Algorithms for *p*-Curvatures of Difference Operators

Yi Zhou

Department of Mathematics Florida State University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Definitions

Outline

- Definitions
- Algorithms:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Outline

- Definitions
- Algorithms:
 - a plain algorithm
 - an algorithm computing $P(L)|_{x=lpha}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- α -generator
- desingularizer

Outline

- Definitions
- Algorithms:
 - a plain algorithm
 - an algorithm computing $P(L) \mid_{x=lpha}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- α -generator
- desingularizer
- More on *p*-curvature

Let $k = \mathbb{C}(x)$. The shift operator τ is the \mathbb{C} -automorphism of k defined by

 $(\tau(f))(x) = f(x+1).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $k = \mathbb{C}(x)$. The shift operator τ is the \mathbb{C} -automorphism of k defined by

 $(\tau(f))(x) = f(x+1).$

A difference operator is an operator

$$L = a_n(x)\tau^n + \cdots + a_0(x)\tau^0$$

that acts in the following way on a rational function f

$$(L(f))(x) = a_n(x)f(x+n) + \cdots + a_0(x)f(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The set of all difference operators is

$$k[\tau] = \{a_n\tau^n + \cdots + a_0\tau^0 | n \in \mathbb{N}, a_0, \ldots, a_n \in k\}.$$

It is a ring, with multiplication defined by

$$\tau \cdot \mathbf{a} = \tau(\mathbf{a})\tau,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where $a \in k \subset k[\tau]$.

Difference Operators: Order and Degrees

Definition

Let $L = \sum_{i=0}^{n} a_i(x)\tau^i$ be a non-zero difference operator. Define the order of L to be

 $\operatorname{ord}(L) := \max\{i | a_i \neq 0\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Right Division with Remainder)

Suppose $L_1, L_2 \in k[\tau]$ and $\operatorname{ord}(L_2) > 0$. There exist unique difference operators q, r such that

$$L_1 = qL_2 + r,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

and $\operatorname{ord}(r) < \operatorname{ord}(L_2)$.

An algorithm that for any $L \in D$ finds all the pairs L_1, L_2 with lower orders than L such that $L = L_1L_2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Define multiplication on the set $\mathbb{F}_p(x)[\tau]$ by

$$\tau x = (x+1)\tau.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Denote $D_p = \mathbb{F}_p(x)[\tau]$.

Define multiplication on the set $\mathbb{F}_p(x)[\tau]$ by

$$\tau x = (x+1)\tau.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Denote $D_p = \mathbb{F}_p(x)[\tau]$.

Note: D_p has a non-trivial center $\mathbb{F}_p(x^p - x)[\tau^p]$.

The D_p -module D_p/D_pL is a $\mathbb{F}_p(x)$ -vector space.

The D_p -module D_p/D_pL is a $\mathbb{F}_p(x)$ -vector space. $\tau : D_p/D_pL \to D_p/D_pL$ induces a \mathbb{F}_p -linear map which is not $\mathbb{F}_p(x)$ -linear, since

$$\tau(x) = (x+1)\tau.$$

The D_p -module D_p/D_pL is a $\mathbb{F}_p(x)$ -vector space. $\tau : D_p/D_pL \to D_p/D_pL$ induces a \mathbb{F}_p -linear map which is not $\mathbb{F}_p(x)$ -linear, since

$$\tau(x)=(x+1)\tau.$$

 τ^{p} induces a $\mathbb{F}_{p}(x)$ -linear map, since

$$\tau^{p}(x) = (x+p)\tau^{p} = x\tau^{p}.$$

For $L \in D_p$, the characteristic polynomial of the $\mathbb{F}_p(x)$ -linear map $\tau^p : D_p/D_pL \to D_p/D_pL$ is called the *p*-curvature of *L*, denoted by P(L).

For $L \in D_p$, the characteristic polynomial of the $\mathbb{F}_p(x)$ -linear map $\tau^p : D_p/D_pL \to D_p/D_pL$ is called the *p*-curvature of *L*, denoted by P(L).

Proposition (The Product Rule)

 $P(L_1L_2) = P(L_1)P(L_2).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

How does *p*-curvature help factor operators in $\mathbb{Q}(x)[\tau]$?

How does *p*-curvature help factor operators in $\mathbb{Q}(x)[\tau]$? We can define *p*-curvature for operators in $\mathbb{Z}[x][\tau]$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

How does *p*-curvature help factor operators in $\mathbb{Q}(x)[\tau]$? We can define *p*-curvature for operators in $\mathbb{Z}[x][\tau]$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Prove the irreducibility.

How does *p*-curvature help factor operators in $\mathbb{Q}(x)[\tau]$? We can define *p*-curvature for operators in $\mathbb{Z}[x][\tau]$.

- Prove the irreducibility.
- Restrict search for right-hand factors to some particular orders.

$$(\tau^{p}, \tau^{p+1}, \dots, \tau^{p+n-1}) = (1, \tau, \dots, \tau^{n-1})A,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$(\tau^{p}, \tau^{p+1}, \dots, \tau^{p+n-1}) = (1, \tau, \dots, \tau^{n-1})A_{p}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$L = \sum_{i=0}^{n} a_i \tau^i = 0 \implies \tau^n$$

$$(\tau^{p}, \tau^{p+1}, \dots, \tau^{p+n-1}) = (1, \tau, \dots, \tau^{n-1})A,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$L = \sum_{i=0}^{n} a_i \tau^i = 0 \implies \tau^n$$

• $\tau L = \sum_{i=0}^{n} a_i (x+1) \tau^{i+1} = 0 \implies \tau^{n+1}$

$$(\tau^{p}, \tau^{p+1}, \dots, \tau^{p+n-1}) = (1, \tau, \dots, \tau^{n-1})A_{p}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$L = \sum_{i=0}^{n} a_i \tau^i = 0 \implies \tau^n$$

• $\tau L = \sum_{i=0}^{n} a_i (x+1) \tau^{i+1} = 0 \implies \tau^{n+1}$
• ...
• $\tau^k L = 0 \implies \tau^{n+k}$
• ...
• A and char(A) = P(L)

Note: if each x is replaced by some $\alpha \in \overline{F_p}$ in ALG I, then the output is $P(L) \mid_{x=\alpha}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Note: if each x is replaced by some $\alpha \in \overline{F_p}$ in ALG I, then the output is $P(L) \mid_{x=\alpha}$. To build P(L) from a number of $P(L) \mid_{x=\alpha}$ s, we need the following information:

Note: if each x is replaced by some $\alpha \in \overline{F_p}$ in ALG I, then the output is $P(L) \mid_{x=\alpha}$. To build P(L) from a number of $P(L) \mid_{x=\alpha}$ s, we need the following information:

 a denominator bound, i.e. some B ∈ 𝔽_p[x] such that BP(L) ∈ 𝔽_p[x][λ]; Note: if each x is replaced by some $\alpha \in \overline{F_p}$ in ALG I, then the output is $P(L)|_{x=\alpha}$. To build P(L) from a number of $P(L)|_{x=\alpha}$ so we need the follow

To build P(L) from a number of $P(L)|_{x=\alpha}s$, we need the following information:

- a denominator bound, i.e. some B ∈ 𝔽_p[x] such that BP(L) ∈ 𝔽_p[x][λ];
- a degree bound for BP(L).

Notation:

$$\sigma(a(x)) = a(x)a(x+1)\dots a(x+p-1)$$

and

$$\tilde{P}(L) = \sigma(a_n)P(L).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Notation:

$$\sigma(a(x)) = a(x)a(x+1)\dots a(x+p-1)$$

and

$$\tilde{P}(L) = \sigma(a_n)P(L).$$

Proposition

When $L = \sum_{i=0}^{n} a_i \tau^i$ has polynomial coefficients, then

・ロト・西・・田・・田・・日・

Notation:

$$\sigma(a(x)) = a(x)a(x+1)\dots a(x+p-1)$$

and

$$\tilde{P}(L) = \sigma(a_n)P(L).$$

Proposition

When $L = \sum_{i=0}^{n} a_i \tau^i$ has polynomial coefficients, then • $\tilde{P}(L) \in \mathbb{F}_p[\theta][\lambda]$, where $\theta = x^p - x$;

・ロト・西ト・山田・山田・山口・

Notation:

$$\sigma(a(x)) = a(x)a(x+1)\dots a(x+p-1)$$

and

$$\tilde{P}(L) = \sigma(a_n)P(L).$$

Proposition

When
$$L = \sum_{i=0}^{n} a_i \tau^i$$
 has polynomial coefficients, then
• $\tilde{P}(L) \in \mathbb{F}_p[\theta][\lambda]$, where $\theta = x^p - x$;
• $\deg_{\theta}(\tilde{P}(L)) = \deg_x(L)$;

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Notation:

$$\sigma(a(x)) = a(x)a(x+1)\dots a(x+p-1)$$

and

$$\tilde{P}(L) = \sigma(a_n)P(L).$$

Proposition

When
$$L = \sum_{i=0}^{n} a_i \tau^i$$
 has polynomial coefficients, then
• $\tilde{P}(L) \in \mathbb{F}_p[\theta][\lambda]$, where $\theta = x^p - x$;
• $\deg_{\theta}(\tilde{P}(L)) = \deg_x(L)$;

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

• each distinct $x = \alpha$ yields a distinct value of $x^p - x$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• each distinct $x = \alpha$ yields a distinct value of $x^p - x$. Require minimal polynomials of α to be

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• each distinct $x = \alpha$ yields a distinct value of $x^p - x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Require minimal polynomials of $\boldsymbol{\alpha}$ to be

• not of degree divisible by p;

• each distinct $x = \alpha$ yields a distinct value of $x^p - x$.

Require minimal polynomials of α to be

- not of degree divisible by p;
- in the form of

 $x^n + \mathbf{0}x^{n-1} + \cdots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Computing *p*-Curvature: α -Generator

Algorithm:

• Generate some irreducible polynomials randomly.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Generate some irreducible polynomials randomly.
- Discard polys of degree divisible by *p* and transform the others into the form

$$x^n + 0x^{n-1} + \cdots$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Generate some irreducible polynomials randomly.
- Discard polys of degree divisible by *p* and transform the others into the form

$$x^n + 0x^{n-1} + \cdots$$

• Repeat this process until $\sum \deg(irrpoly) \ge d$.

Note: a polynomial of degree *n* selected this way contributes to *n* different values of $x^{p} - x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $L, A \in \mathbb{F}_p[x][\tau]$. Suppose $\operatorname{ord}(A) = n$ and $L_1 = AL$. $f := \frac{lc(L)}{\tau^{-n}(lc(L_1))}$ is called a *removable factor* of L at order n.

• Proposition: $\sigma(a_n)$ is a denominator bound for P(L).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $L, A \in \mathbb{F}_{p}[x][\tau]$. Suppose $\operatorname{ord}(A) = n$ and $L_{1} = AL$. $f := \frac{lc(L)}{\tau^{-n}(lc(L_{1}))}$ is called a *removable factor* of L at order n.

- Proposition: $\sigma(a_n)$ is a denominator bound for P(L).
- Conjecture: $\sigma(\frac{a_n}{\text{removable factors}})$ is a denominator bound.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $L, A \in \mathbb{F}_{p}[x][\tau]$. Suppose $\operatorname{ord}(A) = n$ and $L_{1} = AL$. $f := \frac{lc(L)}{\tau^{-n}(lc(L_{1}))}$ is called a *removable factor* of L at order n.

- Proposition: $\sigma(a_n)$ is a denominator bound for P(L).
- Conjecture: $\sigma(\frac{a_n}{\text{removable factors}})$ is a denominator bound.
- Can prove: $\sigma(\frac{a_n}{\text{some removable factor of order 1}})$ is a denominator bound.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Computing *p*-Curvature: the Main Algorithm

Algorithm:

Algorithm: Input: $L \in \mathbb{F}_{p}[x][\tau]$.

Algorithm: Input: $L \in \mathbb{F}_p[x][\tau]$.

• Use the desingularizer to find a denominator bound B and compute the degree bound d for BP(L).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Input: $L \in \mathbb{F}_{p}[x][\tau]$.

• Use the desingularizer to find a denominator bound B and compute the degree bound d for BP(L).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Use the α-generator to generate d αs (their minimal polynomials, in fact).

Input: $L \in \mathbb{F}_p[x][\tau]$.

• Use the desingularizer to find a denominator bound B and compute the degree bound d for BP(L).

- Use the α-generator to generate d αs (their minimal polynomials, in fact).
- Evaluate BP(L) at each $x = \alpha$.

Input: $L \in \mathbb{F}_{p}[x][\tau]$.

• Use the desingularizer to find a denominator bound B and compute the degree bound d for BP(L).

- Use the α-generator to generate d αs (their minimal polynomials, in fact).
- Evaluate BP(L) at each $x = \alpha$.
- Interpolation.

$$L := -4x\tau^3 - 83\tau^2 * x^2 - 10x^4 + 97\tau^2 - 73x^2 - 62\tau$$

р	Plain Alg	New Alg
31	4.750s	0.656s
73	1082.704s	2.453
127	∞	5.281

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$L = 43\tau^7 - 47x^3\tau^5 + 58x^5\tau^3 + 48x^3\tau^3 + 66x^2\tau^2 + 69x$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$L = 43\tau^7 - 47x^3\tau^5 + 58x^5\tau^3 + 48x^3\tau^3 + 66x^2\tau^2 + 69x$$

р	Plain Alg II	New Alg
3	1s	1s
53	81.837s	3.141

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Proposition

 $P(L)(\tau^p)$ is a multiple of L.

Proposition

 $P(L)(\tau^p)$ is a multiple of L.

Example

Let
$$L = \tau - x$$
. $P(L) = \lambda - (x^p - x)$. $\tau^p - (x^p - x)$ is a multiple of L .

・ロト・西ト・山田・山田・山口・

Conjecture:

۲

$$P(L)(\tau^{p}) = Z^{p} \text{LCLM}(N, N \mid_{x=x+1}, ..., N \mid_{x=x+p-1}),$$
$$Z \in \mathbb{F}_{p}(x^{p} - x)[\tau^{p}]: \text{ maximal center factor}$$
$$N: \text{ minimal non-center factor}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

More on *p*-Curvature: Newton Polygon

Conjecture:

Conjecture:

• $\tilde{P}(L)$ has the same "Newton Polygon" as L.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conjecture:

• $\tilde{P}(L)$ has the same "Newton Polygon" as L.

Example

Let
$$L = \tau^3 + (x^2 + 1)\tau + 3x^3$$
 and $p = 5$.

$$\tilde{P}(L) = \lambda^3 + 2\lambda^2 + (\theta^2 + 3\theta + 2)\lambda + 3\theta^3.$$

NP(L): lower convex hull of $(0,3), (1,2), (2,-\infty), (3,0)$ $NP(\tilde{P}(L))$: lower convex hull of (0,3), (1,2), (2,0), (3,0)

$$L = (\tau - e_1)(\tau - e_2) \cdots (\tau - e_n).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$L = (\tau - e_1)(\tau - e_2) \cdots (\tau - e_n).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Can we factor any operator in D_p into linear factors in some algebraic extension of $\mathbb{F}_p(x)$ or $\mathbb{F}_p((t))$?

$$L = (\tau - e_1)(\tau - e_2) \cdots (\tau - e_n).$$

Can we factor any operator in D_p into linear factors in some algebraic extension of $\mathbb{F}_p(x)$ or $\mathbb{F}_p((t))$? No. Counter example: $\tau^2 - x$ over \mathbb{F}_2 .

$$L = (\tau - e_1)(\tau - e_2) \cdots (\tau - e_n).$$

Can we factor any operator in D_p into linear factors in some algebraic extension of $\mathbb{F}_p(x)$ or $\mathbb{F}_p((t))$? No. Counter example: $\tau^2 - x$ over \mathbb{F}_2 . But we believe Yes, "wild ramification" (ramification index is divisible by p) is avoided.

Given $L \in \mathbb{Z}[x][\tau]$. If there is $f \in \mathbb{Q}(\theta)[\lambda]$ such that for almost all primes, the *p*-curvature of *L* is $f \mod p$, then *f* is called the *global curvature* of *L*.

Given $L \in \mathbb{Z}[x][\tau]$. If there is $f \in \mathbb{Q}(\theta)[\lambda]$ such that for almost all primes, the *p*-curvature of *L* is $f \mod p$, then *f* is called the *global curvature* of *L*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Example

 $L = \tau - x$ has a global curvature $\lambda - \theta$.

Given $L \in \mathbb{Z}[x][\tau]$. If there is $f \in \mathbb{Q}(\theta)[\lambda]$ such that for almost all primes, the *p*-curvature of *L* is $f \mod p$, then *f* is called the *global curvature* of *L*.

Example

 $L = \tau - x$ has a global curvature $\lambda - \theta$.

Example

Based on experiments, we guess $L_i = \tau^2 + (x+1)\tau + x + i(i \in \mathbb{Z})$ has global *p*-curvature $(\lambda + 1)(\lambda + \theta)$.

- Newton polygon;
- factoring operators into linear factors in char p;
- desingularization and denominator bound;
- global curvature;
- relation with *p*-curvature of differential operators;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• • • •