for at least one input u.

This is called non-identifiability.
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has only one solution  p = p* for all x0 in a generic subset of 
Rn.
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A simple locally identifiable model:

The unknown parameter vector is 

p=[k01,k21,k13,k32,k23].

Differential algebra identifiability results:

the model has 3 parameter solutions 

equivalently describing the I/O 

experimental data. 7

p1

p2

p3

Why check structural id. of biological models?



cont.

For example, this can lead to an 

erroneous therapeutic decision.

State trajectories of the two 

unobservable  compartments 

determined for the three 

locally identifiable 

parameterization.

8

p1

p2

p3

Therapeutic 

range
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A simple non-identifiable model:

The unknown parameter vector is 

p=[k01,k21,k12,k02].

For example, this can lead to an erroneous therapeutic decision.

cont.



▪ Taylor series expansion of y(p,t) (Pohjampalo 1978)

• Generating Series (Walter et al. 1982)

• Similarity transformation approach (Godfrey et al. 1989).

• Differential algebra methods (Ollivier 1990, Ljung et al. 1994, 

Joly-Blanchard et al. 1998, Margaria et al. 2001, IEEE Trans. 

Biomed. Eng. 2001).

• Identifiability of nonlinear models from given initial conditions

(Automatica 2003). 

• Structural identifiability software 

- DAISY  (Comp. Meth. and Progr. in Biomedicine 2007)   

- GenSSI (Chis et al. 2011)

- EAR (Anguelova, 2012)

- COMBOS (Meshkat et al. 2014) 

- SIAN (Hong et al. 2019 to appear) 

STRUCTURAL IDENTIFIABILITY 

STATE OF THE ART FOR NONLINEAR MODELS



where 

Km and Vm are the Michaelis-Menten parameters,

V denotes the distribution volume of the accessible pool.

EXAMPLE: A SIMPLE NONLINEAR MODEL (1)

(Michaelis-Menten kinetics)
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Taylor series expansion:

known from 

the designed 

experiment
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EXAMPLE: A SIMPLE NONLINEAR MODEL (2)
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ATTENTION: only a sufficient condition!
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Cont. 



HOW DO WE CHECK IDENTIFIABILITY?

1. Compute the I/O map of the system (in its implicit form).

This is formed by a set of differential polynomials in the variables

HOW? By elimination of x.

TOOL (from differential algebra): Ritt Algorithm (1950) to calculate the 

characteristic set of the ideal generated by the polynomials

defining our dynamic model.

14
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2. Check that the parameterisation of the I/O relation(s) is injective.

HOW?

By calculating the Gröbner basis of the algebraic system to be solved.

TOOL (from computer algebra): Buchberger Algorithm.



DIFFERENTIAL ALGEBRA
Differential polynomial ring: K[z1,…,zn]  

• Ranking  among the variables and their derivatives

• Ranking among the polynomials Ai, aj ∊ K[z1,…,zn] 

DEFINITIONS

• The leader uj of a polynomial Aj is the highest ranking derivative of the variables
appearing in Aj.

• The order of the leader is its maximum order of derivation.

• Aj is of lower rank than Ai if uj<ui or, whenever uj=ui and deg(uj)deg(ui).  

• Ai is reduced with respect to Aj if does not contain neither the leader of Aj with equal
or greater algebraic degree, nor its derivatives. 

• If Ai is not reduced w.r.t. to Aj it can be reduced by using the pseudodivision

algorithm among polynomials (suggested by Ritt, 1950).

• A set of differential polynomials A={A1, A2,..., Ar} that are all reduced with respect to
each other, is called an autoreduced set. 

• A lowest rank autoreduced set that can be formed with polynomials from a given set 
S of differential polynomials, is called a characteristic set of S.

15



DIFFERENTIAL ALGEBRA AND IDENTIFIABILITY

The differential polynomials
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INPUT-OUTPUT RELATION

Differential polynomial obtained

after elimination of the state

variables, hence represents

exactly the pairs (u,y) described

by the original system.

generate a (prime) differential ideal I in the ring R(p)[u,y,x].



• The input-output relation is: 
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• The exhaustive summary (Ollivier) of the model is:
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To test global identifiability check the unique solvability

(injectivity) of the algebraic nonlinear system:

Cont. 
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• We use the Buchberger algorithm, a computer algebra 

algorithm for computing with multivariate polynomials 

K[p1,p2,…,pk]

• Generalizes well-known algorithms:

- Gaussian elimination

- Euclidean algorithm 

• Calculates the reduced Gröbner basis of system (2)

Cont. 

• A Gröbner basis for an ideal I is a set of generator for I 

having certain property with respect to an ordering < on the 

monomials. 

• The reduced Gröbner basis minimally generates I.

• If the term order < is fixed , then every ideal I in K[p1,p2,…,pk]

has a unique reduced Gröbner basis.


















Vxy

ux
xK

V
x

m

M

/



(normalized) input-output relation 

K  xxyyyuuuStandard ranking:

 y
V

V
 u 

V

K
 u y -

V
 -y 

V

K
 y y Mmm 

2

1
















2

21

24

/1

/

/

cV

ccK

ccV

m

M One solution

(global id.)

yV-x 

The characteristic set is:

Checking the injectivity of the exhaustive summary leads to a system 

of nonlinear algebraic equations in the unknown Km, VM and V

(Buchberger algorithm to calculate the reduced Gröbner basis).

EXAMPLE: A SIMPLE NONLINEAR MODEL (3)

x (t)

K +x (t)m     

y(t)u(t)

V
M



),,,,,,(

),,,,(

),,,(

),,(

21

212

11

0

nn xxxyupA

xxyupA

xyupA

yupA

K



IDENTIFIABILITY WITH INITIAL STATE 

CONDITIONS (1/2)

HYPOTHESIS: Algebraic Observability

DEFINITION: A state component is algebraically observable if its derivative 

does not appear in the last n equations of the characteristic set.

The identifiability test with given initial conditions is based on the 

exhaustive summary c(p) together with polynomials:

These last n polynomials 

are evaluated at time t = 0. 
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2. Some information on initial conditions

Polynomials (*) are in the unknowns p and x0.

Polynomials (*) are in the unknown p with coefficients which are 

monomials in the known data

1. Known initial conditions

),...0(),0(),...,0(),0(),0( yyuux 

IDENTIFIABILITY WITH INITIAL STATE 

CONDITIONS (1/2)

In both cases: 

1. the corresponding equations of the augmented exhaustive summary is 

solved by the Buchberger algorithm

2. the new reduced Gröbner basis provides the parameter identifiability

results from input-state-output data.



A HIV model (Wodarz et al., 2002)

x=[x, yy, v, w, z] state variables;

y1 and y2 measured outputs;

p=[β, λ, a, b, c, d, h, k, q, uu] unknown parameters;

x(0)=[x*, yy*, v*, w*, z*] initial conditions.
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A chemical reaction model (Conradi et al., 2018)

where x=[x1, x2, x3, x4, x5, x6] state variables;

y1 and y2 measured outputs;

p=[k1, k2, k3, k4, k5, k6] unknown parameters;

x(0)=[x1*, x2*, x3*, x4*, x5*, x6*] initial conditions

(x2* and x3* known from the output functions).
23
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IMPORTANT STRUCTURAL PROPERTIES

MINIMALITY

OBSERVABILITY: if the model is non algebraically observable, the

known initial conditions cannot be used in the identifiability test.

ACCESSIBILITY: Accessibility may fail for many biosystems

starting from known but “non generic” initial conditions

PROBLEM

The input-state-output identifiability method may not work when the 

system is started at “special” initial conditions.

OSS: This happens whenever method is used to check identifiability

DEFINITION: A system is accessible from x0 if, for suitable

input u(t), the state x(t) can reach an open set of

full dimension of the state space.



ACCESSIBILITY RANK CONDITION

For analytic, in particular polynomial, models

a necessary and sufficient condition for accessibility from x0 is

nxC  )(dim 0

where ΔC is the distribution associated to the Control Lie Algebra, 

i.e. the smallest Lie algebra C containing the vector fields 

f,g1,…,gm and invariant under Lie bracketing with f,g1,…,gm.
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THEOREM 1. If the system is accessible from all initial states

x0 from which it may have been started, then the

characteristic set does not change and provides the correct

identifiability test.

THEOREM 2. If the system is accessible except from a “thin

set" T of measure zero and x0∊T.

Let {k(x) =0; k=1,…,d} be the set of algebraic equations

defining the invariant manifold T containing x0.

Then the characteristic set can change.

The correct answer is given by the identifiability test applied

to the original model equations plus equations k(x) =0.

IDENTIFIABILITY AND ACCESSIBILITY (1/2)



If              the system solution evolves in the invariant set T. 

From Theorem 2, equation has to be added to the 

polynomials defining the original dynamic system, in order to correctly

check identifiability. In this case the model is nonidentifiable.
27

where p0, p1, p2, p3, are the unknown parameters. 

The system is generically accessible, i.e. 

where T is the invariant manifold defined by  

Thus, if             , the characteristic set of the ideal generated by the 

polynomials defining the system shows that the model is glob. identifiable.
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In case of systems non-accessible from everywhere, the

system evolves in a lower dimension manifold defined by a

co-distribution orthogonal to ΔC.
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IDENTIFIABILITY AND ACCESSIBILITY (1/2)

THEOREM 3. If the system is non-accessible from all initial

states x0 from which it may have been started, then the

characteristic set does not change and provides the correct

identifiability test.



Six species are incorporated in the model, xi i = 1,…,6  being the relative 

concentrations, and all interactions are modeled by mass-action kinetics.
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A Model of erythroproietin (Epo) receptor
V. Becker et al. Science 2010.

with initial condition x(0)=[x10,x20,0,0,0,0].

The model describes the nonlinear processes of ligand-receptor (Epo-EpoR) 

interaction and trafficking kinetics. In particular the biochemical processes

underlying the EpoR endocytosis, that is the process of engulfing substances 

outside the cell with a membrane and transporting them into cytoplasm.
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WRITE "CORE MODEL, Becker SCIENCE 2010 Suppl. mat. pg.17"$

% B_ IS THE VARIABLE VECTOR

B_:={y1,y2,y3,x3,x5,x4,x1}$

FOR EACH EL_ IN B_ DO DEPEND EL_,T$

%B1_ IS THE UNKNOWN PARAMETER VECTOR

B1_:={k1,k2,k3,k4,k5,k6,k7,bmax,p2}$

%NUMBER OF STATE(S)

NX_:=4$

%NUMBER OF INPUT(S)

NU_:=0$

%NUMBER OF OUTPUT(S)

NY_:=3$

%MODEL EQUATION(S)

C_:={df(x1,t)=bmax*k1-k1*x1-k2*x1*(-x3+p2)+k3*x3+k4*x4,

%   df(x2,t)=-k2*x1*(-x3+p2)+k3*x3+k4*x4,

df(x3,t)=k2*x1*(-x3+p2)-k3*x3-k5*x3,

df(x4,t)=k5*x3-(k4+k6+k7)*x4,

df(x5,t)=k6*x4,

%    df(x6,t)=k7*x4,

y1=(-x3+p2)+(k7/k6)*x5,

y2=x3,

y3=x4+x5}$

FLAG_:=1$

DAISY()$

%VALUES OF INITIAL CONDITIONS ARE GIVEN

ICK_:={X3=0,X4=0,X5=0}$

ICUNK_:={X1=X10}$

CONDINIZ()$

END$

DAISY input file
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where p = [a, b]. 

By introducing a new state x3=a exp(-x2) and by differentiating x3 one obtains: 

This additional differential equation will turn into the third order system which 

is trivially globally nonaccessible since the evolution of this augmented 

system is constrained to take place in some invariant submanifold:
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• In many biological and physiological applications, often in the 

differential equations describing the phenomena, time-varying 

coefficients appear with a known functional form but depending 

on some unknown parameters. For example:

By introducing a new state 

and differentiating 
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EXAMPLE OF TIME-VARYING MODELS
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SOME OBSERVATIONS

• Obviously, although necessary, structural id. is not sufficient to guarantee an 

accurate identification of the model from the real input/output data.

• Structural identifiability analysis avoids to waste resources in performing 

useless experiments.

• Diff. Alg. Id. provide the exact number of model parameter solutions. 

• In case of nonidentifiability, it provides the analytical form of the functional 

dependence (invariants) of the nonidentifiable parameters.

• The analytical nature of the structural id. algorithms imposes

restrictions on the size and complexity of the systems.

• There is no way that all parameters of a non identifiable model can be 

numerically estimated with good precision in a real situation.



II. Nonidentifiability case

• To exploit the analytical relations among nonidentifiable parameters

described by the Gröbner bases to use these invariants as

constraints in the optimization algorithm.

IDEA

Joint use of structural and practical identifiability

Practical id. analysis, based on optimization algorithms can 

take advantage of information provided by structural id.

I. Local identifiability case

• To calculate all the multiple solutions of the model.
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pp global and local minima

•   For local identifiable models (multiple global minima), multi-start 

searches require many optimization steps starting from different 

initial conditions. 

PRACTICAL IDENTIFIABILITY

? ?

They can avoid local minima but cannot guarantee to find ALL global  minima. 

where SS is a cost function defined in an optimization algorithm.

SS

p



IDEA

Joint use of structural and practical identifiability

1. structural id. calculates the exact number of parameter

solutions

2. find a numerical solution p* with the practical identifiability

36

3. use p* to analytically calculate all the equivalent parameter

solutions pi , with the differential algebra method.

When possible, checking structural identifiability first, decrease the number 

of searches generally required by practical id. 

SS

p



cont.      A simple locally identifiable model

Suppose: 

p* = [0.02374, 0.00181, 0.01331, 0.03089, 0.01729]
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Suppose now:  

p* = [0.02324, 0.001834, 0.1202, 0.03072, 0.01632]

ATT.: The additional two solutions do not belong to the admissible parameter    

space. 

This is a favourable situation in which additional solutions can be rejected, 

showing, in practice, model global identiability.

cont.      A simple locally identifiable model

38

p1                      p2                          p3



A pharmacokinetics model of Zalypsis®

a cytotoxic agent having a significant killing action in several tumour sites.

Craig et al.J. Theor. Biol. (2015).

II. Case of local identifiability
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A four-dimensional HIV\AIDS model 
(Perelson et al., Math. Biosci. 1993)

T concentration of uninfected cells;

T* concentration of latently infected cells;

T** concentration of actively infected cells;

V concentration of free infectious virus particles;

y1 and y2 measured outputs;

p=[s, T, r, Tmax, k1, k2, b, N, V] unknown parameters.
40



cont.                       A four-dimensional HIV\AIDS model 
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Cont.  A four-dimensional HIV\AIDS model 



THE DAISY SOFTWARE

- Our differential algebra method has been implemented in

the software package DAISY, coded in the symbolic

language Reduce.

- High-level programming languages, mathematics and

computer algebra will not be prerequisites for using the

software.

- A new beta version is now available with a user-friendly

interface on the temporary website

https://daisy-reduce.shinyapps.io/daisy/

the final one will be: http://daisy.dei.unipd.it/

https://daisy-reduce.shinyapps.io/daisy/

