Differential transcendence and difference equations

Thomas Dreyfus ${ }^{1}$ Joint work with Boris Adamczewski ${ }^{2}$ and Charlotte Hardouin ${ }^{3}$
${ }^{1}$ CNRS, Strasbourg University, France
${ }^{2}$ Lyon 1 University, France
${ }^{3}$ Toulouse 3 University, France

Classification of functions

- We say that $f \in \overline{\mathbb{C}(z)}$ if $\exists 0 \neq P \in \mathbb{C}(z)[X]$ such that

$$
P(f)=0 .
$$

Example: $z^{1 / 2}$

- We say that f is holonomic if $\exists c_{0}, \ldots, c_{n} \in \mathbb{C}(z), c_{n} \neq 0$, such that

$$
c_{0} f+\cdots+c_{n} \partial_{z}^{n}(f)=0 .
$$

Example: $\exp (z), \log (z), \ldots$

- We say that f is differentially algebraic if $\exists n \in \mathbb{N}$, $0 \neq P \in \mathbb{C}(z)\left[X_{0}, \ldots, X_{n}\right]$, such that

$$
P\left(f, \ldots, \partial_{z}^{\eta}(f)\right)=0 .
$$

- We say that f is differentially transcendental otherwise

Differential transcendence and difference equations

Some functions are differentially transcendental, for instance:

- $\Gamma(z)$;
- $f_{1}(z):=\sum_{n=0}^{\infty} \frac{(1-a)^{2}(1-a q)^{2} \ldots\left(1-a q^{n-1}\right)^{2}}{\left.(1-q)^{2}\left(1-q^{2}\right)^{2}\right)^{n}\left(1-q^{n}\right)^{2}} z^{2}$, where $q \in \mathbb{C}^{*}$ is not a root of unity, $a \notin q^{\mathbb{Z}}$ and $a^{2} \in q^{\mathbb{Z}}$;
- $f_{2}(z)=\sum_{n \geq 0} z^{2^{n}}$.

They are solutions of difference equations $\Gamma(z+1)=z \Gamma(z)$, $f_{2}\left(z^{2}\right)=f_{2}(z)-z$, and

$$
f_{1}\left(q^{2} z\right)-\frac{2 a z-2}{a^{2} z-1} f_{1}(q z)+\frac{z-1}{a^{2} z-1} f_{1}(z)=0 .
$$

On the other hand, there are differentially algebraic functions solutions of difference equations:

- $\exp (z)$, solution of $\exp (z+1)=e \exp (z)$;
- $\theta_{q}(z)=\sum_{n \in \mathbb{Z}} q^{-n(n-1) / 2} z^{n}$, solution of $\theta_{q}(q z)=z \theta_{q}(z)$;
- $\log (z)$, solution of $\log \left(z^{2}\right)=2 \log (z)$.

Let $y \in F$, solution of

$$
\begin{equation*}
a_{0} y+a_{1} \rho(y)+\cdots+\rho^{n}(y)=0, \quad a_{i} \in \mathbb{C}(z) \tag{E}
\end{equation*}
$$

Case S $F=\mathbb{C}\left(\left(z^{-1}\right)\right)$,
$\rho: y(z) \mapsto y(z+h), h \in \mathbb{C}^{*}$.
Case $Q \quad F=\mathbb{C}\left(\left(z^{1 / *}\right)\right)$,
$\rho: y(z) \mapsto y(q z), q \in \mathbb{C}^{*}$, not a root of unity.
Case $M F=\mathbb{C}\left(\left(z^{1 / *}\right)\right)$,
$\rho: y(z) \mapsto y\left(z^{p}\right), p \in \mathbb{N}_{\geq 2}$.

Holonomy and difference equations

Let $y \in F$, solution of

$$
\begin{equation*}
a_{0} y+a_{1} \rho(y)+\cdots+\rho^{n}(y)=0 \tag{E}
\end{equation*}
$$

Theorem

If y is holonomic, then $y \in \mathbb{C}(z)$.
\rightarrow Case S: Schäfke/Singer, Case Q Ramis, Case M, Bézivin
\rightarrow See also Bézivin/Gramain

Let $y \in F$, solution of

$$
\rho(y)=a y+b, \quad a, b \in \mathbb{C}(z) .
$$

Theorem

Either $y \in \mathbb{C}(z)$, either y is differentially transcendental.
\rightarrow Case S: Adamczewski/D/Hardouin, Case Q Ishizaki, Case M, Randé
\rightarrow See also Hölder, Hardouin/Singer, Moore, Nishioka, Nguyen...

Let $y \in F$, solution of

$$
\begin{equation*}
a_{0} y+a_{1} \rho(y)+\cdots+\rho^{n}(y)=0 \tag{E}
\end{equation*}
$$

Theorem

Assume that the difference Galois group of (E) contains $\mathrm{SL}_{n}(\mathbb{C})$. Either $y=0$, either y is differentially transcendental.
\rightarrow Case S: Arreche/Singer, Cases Q and M D/Hardouin/ Roques
\rightarrow See also Arreche/D/Roques and Arreche/Singer

Let $y \in F$, solution of

$$
\begin{equation*}
a_{0} y+a_{1} \rho(y)+\cdots+\rho^{n}(y)=0 \tag{E}
\end{equation*}
$$

Theorem (Adamczewski/D/Hardouin)
Either $y \in \mathbb{C}(z)$, either y is differentially transcendental.
(1) Difference Galois theory
(2) Proof in the $n=2$ case
(3) Proof in the general case

Difference Galois theory

Let $0 \neq y \in F$, solution of

$$
\begin{equation*}
a_{0} y+a_{1} \rho(y)+\cdots+\rho^{n}(y)=0 \tag{E}
\end{equation*}
$$

with

$$
a_{i} \in \mathbb{C}(z), \quad a_{0} \neq 0
$$

Case S $K=\mathbb{C}(z), F=\mathbb{C}\left(\left(z^{-1}\right)\right)$,
$\rho: y(z) \mapsto y(z+h), h \in \mathbb{C}^{*}$.
Case $Q \quad K=\mathbb{C}\left(z^{1 / *}\right), F=\mathbb{C}\left(\left(z^{1 / *}\right)\right)$,
$\rho: y(z) \mapsto y(q z), q \in \mathbb{C}^{*}$, not a root of unity.
Case $M K=\mathbb{C}\left(z^{1 / *}\right), F=\mathbb{C}\left(\left(z^{1 / *}\right)\right)$,
$\rho: y(z) \mapsto y\left(z^{p}\right), p \in \mathbb{N}_{\geq 2}$.

Let us see (E) as a system:

$$
\rho(Y)=A Y, \quad A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & \cdots & -a_{n-1}
\end{array}\right) \in \operatorname{GL}_{n}(\mathbb{C}(z)) .
$$

Proposition

There exists a unique ring extension $R \mid K$, such that

- $\exists U \in \mathrm{GL}_{n}(R)$ such that $\rho(U)=A U$.
- the first column of U is $\left(y, \ldots, \rho^{n-1}(y)\right)$;
- $R=K\left[U, \operatorname{det}(U)^{-1}\right]$;
- the only difference ideals of R are (0) and R.

Difference Galois group

Let

$$
G=\{\sigma \in \operatorname{Aut}(R \mid K) \mid \sigma \rho=\rho \sigma\}
$$

Theorem
The image of

$$
\begin{array}{lll}
G & \rightarrow & \mathrm{GL}_{n}(\mathbb{C}) \\
\sigma & \mapsto & U^{-1} \sigma(U),
\end{array}
$$

is an algebraic subgroup of $\mathrm{GL}_{n}(\mathbb{C})$.

A useful property

For $B, T \in \mathrm{GL}_{n}(K)$, define

$$
T[B]:=\rho(T) B T^{-1} .
$$

We have

$$
\rho(Y)=B Y \Leftrightarrow \rho(T Y)=T[B] T Y .
$$

Theorem (van der Put/Singer)

- G / G° is cyclic, where G° is the identity component of G;
- $\exists T \in \mathrm{GL}_{n}(K)$ such that $T[A] \in G(K)$.

Proof in the $n=2$ case

Assume $n=2$. Let $G \subset \mathrm{GL}_{2}(\mathbb{C})$ be the Galois group. Then, either

- G is conjugated to a subgroup of

$$
\left(\begin{array}{ll}
\star & \star \\
0 & \star
\end{array}\right),
$$

- G is conjugated to a subgroup of

$$
\left(\begin{array}{cc}
\star & 0 \\
0 & \star
\end{array}\right) \bigcup\left(\begin{array}{cc}
0 & \star \\
\star & 0
\end{array}\right),
$$

- G contains $\mathrm{SL}_{2}(\mathbb{C})$.

Assume that y is diff. alg. Then, $\exists T=\left(t_{i, j}\right) \in \mathrm{GL}_{2}(K)$ such that

$$
\rho(T U)=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) T U
$$

Let $\binom{v_{1}}{v_{2}}=T\binom{y}{\rho(y)}$ be the first column of $T U$. Then

- $v_{2}=t_{2,1} y+t_{2,2} \rho(y)$.
- $v_{2} \in F$ is diff. alg.
- $\rho\left(V_{2}\right)=c V_{2}$.
- Order one case $\Rightarrow v_{2} \in K$.
- Affine order one case $\Rightarrow y \in K$.

Case 2

Assume that y is diff. alg. Then, $\exists T=\left(t_{i, j}\right) \in \mathrm{GL}_{2}(K)$ such that

$$
\rho(T U)=\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right) T U .
$$

Let $\binom{v_{1}}{v_{2}}=T\binom{y}{\rho(y)}$ be the first column of $T U$. Then

- $v_{1} \in F$ is diff. alg.
- $v_{1}=t_{1,1} y+t_{1,2} \rho(y)$.
- $\rho^{2}\left(v_{1}\right)=b \rho(a) v_{1}$.
- Order one case with ρ^{2} implies $v_{1} \in K$.
- Affine order one case $\Rightarrow y \in K$.

Case 3

Assume that G contains $\mathrm{SL}_{2}(\mathbb{C})$.

By

- Arreche/Singer (Case S),
- D/Hardouin/Roques (Cases Q and M),
y is diff. tr.

Proof in the general case

The case $n=1$ is

- Adamczewski/D/Hardouin, (Case S);
- Ishizaki (Case Q);
- Randé (case M).

From now, we assume $n \geq 2$.

Irreducibility of G

Definition

We say that $G \subset \mathrm{GL}_{n}(\mathbb{C})$ is irreducible if it acts irreducibly on \mathbb{C}^{n}. We say that G is reducible otherwise.

Proposition

The following are equivalent:

- G is reducible.
- $\exists T \in \mathrm{GL}_{n}(K), 0<r<n$, such that

$$
T[A]=\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right), \quad B_{1} \in \mathrm{GL}_{r}(K)
$$

Imprimitivity of G

Definition

When G is irreducible, we say that G is imprimitive if $\exists r \geq 2$, and V_{1}, \ldots, V_{r}, some \mathbb{C}-vector spaces satisfying
(i) $\mathbb{C}^{n}=V_{1} \oplus \cdots \oplus V_{r}$.
(ii) $\forall g \in G$, the mapping $V_{i} \mapsto g\left(V_{i}\right)$ is a permutation of the set $\left\{V_{1}, \ldots, V_{r}\right\}$.
We say that G is primitive otherwise.

Lemma

If G is irreducible and connected then G is primitive.

Iteration and Galois group

For $\ell \geq 1$ let

$$
A_{[\ell]}=\rho^{\ell-1}(A) \times \cdots \times A .
$$

Note that

$$
\rho(Y)=A Y \Rightarrow \rho^{l}(Y)=A_{[\ell]} Y .
$$

Lemma

There exist $\ell \geq 1$ and a ring extension $R \mid K$, such that

- $\exists U \in \mathrm{GL}_{n}(R)$ such that $\rho^{\ell}(U)=A_{[\ell]} U$.
- the first column of U is $\left(y, \ldots, \rho^{n-1}(y)\right)$;
- $R=K\left[U, \operatorname{det}(U)^{-1}\right]$;
- the only ρ^{l} ideals of R are (0) and R.
- $G_{[\ell]}$, the Galois group of $\rho^{\ell}(Y)=A_{[\ell]} Y$ is connected.

Semi simple case

Lemma (Singer/Ulmer)

If $G \subset \operatorname{SL}_{n}(\mathbb{C})$ is irreducible and primitive, then G is semi simple.

Theorem (Arreche/Singer)

Assume that G is semi simple. Then, y is diff. tr.

Proof in the irreducible case

Let $\ell \geq 1$, such that $G_{[\ell]}$ is connected.

Proposition (Adamczewski/D/Hardouin)

If $G_{[\ell]}$ is irreducible, then y is differentially transcendental.
Sketch of proof.
$G_{[\ell]}$ is primitive. If $G_{[\ell]} \subset \operatorname{SL}_{n}(\mathbb{C})$ then it is semi simple.
If not, consider the system $\rho^{\ell}(Y)=\operatorname{det}\left(A_{[\emptyset]}\right)^{-1 / n} A_{[[]} Y$. Its Galois group is

- irreducible,
- primitive,
- inside $\mathrm{SL}_{n}(\mathbb{C})$.

It is then semi simple.
Semi simple implies y diff. tr.

Let us prove the result by an induction on n.
The case $n=1$ is already treated.

Fix $n \geq 2$ and assume the result is proved for order r equations with $r<n$.

Consider an order n equation. Let $\ell \geq 1$, such that $G_{[\ell]}$ is connected.

If $G_{[\ell]} \subset \operatorname{GL}_{n}(\mathbb{C})$ is irreducible, then y is diff. tr.

Sketch of proof in the reducible case $(1 / 3)$

Assume that $G_{[\ell]}$ is reducible. Assume that y is diff. alg. and let us prove that $y \in K$.
Let $T \in \operatorname{GL}_{n}(K), 0<r<n$ minimal, such that

$$
T\left[A_{[\ell]}\right]=\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right), \quad B_{1} \in \mathrm{GL}_{r}(K) .
$$

Then, $T U$ is solution of

$$
\rho^{\ell}(T U)=\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right) T U
$$

Let $\left(v_{1}, \ldots, v_{n}\right)^{\top}=T\left(y, \ldots, \rho^{n-1}(y)\right)^{\top} \in F^{n}$. Every v_{i} is diff alg.

Sketch of proof in the reducible case (2/3)

$$
\rho^{\ell}(T U)=\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right) T U
$$

Induction hypothesis $\Rightarrow v_{r+1}, \ldots, v_{n} \in K$.

Lemma

$r=1$.

Sketch of proof.

- We have $\rho\left(v_{1}, \ldots, v_{r}\right)^{\top}-B_{1}\left(v_{1}, \ldots, v_{r}\right)^{\top} \in K^{r}$.
- $v_{1}, \ldots, v_{r} \in F$ are diff. alg.
- Parametrized diff. Galois theory $\Rightarrow \exists\left(w_{1}, \ldots, w_{r}\right)^{\top}$ diff. alg. such that $\rho\left(w_{1}, \ldots, w_{r}\right)^{\top}=B_{1}\left(w_{1}, \ldots, w_{r}\right)^{\top}$.
- The Galois group of $\rho^{\ell}(Y)=B_{1} Y$ is irreducible and connected.
- Irreducible case $\Rightarrow r=1$.

Sketch of proof in the reducible case $(3 / 3)$

$$
\rho^{\ell}(T U)=\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right) T U .
$$

- Remind that $v_{2}, \ldots, v_{n} \in K$ and $B_{1} \in \mathbb{C}^{*}$.
- Then, $\rho^{\ell}\left(v_{1}\right)-B_{1} v_{1} \in K$.
- Affine order one case implies $v_{1} \in K$.
- Then, $T^{-1}\left(v_{1}, \ldots, v_{n}\right)^{\top}=\left(y, \ldots, \rho^{n-1}(y)\right)^{\top} \in K^{n}$.

