Differential transcendence and difference equations

Thomas Dreyfus ¹ Joint work with Boris Adamczewski ² and Charlotte Hardouin ³

¹CNRS, Strasbourg University, France

²Lyon 1 University, France

³Toulouse 3 University, France

Classification of numbers vs functions

$$\begin{array}{cccc} \mathbb{Q} & \longleftrightarrow & \mathbb{C}(z) \\ & & & & & \\ \hline \mathbb{Q} & \longleftrightarrow & & \hline \mathbb{C}(z) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\$$

Classification of functions

• We say that $f \in \overline{\mathbb{C}(z)}$ if $\exists 0 \neq P \in \mathbb{C}(z)[X]$ such that P(f) = 0.

Example: z1/2

• We say that *f* is holonomic if $\exists c_0, \ldots, c_n \in \mathbb{C}(z), c_n \neq 0$, such that

$$c_0f + \cdots + c_n\partial_z^n(f) = 0.$$

Example: exp(z), log(z), ...

• We say that *f* is differentially algebraic if $\exists n \in \mathbb{N}$, $0 \neq P \in \mathbb{C}(z)[X_0, \dots, X_n]$, such that

$$P(f,\ldots,\partial_z^n(f))=0.$$

Example: $\wp(z)$, some walks in the quarter plane

• We say that f is differentially transcendental otherwise

Example: $\Gamma(z)$, $\zeta(z)$

Some functions are differentially transcendental, for instance:

- Γ(z);
- $f_1(z) := \sum_{n=0}^{\infty} \frac{(1-a)^2(1-aq)^2 \cdots (1-aq^{n-1})^2}{(1-q)^2(1-q^2)^2 \cdots (1-q^n)^2} z^n$, where $q \in \mathbb{C}^*$ is not a root of unity, $a \notin q^{\mathbb{Z}}$ and $a^2 \in q^{\mathbb{Z}}$;

•
$$\mathfrak{f}_2(z) = \sum_{n\geq 0} z^{2^n}$$
.

They are solutions of difference equations $\Gamma(z + 1) = z\Gamma(z)$, $f_2(z^2) = f_2(z) - z$, and

$$\mathfrak{f}_1(q^2z) - rac{2az-2}{a^2z-1}\mathfrak{f}_1(qz) + rac{z-1}{a^2z-1}\mathfrak{f}_1(z) = 0$$

On the other hand, there are differentially algebraic functions solutions of difference equations:

- $\exp(z)$, solution of $\exp(z+1) = e \exp(z)$;
- $\theta_q(z) = \sum_{n \in \mathbb{Z}} q^{-n(n-1)/2} z^n$, solution of $\theta_q(qz) = z \theta_q(z)$;
- $\log(z)$, solution of $\log(z^2) = 2\log(z)$.

Difference framework

Let $y \in F$, solution of $a_0 y + a_1 \rho(y) + \cdots + \rho^n(y) = 0, \quad a_i \in \mathbb{C}(z).$ (E) Case $S \mid F = \mathbb{C}((z^{-1})),$ $\rho: y(z) \mapsto y(z+h), h \in \mathbb{C}^*.$ Case $Q \mid F = \mathbb{C}((\underline{z}^{1/*})),$ $\rho: \gamma(z) \mapsto \gamma(qz), q \in \mathbb{C}^*,$ not a root of unity. Case $M \mid F = \mathbb{C}((z^{1/*})),$ $\rho: \gamma(z) \mapsto \gamma(z^p), p \in \mathbb{N}_{\geq 2}.$

Holonomy and difference equations

Let $y \in F$, solution of

$$a_0 y + a_1 \rho(y) + \dots + \rho^n(y) = 0.$$
 (E)

Theorem

If y is holonomic, then $y \in \mathbb{C}(z)$.

→ Case S: Schäfke/Singer, Case Q Ramis, Case M, Bézivin

→ See also Bézivin/Gramain

Diff. alg. and order one difference equations

Let $y \in F$, solution of

$$\rho(\mathbf{y}) = \mathbf{a}\mathbf{y} + \mathbf{b}, \quad \mathbf{a}, \mathbf{b} \in \mathbb{C}(\mathbf{z}).$$

Theorem

Either $y \in \mathbb{C}(z)$ *, either* y *is differentially transcendental.*

→ Case S: Adamczewski/D/Hardouin, Case Q Ishizaki, Case M, Randé

 \rightarrow See also Hölder, Hardouin/Singer, Moore, Nishioka, Nguyen...

Differential algebraicity and big difference Galois group

Let $y \in F$, solution of

$$a_0y + a_1\rho(y) + \dots + \rho^n(y) = 0.$$
 (E)

Theorem

Assume that the difference Galois group of (E) contains $SL_n(\mathbb{C})$. Either y = 0, either y is differentially transcendental.

 \rightarrow Case S: Arreche/Singer, Cases Q and M D/Hardouin/ Roques

 \rightarrow See also Arreche/D/Roques and Arreche/Singer

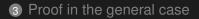
Let $y \in F$, solution of

$$a_0y + a_1\rho(y) + \dots + \rho^n(y) = 0.$$
 (E)

Theorem (Adamczewski/D/Hardouin) Either $y \in \mathbb{C}(z)$, either y is differentially transcendental.

Difference Galois theory

2 Proof in the n = 2 case



Difference Galois theory

Difference framework

Let $0 \neq y \in F$, solution of

$$\mathbf{a}_0 \mathbf{y} + \mathbf{a}_1 \rho(\mathbf{y}) + \dots + \rho^n(\mathbf{y}) = \mathbf{0}, \tag{E}$$

with

$$a_i \in \mathbb{C}(z), \quad a_0 \neq 0.$$

$$\begin{array}{|c|c|} \hline Case S & K = \mathbb{C}(z), F = \mathbb{C}((z^{-1})), \\ \rho : y(z) \mapsto y(z+h), h \in \mathbb{C}^*. \\ \hline \hline Case Q & K = \mathbb{C}(z^{1/*}), F = \mathbb{C}((z^{1/*})), \\ \rho : y(z) \mapsto y(qz), q \in \mathbb{C}^*, \text{ not a root of unity.} \\ \hline \hline Case M & K = \mathbb{C}(z^{1/*}), F = \mathbb{C}((z^{1/*})), \\ \rho : y(z) \mapsto y(z^p), p \in \mathbb{N}_{\geq 2}. \end{array}$$

Picard-Vessiot extension

Let us see (E) as a system:

$$\rho(Y) = AY, \quad A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & \cdots & -a_{n-1} \end{pmatrix} \in \mathrm{GL}_n(\mathbb{C}(z)).$$

Proposition

There exists a unique ring extension R|K, such that

- $\exists U \in \operatorname{GL}_n(R)$ such that $\rho(U) = AU$.
- the first column of U is (y,..., ρⁿ⁻¹(y));
- R = K[U, det(U)⁻¹];
- the only difference ideals of R are (0) and R.

Difference Galois group

Let

$$\boldsymbol{G} = \{ \boldsymbol{\sigma} \in \operatorname{Aut}(\boldsymbol{R}|\boldsymbol{K}) | \boldsymbol{\sigma} \boldsymbol{\rho} = \boldsymbol{\rho} \boldsymbol{\sigma} \}.$$

Theorem

The image of

$$egin{array}{rcl} G & o & \operatorname{GL}_n(\mathbb{C}) \ \sigma & \mapsto & U^{-1}\sigma(U), \end{array}$$

is an algebraic subgroup of $GL_n(\mathbb{C})$.

A useful property

For $B, T \in GL_n(K)$, define

$$T[B] := \rho(T)BT^{-1}.$$

We have

$$\rho(\mathbf{Y}) = \mathbf{B}\mathbf{Y} \Leftrightarrow \rho(\mathbf{T}\mathbf{Y}) = \mathbf{T}[\mathbf{B}]\mathbf{T}\mathbf{Y}.$$

Theorem (van der Put/Singer)

- G/G° is cyclic, where G° is the identity component of G;
- $\exists T \in GL_n(K)$ such that $T[A] \in G(K)$.

Proof in the n = 2 case

Assume n = 2. Let $G \subset GL_2(\mathbb{C})$ be the Galois group. Then, either

• G is conjugated to a subgroup of

$$\begin{pmatrix} \star & \star \\ 0 & \star \end{pmatrix},$$

G is conjugated to a subgroup of

$$\begin{pmatrix} \star & 0 \\ 0 & \star \end{pmatrix} \bigcup \begin{pmatrix} 0 & \star \\ \star & 0 \end{pmatrix},$$

• *G* contains $SL_2(\mathbb{C})$.

Assume that *y* is diff. alg. Then, $\exists T = (t_{i,j}) \in GL_2(K)$ such that

$$\rho(TU) = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} TU.$$

Let
$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = T \begin{pmatrix} y \\ \rho(y) \end{pmatrix}$$
 be the first column of *TU*. Then

- $v_2 = t_{2,1}y + t_{2,2}\rho(y)$.
- $v_2 \in F$ is diff. alg.
- $\rho(\mathbf{v}_2) = \mathbf{c}\mathbf{v}_2.$
- Order one case $\Rightarrow v_2 \in K$.
- Affine order one case $\Rightarrow y \in K$.

Assume that *y* is diff. alg. Then, $\exists T = (t_{i,j}) \in GL_2(K)$ such that

$$\rho(TU) = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} TU.$$

Let
$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = T \begin{pmatrix} y \\ \rho(y) \end{pmatrix}$$
 be the first column of *TU*. Then

• $v_1 \in F$ is diff. alg.

•
$$v_1 = t_{1,1}y + t_{1,2}\rho(y)$$
.

- $\rho^2(v_1) = b\rho(a)v_1$.
- Order one case with ρ^2 implies $v_1 \in K$.
- Affine order one case $\Rightarrow y \in K$.

Assume that G contains $\mathrm{SL}_2(\mathbb{C})$. By

- Arreche/Singer (Case S),
- D/Hardouin/Roques (Cases Q and M),
- y is diff. tr.

Proof in the general case

The case n = 1 is

- Adamczewski/D/Hardouin, (Case S);
- Ishizaki (Case Q);
- Randé (case M).

From now, we assume $n \ge 2$.

Irreducibility of G

Definition

We say that $G \subset GL_n(\mathbb{C})$ is irreducible if it acts irreducibly on \mathbb{C}^n . We say that G is reducible otherwise.

Proposition

The following are equivalent:

- G is reducible.
- $\exists T \in GL_n(K)$, 0 < r < n, such that

$$T[A] = egin{pmatrix} B_1 & B_2 \ 0 & B_3 \end{pmatrix}, \quad B_1 \in \mathrm{GL}_r(K).$$

Imprimitivity of G

Definition

When G is irreducible, we say that G is imprimitive if $\exists r \geq 2$, and V_1, \ldots, V_r , some \mathbb{C} -vector spaces satisfying

(i)
$$\mathbb{C}^n = V_1 \oplus \cdots \oplus V_r$$
.

(ii) $\forall g \in G$, the mapping $V_i \mapsto g(V_i)$ is a permutation of the set $\{V_1, \ldots, V_r\}$.

We say that G is primitive otherwise.

Lemma

If G is irreducible and connected then G is primitive.

Iteration and Galois group

For $\ell \geq 1$ let

$$A_{[\ell]} = \rho^{\ell-1}(A) \times \cdots \times A.$$

Note that

$$\rho(\mathbf{Y}) = \mathbf{A}\mathbf{Y} \Rightarrow \rho^{\ell}(\mathbf{Y}) = \mathbf{A}_{[\ell]}\mathbf{Y}.$$

Lemma

There exist $\ell \geq 1$ and a ring extension R|K, such that

- $\exists U \in \operatorname{GL}_n(R)$ such that $\rho^{\ell}(U) = A_{[\ell]}U$.
- the first column of U is (y,..., ρⁿ⁻¹(y));
- $R = K[U, \det(U)^{-1}];$
- the only ρ^ℓ ideals of R are (0) and R.
- $G_{[\ell]}$, the Galois group of $ho^\ell(\mathsf{Y}) = \mathsf{A}_{[\ell]}\mathsf{Y}$ is connected.

Lemma (Singer/Ulmer)

If $G \subset SL_n(\mathbb{C})$ is irreducible and primitive, then G is semi simple.

Theorem (Arreche/Singer)

Assume that G is semi simple. Then, y is diff. tr.

Proof in the irreducible case

Let $\ell \geq 1$, such that $G_{[\ell]}$ is connected.

Proposition (Adamczewski/D/Hardouin)

If $G_{[\ell]}$ is irreducible, then y is differentially transcendental.

Sketch of proof.

 $G_{[\ell]}$ is primitive. If $G_{[\ell]} \subset SL_n(\mathbb{C})$ then it is semi simple. If not, consider the system $\rho^{\ell}(Y) = \det(A_{[\ell]})^{-1/n}A_{[\ell]}Y$. Its Galois group is

- irreducible,
- primitive,
- inside $SL_n(\mathbb{C})$.

It is then semi simple. Semi simple implies *y* diff. tr. Let us prove the result by an induction on *n*.

The case n = 1 is already treated.

Fix $n \ge 2$ and assume the result is proved for order r equations with r < n.

Consider an order *n* equation. Let $\ell \geq 1$, such that $G_{[\ell]}$ is connected.

If $G_{[\ell]} \subset \operatorname{GL}_n(\mathbb{C})$ is irreducible, then *y* is diff. tr.

Sketch of proof in the reducible case (1/3)

Assume that $G_{[\ell]}$ is reducible. Assume that *y* is diff. alg. and let us prove that $y \in K$. Let $T \in GL_n(K)$, 0 < r < n minimal, such that

$$T[A_{[\ell]}] = egin{pmatrix} B_1 & B_2 \ 0 & B_3 \end{pmatrix}, \quad B_1 \in \mathrm{GL}_r(K).$$

Then, TU is solution of

$$\rho^{\ell}(TU) = \begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix} TU.$$

Let $(v_1, \ldots, v_n)^{\top} = T(y, \ldots, \rho^{n-1}(y))^{\top} \in F^n$. Every v_i is diff alg.

Sketch of proof in the reducible case (2/3)

$$ho^\ell(TU) = egin{pmatrix} B_1 & B_2 \ 0 & B_3 \end{pmatrix} TU.$$

Induction hypothesis $\Rightarrow v_{r+1}, \ldots, v_n \in K$.

Lemma

r = 1.

Sketch of proof.

- We have $\rho(\mathbf{v}_1,\ldots,\mathbf{v}_r)^{\top} B_1(\mathbf{v}_1,\ldots,\mathbf{v}_r)^{\top} \in K^r$.
- $v_1, \ldots, v_r \in F$ are diff. alg.
- Parametrized diff. Galois theory $\Rightarrow \exists (w_1, \ldots, w_r)^\top$ diff. alg. such that $\rho(w_1, \ldots, w_r)^\top = B_1(w_1, \ldots, w_r)^\top$.
- The Galois group of $\rho^{\ell}(Y) = B_1 Y$ is irreducible and connected.
- Irreducible case \Rightarrow *r* = 1.

Sketch of proof in the reducible case (3/3)

$$ho^\ell(TU) = egin{pmatrix} B_1 & B_2 \ 0 & B_3 \end{pmatrix} TU.$$

- Remind that $v_2, \ldots, v_n \in K$ and $B_1 \in \mathbb{C}^*$.
- Then, $\rho^{\ell}(v_1) B_1 v_1 \in K$.
- Affine order one case implies $v_1 \in K$.
- Then, $T^{-1}(v_1, ..., v_n)^{\top} = (y, ..., \rho^{n-1}(y))^{\top} \in K^n$.

