Rota-Baxter Algebras and Quasi-symmetric Functions

Li GUO

Rutgers University-Newark

Abstract

- This talk discusses the relationship between Rota-Baxter algebras and quasi-symmetric functions.
- First introduced by Glenn Baxter, (Rota-)Baxter algebra owed its early developments mostly to Gian-Carlo Rota, from the viewpoint of algebraic combinatorics.
- In the 1960s, Rota made the first connection between Rota-Baxter algebra and symmetric functions in his construction of free commutative Rota-Baxter algebras.
- In the 1990s, Rota made the conjecture that Rota-Baxter algebra should be the suitable framework to study generalizations of symmetric functions.
- Evidences in support of Rota's conjecture appeared over the years as pieces of free Rota-Baxter algebras were realized as quasi-symmetric functions.
- In recent papers, the full free commutative nonunitary and unitary Rota-Baxter algebras were realized as generalizations of quasi-symmetric functions.

Background on Rota-Baxter algebras

- Fix λ in a base ring \mathbf{k}. A Rota-Baxter operator or a Baxter operator of weight λ on a k-algebra R is a linear map $P: R \rightarrow R$ such that

$$
P(x) P(y)=P(x P(y))+P(P(x) y)+\lambda P(x y), \forall x, y \in R
$$

- Examples. Integration: $R=\operatorname{Cont}(\mathbb{R})$ (ring of continuous functions on \mathbb{R}).

$$
P: R \rightarrow R, P[f](x):=\int_{0}^{x} f(t) d t
$$

- Then P is a weight 0 Rota-Baxter operator:

$$
F(x):=P[f](x)=\int_{0}^{x} f(t) d t, \quad G(x):=P[g](x)=\int_{0}^{x} g(t) d t
$$

Then the integration by parts formula states

$$
\int_{0}^{x} F(t) G^{\prime}(t) d t=F(x) G(x)-\int_{0}^{x} F^{\prime}(t) G(t) d t
$$

$(F(0)=G(0)=0)$. That is,

$$
P[P[f] g](x)=P[f](x) P[g](x)-P[f P[g]](x)
$$

- Summation: On a suitable class of functions, define

$$
P[f](x):=\sum_{n \geq 1} f(x+n)
$$

- Then P is a Rota-Baxter operator of weight 1 :

$$
P[f](x) P[g](x)=P[P[f] g](x)+P[f P[g]](x)+P[f g](x)
$$

- Laurent series: Let $\left.R=\mathbb{C}\left[\varepsilon^{-1}, \varepsilon\right]\right]$ be the ring of Laurent series $\sum_{n=-k}^{\infty} a_{n} \varepsilon^{n}, k \geq 0$. Define the pole part projection

$$
P\left(\sum_{n=-k}^{\infty} a_{n} \varepsilon^{n}\right)=\sum_{n=-k}^{-1} a_{n} \varepsilon^{n}
$$

Then P is a Rota-Baxter operator of weight -1 .

- Classical Yang-Baxter equation: Let \mathfrak{g} be a Lie algebra with a perfect pairing $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathbf{k}$. Then $\mathfrak{g}^{\otimes 2} \cong \mathfrak{g} \otimes \mathfrak{g}^{*} \cong \operatorname{End}(\mathfrak{g})$. Let $r_{12} \in \mathfrak{g}^{\otimes 2}$ be anti-symmetric. Then r_{12} is a solution (r-matrix) of the classical Yang-Baxter equation (CYB)

$$
C Y B(r):=\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0
$$

if and only if the corresponding $P \in \operatorname{End}(\mathfrak{g})$ is a (Lie algebra) Rota-Baxter operator of weight 0 :

$$
[P(x), P(y)]=P[P(x), y]+P[x, P(y)]
$$

Others: Partial sums, scalar product, Hochschild homology ring, associative Yang-Baxter equation, dendriform algebras, rooted trees, divided powers,

Rota's standard RBA

- As a motivation, we recall the first construction of free commutative Rota-Baxter algebras given by Rota, called the standard
Rota-Baxter algebra, and their relationship with symmetric functions.
- Let X be a given set. Let $t_{n}^{(x)}, n \geq 1, x \in X$, be distinct symbols.
- Denote

$$
\bar{X}=\bigcup_{x \in X}\left\{t_{n}^{(x)} \mid n \geq 1\right\}
$$

and let $\mathfrak{A}(X)=\mathbf{k}[\bar{X}]^{\mathbb{P}}$ denote the algebra of sequences with entries in the polynomial algebra $\mathbf{k}[\bar{X}]$, with componentwise operations.

- Define
$P_{X}^{r}: \mathfrak{A}(X) \rightarrow \mathfrak{A}(X), \quad\left(a_{1}, a_{2}, a_{3}, \cdots\right) \mapsto\left(0, a_{1}, a_{1}+a_{2}, a_{1}+a_{2}+a_{3}, \cdots\right)$.
Then P_{X}^{r} defines a Rota-Baxter operator on $\mathfrak{A}(X)$.
- The standard Rota-Baxter algebra on X is the Rota-Baxter subalgebra $\mathfrak{S}(X)$ of $\mathfrak{A}(X)$ generated by the sequences
$t^{(x)}:=\left(t_{1}^{(x)}, \cdots, t_{n}^{(x)}, \cdots\right), x \in X$.
- Theorem (Rota, 1969) $\left(\mathfrak{S}(X), P_{X}^{r}\right)$ is the free commutative Rota-Baxter algebra on X.
- Spitzer's Identity. Let (R, P) be a unitary commutative Rota-Baxter \mathbb{Q}-algebra of weight 1. Then for $a \in R$, we have

$$
\exp (P(\log (1+\lambda a t)))=\sum_{n=0}^{\infty} t^{n} \underbrace{P(P(P(\cdots(P(a) a) a) a))}_{n \text {-iterations }}
$$

in the ring of power series $R[[t]]$.

- With the notation $P_{a}(c):=P(a c)$, this becomes

$$
\exp \left(-\sum_{k=1}^{\infty} \frac{(-t)^{k} P\left(a^{k}\right)}{k}\right)=\sum_{n=0}^{\infty} t^{n} P_{a}^{n}(1)
$$

Take $X=\{x\}, x_{n}:=t_{n}^{(x)}, R=\mathbf{k}\left[x_{n}, n \geq 1\right]^{\mathbb{P}}, P$ the partial sum operator and $a:=\left(x_{1}, \cdots, x_{n}, \cdots\right)$.

Rota-Baxter algebras and Symmetric functions

- Then

$$
P_{a}^{n}(1)=\left(0, e_{n}\left(x_{1}\right), e_{n}\left(x_{1}, x_{2}\right), e_{n}\left(x_{1}, x_{2}, x_{3}\right), \cdots\right)
$$

where $e_{n}\left(x_{1}, \cdots, x_{m}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq m} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$ is the elementary symmetric function of degree n in the variables x_{1}, \cdots, x_{m} with the convention that $e_{0}\left(x_{1}, \cdots, x_{m}\right)=1$ and $e_{n}\left(x_{1}, \cdots, x_{m}\right)=0$ if $m<n$.

- Also by definition,

$$
P\left(a^{k}\right)=\left(0, p_{k}\left(x_{1}\right), p_{k}\left(x_{1}, x_{2}\right), p_{k}\left(x_{1}, x_{2}, x_{3}\right), \cdots\right),
$$

where $p_{k}\left(x_{1}, \cdots, x_{m}\right)=x_{1}^{k}+x_{2}^{k}+\cdots+x_{m}^{k}$ is the power sum symmetric function of degree k in the variables x_{1}, \cdots, x_{m}.

- So Spitzer's Identity becomes Waring's formula:

$$
\begin{aligned}
& \exp \left(-\sum_{k=1}^{\infty}(-1)^{k} t^{k} p_{k}\left(x_{1}, x_{2}, \cdots, x_{m}\right) / k\right) \\
& =\sum_{n=0}^{\infty} e_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right) t^{n} \text { for all } m \geq 1 .
\end{aligned}
$$

Rota's Conjecture/Question

- Rota conjectured in 1995:
a very close relationship exists between the Baxter identity and the algebra of symmetric functions.
- and concluded

The theory of symmetric functions of vector arguments (or Gessel functions) fits nicely with Baxter operators; in fact, identities for such functions easily translate into identities for Baxter operators. ... In short: Baxter algebras represent the ultimate and most natural generalization of the algebra of symmetric functions.

- As it turns out, Rota-Baxter algebras are closely relates to quasi-symmetric functions.

Free commutative Rota-Baxter algebras

- A basic question for a Rota-Baxter algebra is how to multiply its two elements.
- Integration by parts:
$\int_{0}^{x} f(t) d t \int_{0}^{x} g(t) d t=\int_{0}^{x} f(t)\left(\int_{0}^{t} g(s) d s\right) d t+\int_{0}^{x}\left(\int_{0}^{t} f(s) d s\right) g(t) d t$.
So a product of two integrals is the sum of two nested integrals.
- What about the product of two double integrals:

$$
\left(\int_{0}^{x} f_{1}\left(t_{1}\right)\left(\int_{0}^{t_{1}} f_{2}\left(t_{2}\right) d t_{1}\right)\right)\left(\int_{0}^{x} g_{1}\left(s_{1}\right)\left(\int_{0}^{s_{1}} g_{2}\left(s_{2}\right) d s_{1}\right)\right)=?
$$

- What about the product of any two iterated integrals?
- Such products are reduced to the construction of free Rota-Baxter algebras, since an equation in a free Rota-Baxter algebra automatically holds for every Rota-Baxter algebra.

Multiplication in commutative Rota-Baxter algebras

- The Rota-Baxter axiom

$$
P(x) P(y)=P(x P(y))+P(P(x) y)+\lambda P(x y)
$$

indicates that any Rota-Baxter "couple" $P(x) P(y)$ can be replaced by some nested ones.

- Any element of a commutative Rota-Baxter algebra (R, P) can be rewrittne in the form $a_{0} P\left(a_{1} P\left(a_{2} \cdots P\left(a_{k}\right) \cdots\right)\right) \mapsto a_{0} \otimes a_{1} \otimes \cdots \otimes a_{m}$.
- For two elements $a_{0} P\left(a_{1} \cdots P\left(a_{m}\right) \cdots\right)$ and $b_{0} P\left(b_{1} \cdots P\left(b_{n}\right) \cdots\right)$, their product

$$
\begin{aligned}
& \left(a_{0} P\left(a_{1} \cdots P\left(a_{m}\right) \cdots\right)\right)\left(b_{0} P\left(b_{1} \cdots P\left(b_{n}\right) \cdots\right)\right) \\
= & \left(a_{0} b_{0}\right)\left(P\left(a_{1} \cdots P\left(a_{m}\right) \cdots\right)\right)\left(P\left(b_{1} \cdots P\left(b_{n}\right) \cdots\right)\right)
\end{aligned}
$$

is lifted to a suitable product

$$
\begin{gathered}
\quad\left(a_{0} \otimes \cdots \otimes a_{m}\right) \diamond\left(b_{0} \otimes \cdots \otimes b_{n}\right) \\
=\left(a_{0} b_{0}\right)\left(1 \otimes \cdots \otimes a_{m}\right) \diamond\left(1 \otimes \cdots \otimes b_{n}\right) \\
=:\left(a_{0} b_{0}\right)\left(\left(a_{1} \otimes \cdots \otimes a_{m}\right) Ш_{\lambda}\left(b_{1} \otimes \cdots \otimes b_{n}\right)\right) .
\end{gathered}
$$

- We next determine the product $1 \psi^{1} \lambda$.

Mixable Shuffle Product

- Let A be a commutative \mathbf{k}-algebra. Let
$\amalg^{+}(A)(=Q S(A))=\bigoplus_{n>0} A^{\otimes n}(=T(A))$. Consider the following products on $\amalg^{+}(A)$. Define $\mathbf{1}_{\mathbf{k}} \in \mathbf{k}$ to be the unit. Let
$\mathfrak{a}=a_{1} \otimes \cdots \otimes a_{m} \in A^{\otimes m}$ and $\mathfrak{b}=b_{1} \otimes \cdots \otimes b_{n} \in A^{\otimes n}$.
- Mixable shuffle product: Guo-Keigher (2000) on Rota-Baxter algebras, Goncharov (2002) on motivic shuffle relations and Hazewinckle on overlapping shuffle products.
- A shuffle of $\mathfrak{a}=a_{1} \otimes \ldots \otimes a_{m}$ and $\mathfrak{b}=b_{1} \otimes \ldots \otimes b_{n}$ is a tensor list of a_{i} and b_{j} without change the order of the $a_{i} s$ and $b_{j} s$.
- A mixable shuffle is a shuffle in which some pairs $a_{i} \otimes b_{j}$ are merged into $\lambda a_{i} b_{j}$.
Define $\left(a_{1} \otimes \ldots \otimes a_{m}\right) Ш_{\lambda}\left(b_{1} \otimes \ldots \otimes b_{n}\right)$ to be the sum of mixable shuffles of $a_{1} \otimes \ldots \otimes a_{m}$ and $b_{1} \otimes \ldots \otimes b_{n}$.
- Example:

$$
\begin{aligned}
& a_{1} \omega_{\lambda}\left(b_{1} \otimes b_{2}\right) \\
& =a_{1} \otimes b_{1} \otimes b_{2}+b_{1} \otimes a_{1} \otimes b_{2}+b_{1} \otimes b_{2} \otimes a_{1} \quad \text { (shuffles) } \\
& +\lambda a_{1} b_{1} \otimes b_{2}+b_{1} \otimes \lambda a_{1} b_{2} \text { (merged shuffles). } \\
& 12
\end{aligned}
$$

Quasi-shuffle product

- Quasi-shuffle product: Hoffman (2000) on multiple zeta values and quasi-symmetric functions.
Write $\mathfrak{a}=a_{1} \otimes \mathfrak{a}^{\prime}, \mathfrak{b}=b_{1} \otimes \mathfrak{b}^{\prime}$. Recursively define
$\left.\left(a_{1} \otimes \mathfrak{a}^{\prime}\right) *\left(b_{1} \otimes \mathfrak{b}^{\prime}\right)=a_{1} \otimes\left(\mathfrak{a}^{\prime} *\left(b_{1} \otimes \mathfrak{b}^{\prime}\right)\right)\right)+b_{1} \otimes\left(\left(a_{1} \otimes \mathfrak{a}^{\prime}\right) * \mathfrak{b}^{\prime}\right)+\lambda a_{1} b_{1} \otimes\left(\mathfrak{a}^{\prime} * \mathfrak{b}^{\prime}\right)$,
with the convention that if $\mathfrak{a}=a_{1}$, then \mathfrak{a}^{\prime} multiples as the identity. It defines the shuffle product without the third term.
- Example.
$a_{1} *\left(b_{1} \otimes b_{2}\right)=a_{1} \otimes\left(\mathfrak{a}^{\prime} *\left(b_{1} \otimes b_{2}\right)\right)+b_{1} \otimes\left(a_{1} * b_{2}\right)+\left(\lambda a_{1} b_{1}\right) \otimes\left(\mathfrak{a}^{\prime} * b_{2}\right)$
$=a_{1} \otimes\left(b_{1} \otimes b_{2}\right)+b_{1} \otimes\left(a_{1} * b_{2}\right)+\left(a_{1} b_{1}\right) \otimes b_{2}$.
$=a_{1} \otimes b_{1} \otimes b_{2}+b_{1} \otimes a_{1} \otimes b_{2}+b_{1} \otimes b_{2} \otimes a_{1}+b_{1} \otimes \lambda a_{1} b_{2}+\lambda a_{1} b_{1} \otimes b_{2}$.
- In general,

$$
*=ш_{\lambda} .
$$

- A free Rota-Baxter algebra over another algebra A is a Rota-Baxter algebra $\amalg(A)$ with an algebra homomorphism $j_{A}: A \rightarrow Ш(A)$ such that for any Rota-Baxter algebra R and algebra homomorphism $f: A \rightarrow R$, there is a unique Rota-Baxter algebra homomorphism making the diagram commute

- When $A=\mathbf{k}[X]$, we have the free Rota-Baxter algebra over X.
- Recall that $\left(\Psi^{+}(A), \diamond\right)$ is an associative algebra. Then the tensor product algebra (scalar extension) $\amalg(A):=A \otimes Ш^{+}(A)$ is an A-algebra.
Theorem (Guo-Keigher, 2000) $\amalg(A)$ with the shift operator $P(\mathfrak{a}):=1 \otimes \mathfrak{a}$ is the free commutative Rota-Baxter algebra over A.
- Let $A=\mathbf{k} 1 \oplus A^{+}$. The restriction to $\amalg(A)^{0}:=\oplus_{k \geq 0}\left(A^{\otimes k} \otimes A^{+}\right)$is the free commutative nonunitary Rota-Baxter algebra on A.

14

Previous progresses on Rota's Conjecture

- The quasi-shuffle algebra on $A:=x \mathbb{Q}[x]$ is identified with the algebra $Q S(A)$ of quasi-symmetric functions, spanned by monomial quasi-symmetric functions

$$
M_{\left(a_{1}, \cdots, a_{k}\right)}:=\sum_{1 \leq i_{1}<\cdots<i_{k}} x_{i_{1}}^{a_{1}} \cdots x_{i_{k}}^{a_{k}} \in \mathbb{Q}\left[x_{1}, \cdots, x_{n}, \cdots\right],
$$

for compositions (vectors) $\alpha:=\left(a_{1}, \cdots, a_{k}\right), a_{i} \geq 1$. (It is called a composition of $n \geq 1$ if $a_{1}+\cdots+a_{k}=n$.)

- At the same time, $Q S(x \mathbb{Q}[x])$ is the main part of the free nonunitary Rota-Baxter algebra $\amalg(x \mathbb{Q}[x])^{0}$. Thus to pursue Rota's Conjecture, it is desirable to identity the whole commutative Rota-Baxter algebra $Ш(\mathbb{Q}[x])$ with some generalized quasi-symmetric functions.
- We achieved this in two steps, first for nonunitary Rota-Baxter algebras, next for unitary Rota-Baxter algebras.

Step one: the nonunitary case

- $\operatorname{QS}(x \mathbf{k}[x]) \cong Q S y m \subseteq L W C Q S y m \subseteq W C Q S y m$.
- A vector $\alpha:=\left(a_{1}, \cdots, a_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ is called a left weak composition if $a_{k}>0$.
- For a left weak comp composition α, define a monomial quasi-symmetric function

$$
M_{\alpha}:=\sum_{1 \leq i_{1}<\cdots<i_{k}} x_{i_{1}}^{a_{1}} \cdots x_{i_{k}}^{a_{k}} \in \mathbb{Q}\left[\left[x_{1}, \cdots, x_{n}, \cdots\right]\right] .
$$

- Let LWCQSym be the subalgebra of $\mathbb{Q}\left[\left[x_{1}, \cdots, x_{n}, \cdots\right]\right]$ spanned by M_{α}.
- Theorem (L. Guo-H. Yu-J. Zhao, 2016) $\mathbb{Q}[x] L W C Q S y m$ is the free commutative nonunitary Rota-Baxter algebra on x.

Step two: the unitary case

- In order to apply this approach to free commutative unitary Rota-Baxter algebras, we need to consider weak compositions, not just left weak compositions.
- For a weak composition $\alpha:=\left(a_{1}, \cdots, a_{k}\right), a_{i} \geq 0$, the expression M_{α} might not make sense.
- Example: $\alpha=(0)$ gives $M_{\alpha}=\sum_{n \geq 1} x_{n}^{0}=\sum_{n \geq 1} 1$.
- To fix this problem, we "modify" the rule $x^{0}=1$ by considering formal power series and quasi-symmetric functions with semigroup exponents.

Power series with semigroup exponents

- In a formal power series, a monomials $x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$ can be regarded as the locus of the map from $X:=\left\{x_{n} \mid n^{n} \geq 1\right\}$ to \mathbb{N} sending $x_{i j}$ to $\alpha_{j}, 1 \leq j \leq k$, and everything else in X to zero.
- Our generalization of the formal power series algebra is simply to replace \mathbb{N} by a suitable additive monoid with a zero element.
- Let B be a commutative additive monoid with zero 0 such that $B \backslash\{0\}$ is a subsemigroup. Let X be a set. The set of B-valued maps is defined to be $B^{X}:=\{f: X \rightarrow B \mid \mathcal{S}(f)$ is finite $\}$, where $\mathcal{S}(f):=\{x \in X \mid f(x) \neq 0\}$ denotes the support of f.
- The addition on B equips B^{X} with an additive monoid by

$$
(f+g)(x):=f(x)+g(x) \quad \text { for all } f, g \in B^{X} \text { and } x \in X .
$$

- As with formal power series, we identify $f \in B^{X}$ with its locus $\{(x, f(x)) \mid x \in \mathcal{S}(f)\}$ expressed in the form of a formal product

$$
X^{f}:=\prod_{x \in X} x^{f(x)}=\prod_{x \in \delta(f)} x^{f(x)},
$$

called a B-exponent monomial, with the convention $x^{0}=1$.

- By abuse of notation, the addition on B^{X} becomes

$$
X^{f} X^{g}=X^{f+g} \quad \text { for all } f, g \in B^{X} .
$$

- We then form the semigroup algebra $\mathbf{k}[X]_{B}:=\mathbf{k} B^{X}$ consisting of linear combinations of B^{X}, called the algebra of B-exponent polynomials.
- Similarly, we can define the free \mathbf{k}-module $\mathbf{k}[[X]]_{B}$ consisting of possibly infinite linear combinations of B^{X}, called B-exponent formal power series.
- If B is additively finite in the sense that for any $a \in B$ there are finite number of pairs $(b, c) \in B^{2}$ such that $b+c=a$, then the multiplication above extends by bilinearity to a multiplication on $\mathbf{k}[[X]]_{B}$, making it into a \mathbf{k}-algebra, called the algebra of formal power series with B-exponents.

Back to weak compositions

- Let B be a finitely generated free commutative additively finite monoid with generating set $\left\{b_{1}, b_{2}, \cdots, b_{t}\right\}$. Then

$$
\mathbf{k}[X]_{B}=\mathbf{k}\left[x^{b_{i}} \mid 1 \leq i \leq t, x \in X\right] .
$$

- For example, taking B as the additive monoid \mathbb{N} of nonnegative integers, then B^{X} is simply the free monoid generated by X and $\mathbf{k}[X]_{B}$ is the free commutative algebra $\mathbf{k}[X]$.
- Now taking $B:=\tilde{\mathbb{N}}:=\mathbb{N} \cup\{\varepsilon\}$, with $0<\varepsilon<1$, we obtain quasi-symmetric functions for weak compositions WCQSym. Further WCQSym is a Hopf algebra with contains QSym as both a sub and quotient Hopf algebra.
- Theorem (Yu-Guo-Thibon, 2017) $\mathbb{Q}[x]$ WCQSym is isomorphic to the free commutative unitary Rota-Baxter algebra $\amalg(x)$.
- This equips $\amalg(x)$ with a natural Hopf algebra structure.

References

- G.-C. Rota, Baxter algebras and combinatorial identities I \& II, Bull. Amer. Math. Soc., 75 (1969), 325-329, 330-334.
- G.-C. Rota, Baxter operators, an introduction, In: "Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries", Birkhäuser, Boston, 1995.
- K. Ebrahimi-Fard and L. Guo, Mixable shuffles, quasi-shuffles and Hopf algebras J. Algebraic Combinatorics 24 (2006), 83-101.
- L. Guo, H. Yu and J. Zhao, Rota-Baxter algebras and left weak composition quasisymmetric functions, Ramanujan Jour 44 (2017), 567-596, arXiv:1601.06030.
- L. Guo, J.-Y. Thibon, H. Yu, Weak composition quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras, Adv Math, to appear, arXiv:1702.08011.
- Y. Li, On weak peak quasisymmetric functions, J. Combin. Theory, Ser. A 158 (2018), 449-491.

- Thank You!

