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Classification of numbers vs functions

Q ←→ C(z)⋂ ⋂
Q ←→ C(z)⋂

holonomic⋂ ⋂
differentially algebraic⋂

C ←→ C((z1/∗)) =
∞⋃

`=1

C((z1/`))
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Classification of functions

• We say that f ∈ C(z) if ∃0 6= P ∈ C(z)[X ] such that

P(f ) = 0.

Example: z1/2

• We say that f is holonomic if ∃ c0, . . . , cn ∈ C(z), cn 6= 0,
such that

c0f + · · ·+ cn∂
n
z (f ) = 0.

Example: exp(z), log(z), ...

• We say that f is differentially algebraic if ∃ n ∈ N,
0 6= P ∈ C(z)[X0, . . . ,Xn], such that

P(f , . . . , ∂n
z (f )) = 0.

Example: ℘(z), some walks in the quarter plane

• We say that f is differentially transcendental otherwise
Example: Γ(z), ζ(z)
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Differential transcendence and difference equations

Some functions are differentially transcendental, for instance:
• Γ(z);

• f1(z) :=
∑∞

n=0
(1−a)2(1−aq)2···(1−aqn−1)2

(1−q)2(1−q2)2···(1−qn)2 zn , where q ∈ C∗ is

not a root of unity, a 6∈ qZ and a2 ∈ qZ;
• f2(z) =

∑
n≥0 z2n

.
They are solutions of difference equations Γ(z + 1) = zΓ(z),
f2(z2) = f2(z)− z, and

f1(q2z)− 2az − 2
a2z − 1

f1(qz) +
z − 1

a2z − 1
f1(z) = 0 .
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Differential algebraicity and difference equations

On the other hand, there are differentially algebraic functions
solutions of difference equations:

• exp(z), solution of exp(z + 1) = e exp(z);
• θq(z) =

∑
n∈Z q−n(n−1)/2zn, solution of θq(qz) = zθq(z);

• log(z), solution of log(z2) = 2 log(z).
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Difference framework

Let y ∈ F , solution of

a0y + a1ρ(y) + · · ·+ ρn(y) = 0, ai ∈ C(z). (E)

Case S F = C((z−1)),
ρ : y(z) 7→ y(z + h), h ∈ C∗.

Case Q F = C((z1/∗)),
ρ : y(z) 7→ y(qz), q ∈ C∗, not a root of unity.

Case M F = C((z1/∗)),
ρ : y(z) 7→ y(zp), p ∈ N≥2.
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Holonomy and difference equations

Let y ∈ F , solution of

a0y + a1ρ(y) + · · ·+ ρn(y) = 0. (E)

Theorem
If y is holonomic, then y ∈ C(z).

→ Case S: Schäfke/Singer, Case Q Ramis, Case M, Bézivin

→ See also Bézivin/Gramain
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Diff. alg. and order one difference equations

Let y ∈ F , solution of

ρ(y) = ay + b, a,b ∈ C(z).

Theorem
Either y ∈ C(z), either y is differentially transcendental.

→ Case S: Adamczewski/D/Hardouin, Case Q Ishizaki, Case M, Randé

→ See also Hölder, Hardouin/Singer, Moore, Nishioka, Nguyen...
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Differential algebraicity and big difference Galois group

Let y ∈ F , solution of

a0y + a1ρ(y) + · · ·+ ρn(y) = 0. (E)

Theorem
Assume that the difference Galois group of (E) contains
SLn(C). Either y = 0, either y is differentially transcendental.

→ Case S: Arreche/Singer, Cases Q and M D/Hardouin/ Roques

→ See also Arreche/D/Roques and Arreche/Singer
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Main result

Let y ∈ F , solution of

a0y + a1ρ(y) + · · ·+ ρn(y) = 0. (E)

Theorem (Adamczewski/D/Hardouin)

Either y ∈ C(z), either y is differentially transcendental.
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1 Difference Galois theory

2 Proof in the n = 2 case

3 Proof in the general case

11/31



Difference Galois theory
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Difference framework

Let 0 6= y ∈ F , solution of

a0y + a1ρ(y) + · · ·+ ρn(y) = 0, (E)

with
ai ∈ C(z), a0 6= 0.

Case S K = C(z), F = C((z−1)),
ρ : y(z) 7→ y(z + h), h ∈ C∗.

Case Q K = C(z1/∗), F = C((z1/∗)),
ρ : y(z) 7→ y(qz), q ∈ C∗, not a root of unity.

Case M K = C(z1/∗), F = C((z1/∗)),
ρ : y(z) 7→ y(zp), p ∈ N≥2.
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Picard-Vessiot extension

Let us see (E) as a system:

ρ(Y ) = AY , A =



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
−a0 −a1 · · · · · · −an−1


∈ GLn(C(z)).

Proposition

There exists a unique ring extension R|K , such that
• ∃U ∈ GLn(R) such that ρ(U) = AU.
• the first column of U is (y , . . . , ρn−1(y));
• R = K [U,det(U)−1];
• the only difference ideals of R are (0) and R.
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Difference Galois group

Let
G = {σ ∈ Aut(R|K )|σρ = ρσ}.

Theorem
The image of

G → GLn(C)
σ 7→ U−1σ(U),

is an algebraic subgroup of GLn(C).
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A useful property

For B,T ∈ GLn(K ), define

T [B] := ρ(T )BT−1.

We have
ρ(Y ) = BY ⇔ ρ(TY ) = T [B]TY .

Theorem (van der Put/Singer)
• G/G◦ is cyclic, where G◦ is the identity component of G;
• ∃T ∈ GLn(K ) such that T [A] ∈ G(K ).
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Proof in the n = 2 case
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3 possibilities for the Galois group

Assume n = 2. Let G ⊂ GL2(C) be the Galois group. Then,
either

• G is conjugated to a subgroup of(
? ?
0 ?

)
,

• G is conjugated to a subgroup of(
? 0
0 ?

)⋃(
0 ?
? 0

)
,

• G contains SL2(C).
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Case 1

Assume that y is diff. alg. Then, ∃T = (ti,j) ∈ GL2(K ) such that

ρ(TU) =

(
a b
0 c

)
TU.

Let

(
v1
v2

)
= T

(
y
ρ(y)

)
be the first column of TU. Then

• v2 = t2,1y + t2,2ρ(y).
• v2 ∈ F is diff. alg.
• ρ(v2) = cv2.
• Order one case⇒ v2 ∈ K .
• Affine order one case⇒ y ∈ K .
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Case 2

Assume that y is diff. alg. Then, ∃T = (ti,j) ∈ GL2(K ) such that

ρ(TU) =

(
0 a
b 0

)
TU.

Let

(
v1
v2

)
= T

(
y
ρ(y)

)
be the first column of TU. Then

• v1 ∈ F is diff. alg.
• v1 = t1,1y + t1,2ρ(y).
• ρ2(v1) = bρ(a)v1.
• Order one case with ρ2 implies v1 ∈ K .
• Affine order one case⇒ y ∈ K .
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Case 3

Assume that G contains SL2(C).
By

• Arreche/Singer (Case S),
• D/Hardouin/Roques (Cases Q and M),

y is diff. tr.
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Proof in the general case
The case n = 1 is

• Adamczewski/D/Hardouin, (Case S);
• Ishizaki (Case Q);
• Randé (case M).

From now, we assume n ≥ 2.
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Irreducibility of G

Definition
We say that G ⊂ GLn(C) is irreducible if it acts irreducibly on
Cn. We say that G is reducible otherwise.

Proposition
The following are equivalent:

• G is reducible.
• ∃T ∈ GLn(K ), 0 < r < n, such that

T [A] =

(
B1 B2
0 B3

)
, B1 ∈ GLr (K ).
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Imprimitivity of G

Definition
When G is irreducible, we say that G is imprimitive if ∃r ≥ 2,
and V1, . . . ,Vr , some C-vector spaces satisfying

(i) Cn = V1 ⊕ · · · ⊕ Vr .
(ii) ∀g ∈ G, the mapping Vi 7→ g(Vi) is a permutation of the set
{V1, . . . ,Vr}.

We say that G is primitive otherwise.

Lemma
If G is irreducible and connected then G is primitive.
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Iteration and Galois group

For ` ≥ 1 let
A[`] = ρ`−1(A)× · · · × A.

Note that
ρ(Y ) = AY ⇒ ρ`(Y ) = A[`]Y .

Lemma
There exist ` ≥ 1 and a ring extension R|K , such that

• ∃U ∈ GLn(R) such that ρ`(U) = A[`]U.

• the first column of U is (y , . . . , ρn−1(y));
• R = K [U,det(U)−1];
• the only ρ` ideals of R are (0) and R.
• G[`], the Galois group of ρ`(Y ) = A[`]Y is connected.
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Semi simple case

Lemma (Singer/Ulmer)

If G ⊂ SLn(C) is irreducible and primitive, then G is semi simple.

Theorem (Arreche/Singer)

Assume that G is semi simple. Then, y is diff. tr.
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Proof in the irreducible case

Let ` ≥ 1, such that G[`] is connected.

Proposition (Adamczewski/D/Hardouin)
If G[`] is irreducible, then y is differentially transcendental.

Sketch of proof.

G[`] is primitive. If G[`] ⊂ SLn(C) then it is semi simple.
If not, consider the system ρ`(Y ) = det(A[`])

−1/nA[`]Y . Its
Galois group is

• irreducible,
• primitive,
• inside SLn(C).

It is then semi simple.
Semi simple implies y diff. tr.
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Proof in the general case

Let us prove the result by an induction on n.

The case n = 1 is already treated.

Fix n ≥ 2 and assume the result is proved for order r equations
with r < n.

Consider an order n equation. Let ` ≥ 1, such that G[`] is
connected.

If G[`] ⊂ GLn(C) is irreducible, then y is diff. tr.
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Sketch of proof in the reducible case (1/3)

Assume that G[`] is reducible. Assume that y is diff. alg. and let
us prove that y ∈ K .
Let T ∈ GLn(K ), 0 < r < n minimal, such that

T [A[`]] =

(
B1 B2
0 B3

)
, B1 ∈ GLr (K ).

Then, TU is solution of

ρ`(TU) =

(
B1 B2
0 B3

)
TU.

Let (v1, . . . , vn)> = T (y , . . . , ρn−1(y))> ∈ F n. Every vi is diff alg.
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Sketch of proof in the reducible case (2/3)

ρ`(TU) =

(
B1 B2
0 B3

)
TU.

Induction hypothesis⇒ vr+1, . . . , vn ∈ K .

Lemma
r = 1.

Sketch of proof.

•We have ρ(v1, . . . , vr )> − B1(v1, . . . , vr )> ∈ K r .
• v1, . . . , vr ∈ F are diff. alg.
• Parametrized diff. Galois theory⇒ ∃(w1, . . . ,wr )> diff. alg.
such that ρ(w1, . . . ,wr )> = B1(w1, . . . ,wr )>.
• The Galois group of ρ`(Y ) = B1Y is irreducible and
connected.
• Irreducible case⇒ r = 1.
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Sketch of proof in the reducible case (3/3)

ρ`(TU) =

(
B1 B2
0 B3

)
TU.

• Remind that v2, . . . , vn ∈ K and B1 ∈ C∗.
• Then, ρ`(v1)− B1v1 ∈ K .
• Affine order one case implies v1 ∈ K .
• Then, T−1(v1, . . . , vn)> = (y , . . . , ρn−1(y))> ∈ K n.
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