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Difference Equations and Difference Operators

Definition

Let k = C(x). The shift operator τ is the C-automorphism of k
defined by

(τ(f ))(x) = f (x + 1).

A difference operator is an operator

L = an(x)τn + · · ·+ a0(x)τ0

that acts in the following way on a rational function f

(L(f ))(x) = an(x)f (x + n) + · · ·+ a0(x)f (x).
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Difference Operators

The set of all difference operators is

k[τ ] = {anτn + · · ·+ a0τ
0|n ∈ N, a0, . . . , an ∈ k}.

It is a ring, with multiplication defined by

τ · a = τ(a)τ,

where a ∈ k ⊂ k[τ ].



Difference Operators: Order and Degrees

Definition

Let L =
n∑

i=0
ai (x)τ i be a non-zero difference operator. Define the

order of L to be

ord(L) := max{i |ai 6= 0}.



Difference Operators: Right Division

Theorem (Right Division with Remainder)

Suppose L1, L2 ∈ k[τ ] and ord(L2) > 0. There exist unique
difference operators q, r such that

L1 = qL2 + r ,

and ord(r) < ord(L2).



Final Goal

An algorithm that for any L ∈ D finds all the pairs L1, L2 with
lower orders than L such that L = L1L2.



Difference Operators Over Finite Fields

Definition

Define multiplication on the set Fp(x)[τ ] by

τx = (x + 1)τ.

Denote Dp = Fp(x)[τ ].

Note: Dp has a non-trivial center Fp(xp − x)[τp].
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p-Curvature

The Dp-module Dp/DpL is a Fp(x)-vector space.

τ : Dp/DpL→ Dp/DpL induces a Fp-linear map which is not
Fp(x)-linear, since

τ(x) = (x + 1)τ.

τp induces a Fp(x)-linear map, since

τp(x) = (x + p)τp = xτp.
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p-Curvature

Definition

For L ∈ Dp, the characteristic polynomial of the Fp(x)-linear map
τp : Dp/DpL→ Dp/DpL is called the p-curvature of L, denoted by
P(L).

Proposition (The Product Rule)

P(L1L2) = P(L1)P(L2).
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p-Curvature

How does p-curvature help factor operators in Q(x)[τ ]?

We can define p-curvature for operators in Z[x ][τ ].

Prove the irreducibility.

Restrict search for right-hand factors to some particular orders.
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Computing p-curvature: a Plain Algorithm

Goal: finding the matrix A such that

(τp, τp+1, . . . , τp+n−1) = (1, τ, . . . , τn−1)A,

and calculate its char poly.

L =
∑n

i=0 aiτ
i = 0 =⇒ τn

τL =
∑n

i=0 ai (x + 1)τ i+1 = 0 =⇒ τn+1

. . .

τkL = 0 =⇒ τn+k

. . .

A and char(A) = P(L)
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Computing p-Curvature: P(L) |x=α

Note: if each x is replaced by some α ∈ Fp in ALG I, then the
output is P(L) |x=α .

To build P(L) from a number of P(L) |x=αs, we need the following
information:

a denominator bound, i.e. some B ∈ Fp[x ] such that
BP(L) ∈ Fp[x ][λ];

a degree bound for BP(L).
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Computing p-Curvature:P(L) |x=α

Notation:

σ(a(x)) = a(x)a(x + 1) . . . a(x + p − 1)

and
P̃(L) = σ(an)P(L).

Proposition

When L =
∑n

i=0 aiτ
i has polynomial coefficients, then

P̃(L) ∈ Fp[θ][λ], where θ = xp − x ;

degθ(P̃(L)) = degx(L);
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Computing p-Curvature: α-Generator

Need:

each distinct x = α yields a distinct value of xp − x .

Require minimal polynomials of α to be

not of degree divisible by p;

in the form of
xn + 0xn−1 + · · · .
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Computing p-Curvature: α-Generator

Algorithm:

Generate some irreducible polynomials randomly.

Discard polys of degree divisible by p and transform the others
into the form

xn + 0xn−1 + · · · .

Repeat this process until
∑

deg(irrpoly) ≥ d .

Note: a polynomial of degree n selected this way contributes to n
different values of xp − x .
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Computing p-Curvature: Desingularizer

Definition

L,A ∈ Fp[x ][τ ]. Suppose ord(A) = n and L1 = AL.

f := lc(L)
τ−n(lc(L1))

is called a removable factor of L at order n.

Proposition: σ(an) is a denominator bound for P(L).

Conjecture: σ( an
removable factors) is a denominator bound.

Can prove: σ( an
some removable factor of order 1) is a denominator

bound.
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Computing p-Curvature: the Main Algorithm

Algorithm:

Input: L ∈ Fp[x ][τ ].

Use the desingularizer to find a denominator bound B and
compute the degree bound d for BP(L).

Use the α-generator to generate d αs (their minimal
polynomials, in fact).

Evaluate BP(L) at each x = α.

Interpolation.
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Comparison

L := −4xτ3 − 83τ2 ∗ x2 − 10x4 + 97τ2 − 73x2 − 62τ

p Plain Alg New Alg

31 4.750s 0.656s

73 1082.704s 2.453

127 ∞ 5.281



Comparison

L = 43τ7 − 47x3τ5 + 58x5τ3 + 48x3τ3 + 66x2τ2 + 69x

p Plain Alg II New Alg

3 1s 1s

53 81.837s 3.141
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More on p-Curvature

Proposition

P(L)(τp) is a multiple of L.

Example

Let L = τ − x . P(L) = λ− (xp − x). τp − (xp − x) is a multiple of
L.
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More on p-Curvature

Conjecture:

P(L)(τp) = ZpLCLM(N,N |x=x+1, . . . ,N |x=x+p−1),

Z ∈ Fp(xp − x)[τp]: maximal center factor
N: minimal non-center factor



More on p-Curvature: Newton Polygon

Conjecture:

P̃(L) has the same “Newton Polygon” as L.

Example

Let L = τ3 + (x2 + 1)τ + 3x3 and p = 5.

P̃(L) = λ3 + 2λ2 + (θ2 + 3θ + 2)λ+ 3θ3.

NP(L): lower convex hull of (0, 3), (1, 2), (2,−∞), (3, 0)
NP(P̃(L)): lower convex hull of (0, 3), (1, 2), (2, 0), (3, 0)
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More on p-Curvature: Relation with Generalized Exponents

Let K = C((t)) and Kr = C((t
1
r )), where t = 1

x . Any operator in
K [τ ] can be factored completely in some Kr [τ ]:

L = (τ − e1)(τ − e2) · · · (τ − en).

Can we factor any operator in Dp into linear factors in some
algebraic extension of Fp(x) or Fp((t))?
No. Counter example: τ2 − x over F2.
But we believe Yes, “wild ramification” (ramification index is
divisible by p) is avoided.
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More on p-curvature: Global Curvature

Definition

Given L ∈ Z[x ][τ ]. If there is f ∈ Q(θ)[λ] such that for almost all
primes, the p-curvature of L is fmodp, then f is called the global
curvature of L.

Example

L = τ − x has a global curvature λ− θ.

Example

Based on experiments, we guess Li = τ2 + (x + 1)τ + x + i(i ∈ Z)
has global p-curvature (λ+ 1)(λ+ θ).
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Work To Be Done

Newton polygon;

factoring operators into linear factors in char p;

desingularization and denominator bound;

global curvature;

relation with p-curvature of differential operators;

· · ·


