Algorithms for p-Curvatures of Difference Operators

Yi Zhou

Department of Mathematics
Florida State University

Outline

- Definitions

Outline

- Definitions
- Algorithms:

Outline

- Definitions
- Algorithms:
- a plain algorithm
- an algorithm computing $\left.P(L)\right|_{x=\alpha}$
- α-generator
- desingularizer

Outline

- Definitions
- Algorithms:
- a plain algorithm
- an algorithm computing $\left.P(L)\right|_{x=\alpha}$
- α-generator
- desingularizer
- More on p-curvature

Difference Equations and Difference Operators

Definition

Let $k=\mathbb{C}(x)$. The shift operator τ is the \mathbb{C}-automorphism of k defined by

$$
(\tau(f))(x)=f(x+1)
$$

Difference Equations and Difference Operators

Definition

Let $k=\mathbb{C}(x)$. The shift operator τ is the \mathbb{C}-automorphism of k defined by

$$
(\tau(f))(x)=f(x+1)
$$

A difference operator is an operator

$$
L=a_{n}(x) \tau^{n}+\cdots+a_{0}(x) \tau^{0}
$$

that acts in the following way on a rational function f

$$
(L(f))(x)=a_{n}(x) f(x+n)+\cdots+a_{0}(x) f(x) .
$$

Difference Operators

The set of all difference operators is

$$
k[\tau]=\left\{a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \mid n \in \mathbb{N}, a_{0}, \ldots, a_{n} \in k\right\} .
$$

It is a ring, with multiplication defined by

$$
\tau \cdot a=\tau(a) \tau
$$

where $a \in k \subset k[\tau]$.

Difference Operators: Order and Degrees

Definition

Let $L=\sum_{i=0}^{n} a_{i}(x) \tau^{i}$ be a non-zero difference operator. Define the order of L to be

$$
\operatorname{ord}(L):=\max \left\{i \mid a_{i} \neq 0\right\}
$$

Difference Operators: Right Division

Theorem (Right Division with Remainder)

Suppose $L_{1}, L_{2} \in k[\tau]$ and $\operatorname{ord}\left(L_{2}\right)>0$. There exist unique difference operators q, r such that

$$
L_{1}=q L_{2}+r
$$

and $\operatorname{ord}(r)<\operatorname{ord}\left(L_{2}\right)$.

Final Goal

An algorithm that for any $L \in D$ finds all the pairs L_{1}, L_{2} with lower orders than L such that $L=L_{1} L_{2}$.

Difference Operators Over Finite Fields

Definition

Define multiplication on the set $\mathbb{F}_{p}(x)[\tau]$ by

$$
\tau x=(x+1) \tau
$$

Denote $D_{p}=\mathbb{F}_{p}(x)[\tau]$.

Difference Operators Over Finite Fields

Definition

Define multiplication on the set $\mathbb{F}_{p}(x)[\tau]$ by

$$
\tau x=(x+1) \tau
$$

Denote $D_{p}=\mathbb{F}_{p}(x)[\tau]$.
Note: D_{p} has a non-trivial center $\mathbb{F}_{p}\left(x^{p}-x\right)\left[\tau^{p}\right]$.

p-Curvature

The D_{p}-module $D_{p} / D_{p} L$ is a $\mathbb{F}_{p}(x)$-vector space.

p-Curvature

The D_{p}-module $D_{p} / D_{p} L$ is a $\mathbb{F}_{p}(x)$-vector space.
$\tau: D_{p} / D_{p} L \rightarrow D_{p} / D_{p} L$ induces a \mathbb{F}_{p}-linear map which is not $\mathbb{F}_{p}(x)$-linear, since

$$
\tau(x)=(x+1) \tau
$$

p-Curvature

The D_{p}-module $D_{p} / D_{p} L$ is a $\mathbb{F}_{p}(x)$-vector space.
$\tau: D_{p} / D_{p} L \rightarrow D_{p} / D_{p} L$ induces a \mathbb{F}_{p}-linear map which is not $\mathbb{F}_{p}(x)$-linear, since

$$
\tau(x)=(x+1) \tau
$$

τ^{p} induces a $\mathbb{F}_{p}(x)$-linear map, since

$$
\tau^{p}(x)=(x+p) \tau^{p}=x \tau^{p}
$$

p-Curvature

Definition

For $L \in D_{p}$, the characteristic polynomial of the $\mathbb{F}_{p}(x)$-linear map $\tau^{p}: D_{p} / D_{p} L \rightarrow D_{p} / D_{p} L$ is called the p-curvature of L, denoted by $P(L)$.

p-Curvature

Definition

For $L \in D_{p}$, the characteristic polynomial of the $\mathbb{F}_{p}(x)$-linear map $\tau^{p}: D_{p} / D_{p} L \rightarrow D_{p} / D_{p} L$ is called the p-curvature of L, denoted by $P(L)$.

Proposition (The Product Rule)

$$
P\left(L_{1} L_{2}\right)=P\left(L_{1}\right) P\left(L_{2}\right)
$$

p-Curvature

How does p-curvature help factor operators in $\mathbb{Q}(x)[\tau]$?

p-Curvature

How does p-curvature help factor operators in $\mathbb{Q}(x)[\tau]$? We can define p-curvature for operators in $\mathbb{Z}[x][\tau]$.

p-Curvature

How does p-curvature help factor operators in $\mathbb{Q}(x)[\tau]$? We can define p-curvature for operators in $\mathbb{Z}[x][\tau]$.

- Prove the irreducibility.

p-Curvature

How does p-curvature help factor operators in $\mathbb{Q}(x)[\tau]$?
We can define p-curvature for operators in $\mathbb{Z}[x][\tau]$.

- Prove the irreducibility.
- Restrict search for right-hand factors to some particular orders.

Computing p-curvature: a Plain Algorithm

Goal: finding the matrix A such that

$$
\left(\tau^{p}, \tau^{p+1}, \ldots, \tau^{p+n-1}\right)=\left(1, \tau, \ldots, \tau^{n-1}\right) A
$$

and calculate its char poly.

Computing p-curvature: a Plain Algorithm

Goal: finding the matrix A such that

$$
\left(\tau^{p}, \tau^{p+1}, \ldots, \tau^{p+n-1}\right)=\left(1, \tau, \ldots, \tau^{n-1}\right) A
$$

and calculate its char poly.

- $L=\sum_{i=0}^{n} a_{i} \tau^{i}=0 \Longrightarrow \tau^{n}$

Computing p-curvature: a Plain Algorithm

Goal: finding the matrix A such that

$$
\left(\tau^{p}, \tau^{p+1}, \ldots, \tau^{p+n-1}\right)=\left(1, \tau, \ldots, \tau^{n-1}\right) A
$$

and calculate its char poly.

- $L=\sum_{i=0}^{n} a_{i} \tau^{i}=0 \Longrightarrow \tau^{n}$
- $\tau L=\sum_{i=0}^{n} a_{i}(x+1) \tau^{i+1}=0 \Longrightarrow \tau^{n+1}$

Computing p-curvature: a Plain Algorithm

Goal: finding the matrix A such that

$$
\left(\tau^{p}, \tau^{p+1}, \ldots, \tau^{p+n-1}\right)=\left(1, \tau, \ldots, \tau^{n-1}\right) A
$$

and calculate its char poly.

- $L=\sum_{i=0}^{n} a_{i} \tau^{i}=0 \Longrightarrow \tau^{n}$
- $\tau L=\sum_{i=0}^{n} a_{i}(x+1) \tau^{i+1}=0 \Longrightarrow \tau^{n+1}$
- $\tau^{k} L=0 \Longrightarrow \tau^{n+k}$
- A and $\operatorname{char}(A)=P(L)$

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Note: if each x is replaced by some $\alpha \in \overline{F_{p}}$ in ALG I, then the output is $\left.P(L)\right|_{x=\alpha}$.

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Note: if each x is replaced by some $\alpha \in \overline{F_{p}}$ in ALG I, then the output is $\left.P(L)\right|_{x=\alpha}$.
To build $P(L)$ from a number of $\left.P(L)\right|_{x=\alpha} \mathrm{s}$, we need the following information:

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Note: if each x is replaced by some $\alpha \in \overline{F_{p}}$ in ALG I, then the output is $\left.P(L)\right|_{x=\alpha}$.
To build $P(L)$ from a number of $\left.P(L)\right|_{x=\alpha} \mathrm{s}$, we need the following information:

- a denominator bound, i.e. some $B \in \mathbb{F}_{p}[x]$ such that $B P(L) \in \mathbb{F}_{p}[x][\lambda] ;$

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Note: if each x is replaced by some $\alpha \in \overline{F_{p}}$ in ALG I, then the output is $\left.P(L)\right|_{x=\alpha}$.
To build $P(L)$ from a number of $\left.P(L)\right|_{x=\alpha} \mathrm{s}$, we need the following information:

- a denominator bound, i.e. some $B \in \mathbb{F}_{p}[x]$ such that $B P(L) \in \mathbb{F}_{p}[x][\lambda]$;
- a degree bound for $B P(L)$.

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Notation:

$$
\sigma(a(x))=a(x) a(x+1) \ldots a(x+p-1)
$$

and

$$
\tilde{P}(L)=\sigma\left(a_{n}\right) P(L)
$$

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Notation:

$$
\sigma(a(x))=a(x) a(x+1) \ldots a(x+p-1)
$$

and

$$
\tilde{P}(L)=\sigma\left(a_{n}\right) P(L)
$$

Proposition

When $L=\sum_{i=0}^{n} a_{i} \tau^{i}$ has polynomial coefficients, then

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Notation:

$$
\sigma(a(x))=a(x) a(x+1) \ldots a(x+p-1)
$$

and

$$
\tilde{P}(L)=\sigma\left(a_{n}\right) P(L)
$$

Proposition

When $L=\sum_{i=0}^{n} a_{i} \tau^{i}$ has polynomial coefficients, then

- $\tilde{P}(L) \in \mathbb{F}_{p}[\theta][\lambda]$, where $\theta=x^{p}-x$;

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Notation:

$$
\sigma(a(x))=a(x) a(x+1) \ldots a(x+p-1)
$$

and

$$
\tilde{P}(L)=\sigma\left(a_{n}\right) P(L)
$$

Proposition

When $L=\sum_{i=0}^{n} a_{i} \tau^{i}$ has polynomial coefficients, then

- $\tilde{P}(L) \in \mathbb{F}_{p}[\theta][\lambda]$, where $\theta=x^{p}-x$;
- $\operatorname{deg}_{\theta}(\tilde{P}(L))=\operatorname{deg}_{x}(L)$;

Computing p-Curvature: $\left.P(L)\right|_{x=\alpha}$

Notation:

$$
\sigma(a(x))=a(x) a(x+1) \ldots a(x+p-1)
$$

and

$$
\tilde{P}(L)=\sigma\left(a_{n}\right) P(L)
$$

Proposition

When $L=\sum_{i=0}^{n} a_{i} \tau^{i}$ has polynomial coefficients, then

- $\tilde{P}(L) \in \mathbb{F}_{p}[\theta][\lambda]$, where $\theta=x^{p}-x$;
- $\operatorname{deg}_{\theta}(\tilde{P}(L))=\operatorname{deg}_{x}(L)$;

Computing p-Curvature: α-Generator

Need:

- each distinct $x=\alpha$ yields a distinct value of $x^{p}-x$.

Computing p-Curvature: α-Generator

Need:

- each distinct $x=\alpha$ yields a distinct value of $x^{p}-x$.

Require minimal polynomials of α to be

Computing p-Curvature: α-Generator

Need:

- each distinct $x=\alpha$ yields a distinct value of $x^{p}-x$.

Require minimal polynomials of α to be

- not of degree divisible by p;

Computing p-Curvature: α-Generator

Need:

- each distinct $x=\alpha$ yields a distinct value of $x^{p}-x$.

Require minimal polynomials of α to be

- not of degree divisible by p;
- in the form of

$$
x^{n}+0 x^{n-1}+\cdots
$$

Computing p-Curvature: α-Generator

Algorithm:

- Generate some irreducible polynomials randomly.

Computing p-Curvature: α-Generator

Algorithm:

- Generate some irreducible polynomials randomly.
- Discard polys of degree divisible by p and transform the others into the form

$$
x^{n}+0 x^{n-1}+\cdots
$$

Computing p-Curvature: α-Generator

Algorithm:

- Generate some irreducible polynomials randomly.
- Discard polys of degree divisible by p and transform the others into the form

$$
x^{n}+0 x^{n-1}+\cdots
$$

- Repeat this process until $\sum \operatorname{deg}($ irrpoly $) \geq d$.

Note: a polynomial of degree n selected this way contributes to n different values of $x^{p}-x$.

Computing p-Curvature: Desingularizer

Definition

$L, A \in \mathbb{F}_{p}[x][\tau]$. Suppose $\operatorname{ord}(A)=n$ and $L_{1}=A L$.
$f:=\frac{c c(L)}{\tau^{-n}\left(l c\left(L_{1}\right)\right)}$ is called a removable factor of L at order n.

- Proposition: $\sigma\left(a_{n}\right)$ is a denominator bound for $P(L)$.

Computing p-Curvature: Desingularizer

Definition

$L, A \in \mathbb{F}_{p}[x][\tau]$. Suppose $\operatorname{ord}(A)=n$ and $L_{1}=A L$.
$f:=\frac{c c(L)}{\tau^{-n}\left(l c\left(L_{1}\right)\right)}$ is called a removable factor of L at order n.

- Proposition: $\sigma\left(a_{n}\right)$ is a denominator bound for $P(L)$.
- Conjecture: $\sigma\left(\frac{a_{n}}{\text { removable factors }}\right)$ is a denominator bound.

Computing p-Curvature: Desingularizer

Definition

$L, A \in \mathbb{F}_{p}[x][\tau]$. Suppose $\operatorname{ord}(A)=n$ and $L_{1}=A L$.
$f:=\frac{c c(L)}{\tau^{-n}\left(l c\left(L_{1}\right)\right)}$ is called a removable factor of L at order n.

- Proposition: $\sigma\left(a_{n}\right)$ is a denominator bound for $P(L)$.
- Conjecture: $\sigma\left(\frac{a_{n}}{\text { removable factors }}\right)$ is a denominator bound.
- Can prove: $\sigma\left(\frac{a_{n}}{\text { some removable factor of order 1 }}\right)$ is a denominator bound.

Computing p-Curvature: the Main Algorithm

Algorithm:

Computing p-Curvature: the Main Algorithm

Algorithm:
Input: $L \in \mathbb{F}_{p}[x][\tau]$.

Computing p-Curvature: the Main Algorithm

Algorithm:
Input: $L \in \mathbb{F}_{p}[x][\tau]$.

- Use the desingularizer to find a denominator bound B and compute the degree bound d for $B P(L)$.

Computing p-Curvature: the Main Algorithm

Algorithm:
Input: $L \in \mathbb{F}_{p}[x][\tau]$.

- Use the desingularizer to find a denominator bound B and compute the degree bound d for $B P(L)$.
- Use the α-generator to generate $d \alpha$ (their minimal polynomials, in fact).

Computing p-Curvature: the Main Algorithm

Algorithm:
Input: $L \in \mathbb{F}_{p}[x][\tau]$.

- Use the desingularizer to find a denominator bound B and compute the degree bound d for $B P(L)$.
- Use the α-generator to generate $d \alpha$ (their minimal polynomials, in fact).
- Evaluate $B P(L)$ at each $x=\alpha$.

Computing p-Curvature: the Main Algorithm

Algorithm:
Input: $L \in \mathbb{F}_{p}[x][\tau]$.

- Use the desingularizer to find a denominator bound B and compute the degree bound d for $B P(L)$.
- Use the α-generator to generate $d \alpha$ (their minimal polynomials, in fact).
- Evaluate $B P(L)$ at each $x=\alpha$.
- Interpolation.

Comparison

$$
L:=-4 x \tau^{3}-83 \tau^{2} * x^{2}-10 x^{4}+97 \tau^{2}-73 x^{2}-62 \tau
$$

p	Plain Alg	New Alg
31	4.750 s	0.656 s
73	1082.704 s	2.453
127	∞	5.281

Comparison

$$
L=43 \tau^{7}-47 x^{3} \tau^{5}+58 x^{5} \tau^{3}+48 x^{3} \tau^{3}+66 x^{2} \tau^{2}+69 x
$$

Comparison

$$
L=43 \tau^{7}-47 x^{3} \tau^{5}+58 x^{5} \tau^{3}+48 x^{3} \tau^{3}+66 x^{2} \tau^{2}+69 x
$$

p	Plain Alg II	New Alg
3	1 s	1 s
53	81.837 s	3.141

More on p-Curvature

Proposition

$P(L)\left(\tau^{p}\right)$ is a multiple of L.

More on p-Curvature

Proposition

$P(L)\left(\tau^{p}\right)$ is a multiple of L.

Example

Let $L=\tau-x . P(L)=\lambda-\left(x^{p}-x\right) \cdot \tau^{p}-\left(x^{p}-x\right)$ is a multiple of L.

More on p-Curvature

Conjecture:
-

$$
P(L)\left(\tau^{p}\right)=Z^{p} \operatorname{LCLM}\left(N,\left.N\right|_{x=x+1}, \ldots,\left.N\right|_{x=x+p-1}\right)
$$

$Z \in \mathbb{F}_{p}\left(x^{p}-x\right)\left[\tau^{p}\right]:$ maximal center factor N : minimal non-center factor

More on p-Curvature: Newton Polygon

Conjecture:

More on p-Curvature: Newton Polygon

Conjecture:

- $\tilde{P}(L)$ has the same "Newton Polygon" as L.

More on p-Curvature: Newton Polygon

Conjecture:

- $\tilde{P}(L)$ has the same "Newton Polygon" as L.

Example

Let $L=\tau^{3}+\left(x^{2}+1\right) \tau+3 x^{3}$ and $p=5$.

$$
\tilde{P}(L)=\lambda^{3}+2 \lambda^{2}+\left(\theta^{2}+3 \theta+2\right) \lambda+3 \theta^{3} .
$$

$N P(L)$: lower convex hull of $(0,3),(1,2),(2,-\infty),(3,0)$
$N P(\tilde{P}(L))$: lower convex hull of $(0,3),(1,2),(2,0),(3,0)$

More on p-Curvature: Relation with Generalized Exponents

Let $K=\mathbb{C}((t))$ and $K_{r}=\mathbb{C}\left(\left(t^{\frac{1}{r}}\right)\right)$, where $t=\frac{1}{x}$. Any operator in $K[\tau]$ can be factored completely in some $K_{r}[\tau]$:

$$
L=\left(\tau-e_{1}\right)\left(\tau-e_{2}\right) \cdots\left(\tau-e_{n}\right)
$$

More on p-Curvature: Relation with Generalized Exponents

Let $K=\mathbb{C}((t))$ and $K_{r}=\mathbb{C}\left(\left(t^{\frac{1}{r}}\right)\right)$, where $t=\frac{1}{x}$. Any operator in $K[\tau]$ can be factored completely in some $K_{r}[\tau]$:

$$
L=\left(\tau-e_{1}\right)\left(\tau-e_{2}\right) \cdots\left(\tau-e_{n}\right)
$$

Can we factor any operator in D_{p} into linear factors in some algebraic extension of $\mathbb{F}_{p}(x)$ or $\mathbb{F}_{p}((t))$?

More on p-Curvature: Relation with Generalized Exponents

Let $K=\mathbb{C}((t))$ and $K_{r}=\mathbb{C}\left(\left(t^{\frac{1}{r}}\right)\right)$, where $t=\frac{1}{x}$. Any operator in $K[\tau]$ can be factored completely in some $K_{r}[\tau]$:

$$
L=\left(\tau-e_{1}\right)\left(\tau-e_{2}\right) \cdots\left(\tau-e_{n}\right)
$$

Can we factor any operator in D_{p} into linear factors in some algebraic extension of $\mathbb{F}_{p}(x)$ or $\mathbb{F}_{p}((t))$?
No. Counter example: $\tau^{2}-x$ over \mathbb{F}_{2}.

More on p-Curvature: Relation with Generalized Exponents

Let $K=\mathbb{C}((t))$ and $K_{r}=\mathbb{C}\left(\left(t^{\frac{1}{r}}\right)\right)$, where $t=\frac{1}{x}$. Any operator in $K[\tau]$ can be factored completely in some $K_{r}[\tau]$:

$$
L=\left(\tau-e_{1}\right)\left(\tau-e_{2}\right) \cdots\left(\tau-e_{n}\right)
$$

Can we factor any operator in D_{p} into linear factors in some algebraic extension of $\mathbb{F}_{p}(x)$ or $\mathbb{F}_{p}((t))$?
No. Counter example: $\tau^{2}-x$ over \mathbb{F}_{2}.
But we believe Yes, "wild ramification" (ramification index is divisible by p) is avoided.

More on p-curvature: Global Curvature

Definition
Given $L \in \mathbb{Z}[x][\tau]$. If there is $f \in \mathbb{Q}(\theta)[\lambda]$ such that for almost all primes, the p-curvature of L is $f \bmod p$, then f is called the global curvature of L.

More on p-curvature: Global Curvature

Definition

Given $L \in \mathbb{Z}[x][\tau]$. If there is $f \in \mathbb{Q}(\theta)[\lambda]$ such that for almost all primes, the p-curvature of L is $f \bmod p$, then f is called the global curvature of L.

Example

$L=\tau-x$ has a global curvature $\lambda-\theta$.

More on p-curvature: Global Curvature

Definition

Given $L \in \mathbb{Z}[x][\tau]$. If there is $f \in \mathbb{Q}(\theta)[\lambda]$ such that for almost all primes, the p-curvature of L is $f \bmod p$, then f is called the global curvature of L.

Example

$L=\tau-x$ has a global curvature $\lambda-\theta$.

Example

Based on experiments, we guess $L_{i}=\tau^{2}+(x+1) \tau+x+i(i \in \mathbb{Z})$ has global p-curvature $(\lambda+1)(\lambda+\theta)$.

Work To Be Done

- Newton polygon;
- factoring operators into linear factors in char p;
- desingularization and denominator bound;
- global curvature;
- relation with p-curvature of differential operators;
- ...

