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A planar system with singular point at the origin:

ẋ =ax + by +
∞∑

p+q=2

αpqx
pyq,

ẏ =cx + dy +
∞∑

p+q=2

βpqx
pyq.

(1)

The linear approximation:

ẋ =ax + by ,

ẏ =cx + dy
(2)

A =

(
a b
c d

)
, τ = a + d , ∆ = ad − bc

Topological picture of trajectories near the origin of (1) and
(2) is equivalent,

except of the case τ = 0, ∆ > 0 (⇔ the eigenvalues of A are
±iω).
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ẏ =cx + dy
(2)

A =

(
a b
c d

)
, τ = a + d , ∆ = ad − bc

Topological picture of trajectories near the origin of (1) and
(2) is equivalent,

except of the case τ = 0, ∆ > 0 (⇔ the eigenvalues of A are
±iω).

Valery Romanovski Integrability and limit cycles in polynomial systems of ODEs



A planar system with singular point at the origin:
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τ = 0, ∆ > 0 (⇔ the eigenvalues of A are ±iω) - a center for
linear system;
in the case of nonlinear system: either a center or a focus.
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A center ⇐⇒ all solutions near the origin are periodic.

A focus ⇐⇒ all solutions near the origin are spirals.

Poincaré center problem

How to distinguish if the system

ẋ = ωy +
∞∑

p+q=2

αpqx
pyq,

ẏ = −ωx +
∞∑

p+q=2

βpqx
pyq

has a center or a focus at the origin?
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Limit cycles
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Hilbert’s 16th problem

ẋ = Pn(x , y), ẏ = Qn(x , y), (A)

Pn(x , y), Qn(x , y), are polynomials of degree n.
Let h(Pn,Qn) be the number of limit cycles of system (A) and let
H(n) = sup h(Pn,Qn) .
The question of the second part of the 16th Hilbert’s problem:

find a bound for H(n) as a function of n.

The problem is still unresolved even for n = 2.
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n = 2

I. Petrovskii, E. Landis, On the number of limit cycles of the
equation dy/dx = P(x,y)/Q(x,y), where P and Q are
polynomials of 2nd degree (Russian), Mat. Sb. N.S. 37(79)
(1955), 209-250

I. Petrovskii, E. Landis, On the number of limit cycles of the
equation dy/dx = P(x,y)/Q(x,y), where P and Q are
polynomials (Russian), Mat. Sb. N.S. 85 (1957), 149-168

Song Ling Shi, A concrete example of the existence of four limit
cycles for plane quadratic systems, Sci. Sinica 23 (1980), 153-158
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A simpler problem: is H(n) finite? Unresolved.

An even simpler problem: is h(Pn,Qn, a
∗, b∗) finite?

H. Dulac, Sur les cycles limite, Bull. Soc. Math. France 51
(1923), 45-188

Around 1980 Yu. Ilyashenko found a mistake in Dulac’s proof.
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Poincaré compactification

Valery Romanovski Integrability and limit cycles in polynomial systems of ODEs



Separatrix cycles:
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Dulac’s mistake

A germ of a map f : (R+, 0)→ (R+, 0) is a semi-regular, if it is
smooth in a neighborhood of 0 and admits an asymptotic
expansion of the form

f̂ (x) = cxν0 +
∑
j

Pj(lnx)xνj ,

where c > 0, 0 < νj →∞, j > 0, and Pj are real polynomials.

f̂ is an asymptotic expansion of f , if ∀ν > 0 ∃ a partial sum of f̂ ,
which approximates f f with accuracy better than xν , when x → 0.

Dulac’s theorem

For any polycycle of an analytic vector field, a cross-section with
the vertex zero on the polycycle may be so chosen that the
corresponding Poincaré map will be flat, inverse to flat, or
semiregular.
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Dulac’s lemma

Let a semiregular map have an infinite number of fixed points.
Then f (x) ≡ x .

Counterexample

f (x) = x + (sin
1

x
)e−

1
x
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Chicone and Shafer (1983) proved that for n = 2 a fixed
system (A) has only finite number of limit cycles in any
bounded region of the phase plane.

Bamòn (1986) and V. R (1986) proved that h(P2,Q2, a
∗, b∗)

is finite.

Il’yashenko (1991) and Ecalle (1992): h(Pn,Qn, a
∗, b∗) is

finite for any n.
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The center problem and the local 16th Hilbert problem

Poincaré return map:

u̇ = −v +
n∑

i+j=2

αiju
iv j , v̇ = u +

n∑
i+j=2

βiju
iv j . (3)

P(ρ) = ρ+ η3(αij , βij)ρ
3 + η4(αij , βij)ρ

4 + . . . .

Center: η3 = η4 = η5 = · · · = 0.
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P(ρ) = ρ+ η3(αij , βij)ρ
3 + η4(αij , βij)ρ

4 + . . . .

Center: η3 = η4 = η5 = · · · = 0.

Poincaré center problem

Find all systems in the family

u̇ = −v +
n∑

i+j=2

αiju
iv j , v̇ = u +

n∑
i+j=2

βiju
iv j ,

which have a center at the origin.

Bautin ideal: B = 〈η3, η4, . . .〉 ⊂ R[αij , βij ].

Algebraic counterpart

Find the variety V(B) of the Bautin ideal B B = 〈η3, η4, η5 . . .〉.

V(B) = {(αij , βij) ∈ E | η3(αij , βij) = η4(αij , βij) = · · · = 0}

• V(B) is called the center variety.
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Cyclicity and Bautin’s theorem

u̇ = −v +
n∑

j+l=2

αjlu
jv l , v̇ = u +

n∑
j+l=2

βjlu
jv l (4)

Poincare map:

P(ρ) = ρ+η2(αij , βij)ρ
2 +η3(αij , βij)ρ

3 + · · ·+ηk(αij , βij)ρ
k + . . . .

Let B = 〈η3, η4, . . .〉 ⊂ R[αij , βij ] be the ideal generated by all
focus quantities ηi . There is k such that

B = 〈ηu1 , ηu2 , . . . , ηuk 〉.
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The Bautin ideal and Bautin’s theorem

Then for any s

ηs = ηu1θ
(s)
1 + ηu2θ

(s)
2 + · · ·+ ηukθ

(k)
k ,

P(ρ)− ρ = ηu1(1 + µ1ρ+ . . . )ρu1 + · · ·+ ηuk (1 + µkρ+ . . . )ρuk .

Bautin’s Theorem

If B = 〈ηu1 , ηu2 , . . . , ηuk 〉 then the cyclicity of system (4) (i.e. the
maximal number of limit cycles which appear from the origin after
small perturbations) is less or equal to k .

Proof. Bautin N.N. Mat. Sb. (1952) v.30, 181-196 (Russian);
Trans. Amer. Math. Soc. (1954) v.100
Roussarie R. Bifurcations of planar vector fields and Hilbert’s 16th
problem (1998), Birkhauser.
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The cyclicity problem

Find an upper bound for the maximal number of limit cycles in a
neighborhood of a center or a focus

By Bautin’s theorem:

Algebraic counterpart

Find a basis for the Bautin ideal 〈η3, η4, η5, . . .〉 generated by all
coefficients of the Poincaré map
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A basis of an ideal and its zero set

Radical of an ideal I is the set of all polynomials f such that some
positive integer ` f ` ∈ I .

Strong Hilbert Nullstellensatz

Let f ∈ C[x1, . . . , xm] and let I be an ideal of C[x1, . . . , xm]. Then
f vanishes on the variety of I if and only f belongs to the radical
of I .

Corollary

If polynomials f1, . . . , fs from an ideal I define the variety of I ,
V(I ) = V(f1, . . . , fs), and the ideal I is a radical ideal (that is,
I =
√
I ), then I = 〈f1, . . . , fs〉.

Holds only over C!
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Complexification

ẋ = i(x −
n−1∑

p+q=1

apqx
p+1yq), ẏ = −i(y −

n−1∑
p+q=1

bqpx
qyp+1) (5)

The change of time dτ = idt transforms (5) to the system

ẋ = (x −
n−1∑

p+q=1

apqx
p+1yq), ẏ = −(y −

n−1∑
p+q=1

bqpx
qyp+1). (6)
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Poincaré-Lyapunov Theorem

The system

du

dt
= −v +

n∑
i+j=2

αiju
iv j ,

dv

dt
= u +

n∑
i+j=2

βiju
iv j (7)

has a center at the origin if and only if it admits a first integral of
the form

Φ = u2 + v2 +
∑

k+l≥2
φklu

kv l .
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Definition of a center for complex systems

System

ẋ = (x−
n−1∑

p+q=1

apqx
p+1yq) = P, ẏ = −(y−

n−1∑
p+q=1

bqpx
qyp+1) = Q,

(8)
has a center at the origin if it admits a first integral of the form

Φ(x , y ; a10, b10, . . .) = xy +
∞∑
s=3

s∑
j=0

vj ,s−jx
jy s−j
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For the complex system

ẋ = (x−
n−1∑

p+q=1

apqx
p+1yq) = P, ẏ = −(y−

n−1∑
p+q=1

bqpx
qyp+1) = Q,

one looks for a function

Φ(x , y ; a10, b10, . . .) = xy +
∞∑
s=3

s∑
j=0

vj ,s−jx
jy s−j

such that

∂Φ

∂x
P +

∂Φ

∂y
Q = g11(xy)2 + g22(xy)3 + · · · , (9)

and g11, g22, . . . are polynomials in apq, bqp. These polynomials are
called focus quantities.

The Bautin ideal

The ideal B = 〈g11, g22, . . . 〉 generated by the focus quantities is
called the Bautin ideal.
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Center Problem

Find the variety V(B) of the Bautin ideal B = 〈g11, g22, g33 . . .〉.

Definition

The variety of the Bautin ideal V(B) is called the center variety of
the system.

By the Hilbert Basis Theorem there is an integer m that
B = 〈g11, . . . , gmm〉, however it is a difficult problem to find such
m. A practical approach is as follows.
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Compute polynomials gss until the chain of varieties (considering as
complex varieties) V (B1) ⊇ V (B2) ⊇ V (B3) ⊇ . . . stabilizes (here
Bk = 〈g11, . . . , gkk〉), that is, until we find k0 such that
V (Bk0) = V (Bk0+1).

To check that two varieties are equal we use

Radical Membership Test

I = 〈f1, . . . , fs〉 ∈ k[x1, . . . , xn], f ∈ k[x1, . . . , xn].
f ≡ 0 on V (I )⇐⇒ Groebner basis of the ideal I = 〈f1, . . . , fs , 1− f 〉 is
{1}.

Show that V (Bk0) = V (B), that is, that each systems from
V (Bk0) admits a first integral of the form (9).
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The center problem is solved for:
• quadratic system: ẋ = x + P2(x , y), ẏ = −y + Q2(x , y)
by Dulac (1908) (by Kapteyn (1912) for real systems)
• the linear center perturbed by 3rd degree homogeneous
polynomials:
ẋ = x + P3(x , y), ẏ = −y + Q3(x , y)
by Sadovski (1974) (by Malkin (1964) for real systems)
• for some particular subfamilies of the cubic system
ẋ = x + P2(x , y) + P3(x , y), ẏ = −y + Q2(x , y) + Q3(x , y)
• for Lotka-Volterra quartic systems with homogeneous
nonlinearities
ẋ = x + xP3(x , y), ẏ = −y + yQ3(x , y)
by B. Ferčec, J. Giné, Y. Liu and V. R. (2013)
• for Lotka-Volterra quintic systems with homogeneous
nonlinearities
ẋ = x + xP4(x , y), ẏ = −y + yQ4(x , y)
by J. Giné and V. R. (2010)
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The center variety of the quadratic system

ẋ = x−a10x2−a01xy−a−12y2, ẏ = −(y−b10xy−b01y2−b2,−1x2).
(10)

Theorem (H. Dulac 1908, C. Christopher & C. Rouseeau, 2001)

The variety of the Bautin ideal of system (10) coincides with the
variety of the ideal B3 = 〈g11, g22, g33〉 and consists of four
irreducible components:
1) V(J1), where J1 = 〈2a10 − b10, 2b01 − a01〉,
2) V(J2), where J2 = 〈a01, b10〉,
3) V(J3), where J3 = 〈2a01 + b01, a10 + 2b10, a01b10 − a−12b2,−1〉,
4) V(J4) = 〈f1, f2, f3, f4, f5〉, where
f1 = a301b2,−1 − a−12b

3
10, f2 = a10a01 − b01b10,

f3 = a310a−12 − b2,−1b
3
01,

f4 = a10a−12b
2
10 − a201b2,−1b01, f5 = a210a−12b10 − a01b2,−1b

2
01.
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Proof. Computing the first three focus quantities we have
g11 = a10a01 − b10b01,
g22 = a10a−12b

2
10 − a201b01b2,−1 − 2

3 (a−12b
3
10 − a301b2,−1) −

2
3 (a01b

2
01b2,−1 − a210a−12b10),

g33 = − 5
8 (−a01 a−12b410+2 a−12b01b

4
10+ a401b10 b2,−1−2 a301 b01 b10 b2,−1−

2 a10 a
2
−12 b

2
10 b2,−1 +a2−12 b

3
10 b2,−1−a301 a−12 b

2
2,−1 +2 a201 a−12 b01 b

2
2,−1).

Valery Romanovski Integrability and limit cycles in polynomial systems of ODEs



Using the radical membership test we see that

g22 6∈
√
〈g11〉, g33 6∈

√
〈g11, g22〉, g44, g55, g66 ∈

√
〈g11, g22, g33〉,

i.e., V(B1) ⊃ V(B3) ⊃ V(B3) = V(B4) = V(B5). We expect that

V(B3) = V(B). (11)

The inclusion V(B) ⊆ V(B3) is obvious, therefore in order to check
that (11) indeed holds we only have to prove that

V(B3) ⊆ V(B). (12)

To do so, we first look for a decomposition of the variety V(B3).
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SINGULAR /

A Computer Algebra System for Polynomial Computations / version 2-0-6

0<

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ August 2004

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

LIB "primdec.lib";

ring r= 0,(a10,a01,a12,b21,b10,b01),lp;

poly g11=a01*a10 - b01*b10;

poly g22=...

poly g33=...

ideal i=g11,g22,g33;

minAssGTZ(i);
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[1]:

_[1]=a01^3*b21-a12*b10^3

_[2]=a10*a12*b10^2-a01^2*b21*b01

_[3]=a10*a01-b10*b01

_[4]=a10^2*a12*b10-a01*b21*b01^2

_[5]=a10^3*a12-b21*b01^3

[2]:

_[1]=b10

_[2]=a01

[3]:

_[1]=a01-2*b01

_[2]=2*a10-b10

[4]:

_[1]=2*a12*b21+b10*b01

_[2]=2*a01+b01

_[3]=a10+2*b10
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To verify that (12) holds there remains to show that every system
(10) with coefficients from one of the sets
V(J1),V(J2),V(J3),V(J4) has a center at the origin, that is, there
is a first integral Ψ(x , y) = xy + h.o.t.
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Systems corresponding to the points of V(J1) are Hamiltonian with
the Hamiltonian

H = − (xy − a−12
3

y3 − b2,−1
3

x3 − a10x
2y − b01xy

2)

and, therefore, have centers at the origin (since D(H) ≡ 0).
To show that for the systems corresponding to the components
V(J2) and V(J3) the origin is a center we use the Darboux method.
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Darboux integral

ẋ = P(x , y), ẏ = Q(x , y), x , y ∈ C P,Q are polynomials.
(13)

The polynomial f (x , y) ∈ C[x , y ] defines an algebraic invariant
curve f (x , y) = 0 of system (13) if there exists a polynomial
k(x , y) ∈ C[x , y ] such that

D(f ) :=
∂f

∂x
P +

∂f

∂y
Q = kf . (14)

The polynomial k(x , y) is called a cofactor of f .
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Suppose that the curves defined by

f1 = 0, . . . , fs = 0

are invariant algebraic curves of system (13) with the cofactors
k1, . . . , ks . If

s∑
j=1

αjkj = 0 , (15)

then H = f α1
1 · · · f αs

s is a (Darboux) first integral of the system
(13).
Systems from V(J2) and V(J3) admit Darboux integrals.
Consider the variety V(J3). In this case the system is

ẋ = x − a10x
2 +

b01
2

xy − a10b01
4b2,−1

y2,

− ẏ = (y − b01y
2 +

a10
2

xy − b2,−1x
2).

(16)
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f =
∑n

i+j=0 cijx
iy j , k =

∑m−1
i+j=0 dijx

iy j . (m is the degree of
the system; in our case m = 1). To find a bound for n is the
Poincaré problem (unresolved).

Equal the coefficients of the same terms in D(f ) = kf .

Solve the obtained system of polynomial equations for
unknown variables cij , dij .
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`1 = 1 + 2 b10 x − a01 b2,−1 x
2 + 2 a01 y + 2 a01 b10 x y −

a01 b
2
10

b2,−1
y2,

`2 = (2 b10 b
2
2,−1+6 b210 b

2
2,−1 x+3 b10

3 b22,−1 x
2−3 a01 b10 b

3
2,−1 x

2−a01 b210 b32,−1 x3+a201 b
4
2,−1 x

3+

6 a01 b10 b
2
2,−1 y−3 b410 b2,−1 x y+6 a01 b

2
10 b

2
2,−1 x y−3 a201 b

3
2,−1 x y+3 a01 b

3
10 b

2
2,−1 x

2 y−
3 a201 b10 b

3
2,−1x

2 y−3 a01 b
3
10 b2,−1 y

2+3 a201 b10 b
2
2,−1 y

2−3 a01 b
4
10 b2,−1 x y

2+3 a201 b
2
10 b

2
2,−1 x y

2+

a01 b
5
10 y

3 − a201 b
3
10 b2,−1 y

3)/(2 b10 b
2
2,−1)

with the cofactors k1 = 2 (b10 x − a01 y) and k2 = 3 (b10 x − a01 y) .
The equation

α1k1 + α2k2 = 0

has a solution α1 = −3, α2 = 2, =⇒

Ψ = `−31 `22 ≡ c .

Thus, every system from V(J3) has a center at the origin.
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Systems from V(J4) are time-reversible

dz

dt
= F (z) (z ∈ Ω), (17)

Ω is a manifold.

Definition

A (time-)reversible symmetry of (17) is an involution R : Ω 7→ Ω,
such that

R∗XF = −XF ◦ R. (18)

u̇ = v + vf (u, v2), v̇ = −u + g(u, v2), (19)

u → u, v → −v , t → −t

leaves the system unchanged ⇒ the u–axis is a line of symmetry
for the orbits ⇒ no trajectory in a neighbourhood of (0, 0) can be
a spiral ⇒ the origin is a center.
Here R : u 7→ u, v 7→ −v .
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ẋ = x −
∑

apqx
p+1yq = P(x , y),

ẏ = −y +
∑

bqpx
qyp+1 = Q(x , y),

(20)

The condition of time-reversibility

γQ(γy , x/γ) = −P(x , y), γQ(x , y) = −P(γy ,x /γ) .

=⇒ (20) is time–reversible if and only if

bqp = γp−qapq, apq = bqpγ
q−p. (21)

m

apkqk = tk , bqkpk = γpk−qk tk (22)

for k = 1, . . . , `. (22) define a surface in the affine space
C3`+1 = (ap1q1 , . . . , ap`q` , bq`p` , . . . , bq1p1 , t1, . . . , t`, γ).

The set of all time-reversible systems is the projection of this
surface onto C2`).

To find this set we have to eliminate tk and γ from (22).
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For an ideal I ⊂ k[x1, . . . , xn] the `–elimination ideal of I is the
ideal I` = I ∩ k[x`+1, . . . , xn].

Elimination Theorem

Fix the lexicographic term order on the ring k[x1, . . . , xn] with
x1 > x2 > · · · > xn and let G be a Gröbner basis for an idealI of
k[x1, . . . , xn] with respect to this order. Then for every `,
0 ≤ ` ≤ n − 1, the set G` := G ∩ k[x`+1, . . . , xn] is a Gröbner basis
for the `–th elimination ideal I`.

V(I`) is the smallest affine variety containing π`(V ) ⊂ Cn−`

(V(I`) is the Zariski closure of π`(V )).
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H = 〈apkqk − tk , bqkpk − γ
pk−qk tk | k = 1, . . . , `〉, (23)

Let R be the set of all time-reversible systems in the family (20).

Theorem

(V. R., Open Syst. Inf. Dyn., 2008) 1)
R = V(IR) where IR = C[a, b] ∩ H, that is, the Zariski closure
of the set R of all time-reversible systems is the variety of the ideal
IR .
2) Every system (20) from R admits an analytic first integral of
the form Ψ = xy + . . . .

For the quadratic system the elimination gives exactly the ideal J4
=⇒
each system from V(J4) also has a center at the origin.
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Mechanisms for integrability

Darboux integrability

Hamiltonian systems

Time-reversibility

Blow up to a node

Formal series

Monodromy maps

Hiden symmetries

Open problem:
What is the complete list of mechanisms for
integrability?
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The cyclicity of the quadratic system

Generalized Bautin’s theorem (V. R. & D. Shafer, 2009)

If the ideal B of all focus quantities of system

ẋ = (x −
n−1∑

p+q=1

apqx
p+1yq), ẏ = −(y −

n−1∑
p+q=1

bqpx
qyp+1)

is generated by the m first focus quantities,
B = 〈g11, g22, . . . , gmm〉, then at most m limit cycles bifurcate
from the origin of the corresponding real system

u̇ = λu − v +
n∑

j+l=2

αjlu
jv l , v̇ = u + λv +

n∑
j+l=2

βjlu
jv l ,

that is the cyclicity of the system is less or equal to m.
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The problem has been solved for:

The quadratic system ( ẋ = Pn, ẏ = Qn, n = 2) - Bautin
(1952) (Żola̧dek (1994), Yakovenko (1995), Françoise and
Yomdin (1997), Han, Zhang & Zhang (2007)).

The system with homogeneous cubic nonlinearities - Sibirsky
(1965) (Żo la̧dek (1994))

In both cases the analysis is relatively simple because the Bautin
ideal is a radical ideal.

Bautin’s theorem for the quadratic system

The cyclicity of the origin of system

u̇ = λu−v+α20u
2+α11uv+α02v

2, v̇ = u+λv+β20u
2+β11uv+β02v

2

equals three.
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Proof. (V. R., 2007) We have for all k

gkk |V(B3) ≡ 0 (24)

where B3 = 〈g11, g22, g33〉.
Hence, if B3 is a radical ideal then (24) and Hilbert Nullstellensatz
yield that gkk ∈ B3. Thus, to prove that an upper bound for the
cyclicity is equal to three it is sufficient to show that B3 is a radical
ideal.
With help of Singular we check that

std(radical(B3)) = std(B3). (25)

Hence, B3 = B. This completes the proof.
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The cyclicity problem can be ”easily” solved if the Bautin ideal is
radical.

It happens very seldom that the Bautin ideal is radical.

An approach which works for some systems with non-radical
Bautin ideal:

- V. Levandovskyy, V. R. , D. S. Shafer, The cyclicity of a
cubic system with non-radical Bautin ideal, J. Differential
Equations, 246 (2009) 1274-1287.
- V. Levandovskyy, G. Pfister and V. R. Evaluating cyclicity of
cubic systems with algorithms of computational algebra,
Communications in Pure and Applied Analysis, 11 (2012)
2023 - 2035.
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Another point of view at the center problem

ẋ = (x −
n−1∑
i+j=1

aijx
i+1y j) = P, ẏ = −(y −

n−1∑
i+j=1

bjix
jy i+1) = Q, (26)

Φ(x , y ; a10, b10, . . .) = xy +
∞∑
s=3

s∑
k=0

vk,s−kx
ky s−k

W =
∑

W(ν1,ν2,...,ν2l )a
ν1
10a

ν2
01 . . . a

ν`
p`,q`b

ν`+1
q`,p` . . . b

ν2`l−1

10 bν2`01 (27)

be a formal series with W (0̄) = 1. Denote |a| =
∑

aij , |b| =
∑

bij ,

A(W ) =
∑ ∂W

∂aij
aij(i−j−i |a|+j |b|)+

∑ ∂W

∂bij
bij(i−j−i |a|+j |b|). (28)

Theorem

System (26) has a center at the origin for all values of the parameters
akn, bnk if and only if there is a formal series (27) satisfying the equation

A(W ) = W (|a| − |b|). (29)
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There is a ring P of some functions of a, b such that the following
diagram is commutative

P[[x , y ]]
π−→ P

D ↓ ↓ A
P[[x , y ]]

π−→ P,
(30)

where π is an isomorphism defined by

π :
∑

cα,β(a, b)xαyβ −→
∑

cα,β(a, b), (31)

and D(Φ) is the operator

D(Φ) :=
∂Φ

∂x
P +

∂Φ

∂y
Q.
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If we consider a system which has a Darboux integral

f α1
1 f α2

2 . . . f αs
s

then the exponents αi are, generally speaking, functions of the
coefficients aij , bji of our system. Therefore, noting that for wi of
the form wi = 1 + h.o.t the property A(wi ) = kiwi yields

A(logwi ) = ki ,

we see that an analog of the equations for the cofactors in the
Darboux method is the equation

s∑
i=1

αiki +
s∑

i=1

A(αi ) log(wi ) = 0 (32)

(if we look for a first integral of the form 1 +
∑∞

i=1 hi (x , y) with
hi (x , y) being homogeneous polynomials of the degree i) or

s∑
i=1

αiki +
s∑

i=1

A(αi ) log(wi ) = |a| − |b| (33)

(if we look for a Lyapunov first integral Φ = xy + h.o.t.).
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Quadratic system

A(W ) := a01(|b|−1)
∂W

∂a01
+ a10(1−|a|) ∂W

∂a10
+a−12(|a|+2|b|−3)

∂W

∂a−12
+

b01(|b| − 1)
∂W

∂b01
+ b10(1− |a|) ∂W

∂b10
+ b2,−1(−2|a| − |b|+ 3)

∂W

∂b2,−1

|a| = a10 + a01 + a−12, |b| = b01 + b10 + b2,−1.

Hamiltonian system: V(J1), where J1 = 〈2a10 − b10, 2b01 − a01〉 ⇒
a01 = 2b01, b10 = 2a10

A(W ) := a10(1− |a|) ∂W
∂a10

+ a−12(|a|+ 2|b| − 3)
∂W

∂a−12
+

b01(|b| − 1)
∂W

∂b01
+ b2,−1(−2|a| − |b|+ 3)

∂W

∂b2,−1

H = − (xy − a−12
3

y3 − b2,−1
3

x3 − a10x
2y − b01xy

2)

W = 1− a−12/3− b2,−1/3− a10 − b01 is a solution to

A(W ) = W (|a| − |b|).
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V(J3), where J3 = 〈2a01 + b01, a10 + 2b10, a01b10 − a−12b2,−1〉,


A(W ) := a01(|b| − 1) ∂W∂a01 + a10(1− |a|) ∂W∂a10 + a−12(|a|+ 2|b| − 3) ∂W

∂a−12

+b01(|b| − 1) ∂W∂b01 + b10(1− |a|) ∂W∂b10 + b2,−1(−2|a| − |b|+ 3) ∂W
∂b2,−1

= W (|a|+ |b|)
2a01 + b01 = a10 + 2b10 = a01b10 − a−12b2,−1 = 0

⇒

A(W ) := a01(|b|−1)
∂W

∂a01
+b10(1−|a|) ∂W

∂b10
+b2,−1(−|b|−2|a|+3)

∂W

∂b2,−1

= W (|a|+ |b|) (34)
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`1 = 1 + 2 b10 x − a01 b2,−1 x
2 + 2 a01 y + 2 a01 b10 x y −

a01 b
2
10

b2,−1
y2,

`2 = (2 b10 b
2
2,−1+6 b210 b

2
2,−1 x+3 b10

3 b22,−1 x
2−3 a01 b10 b

3
2,−1 x

2−a01 b210 b32,−1 x3+a201 b
4
2,−1 x

3+

6 a01 b10 b
2
2,−1 y−3 b410 b2,−1 x y+6 a01 b

2
10 b

2
2,−1 x y−3 a201 b

3
2,−1 x y+3 a01 b

3
10 b

2
2,−1 x

2 y−
3 a201 b10 b

3
2,−1x

2 y−3 a01 b
3
10 b2,−1 y

2+3 a201 b10 b
2
2,−1 y

2−3 a01 b
4
10 b2,−1 x y

2+3 a201 b
2
10 b

2
2,−1 x y

2+

a01 b
5
10 y

3 − a201 b
3
10 b2,−1 y

3)/(2 b10 b
2
2,−1)

with the cofactors k1 = 2 (b10 x − a01 y) and k2 = 3 (b10 x − a01 y) .
First integral

Ψ = `−31 `22 ≡ c .
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L1 = 1 + 2a01 + 2b10 + 2a01b10 − (a01b
2
10)/b2,−1 − a01b2,−1

L2 = (a01b
5
10 − 3a01b

3
10b2,−1 − a201b

3
10b2,−1 − 3b410b2,−1 −

3a01b
4
10b2,−1+2b10b

2
2,−1+6a01b10b

2
2,−1+3a201b10b

2
2,−1+6b210b

2
2,−1+

6a01b
2
10b

2
2,−1+3a201b

2
10b

2
2,−1+3b310b

2
2,−1+3a01b

3
10b

2
2,−1−3a201b

3
2,−1−

3a01b10b
3
2,−1−3a201b10b

3
2,−1−a01b

2
10b

3
2,−1 +a201b

4
2,−1)/(2b10b

2
2,−1))

A(L1) = K1L1, A(L2) = K2L2,

K1 = −2(a01 − b10), K1 = −3(a01 − b10),
U = L−31 L22 is a solution to A(U) = 0

W =
U − 1

−6a01b10 − (3b310)/b2,−1 − (3a201b2,−1)/b10)

is a solution to
A(W ) = W (|a|+ |b|).
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