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Abstract
I This talk discusses the relationship between Rota-Baxter algebras

and quasi-symmetric functions.
I First introduced by Glenn Baxter, (Rota-)Baxter algebra owed its

early developments mostly to Gian-Carlo Rota, from the viewpoint of
algebraic combinatorics.

I In the 1960s, Rota made the first connection between Rota-Baxter
algebra and symmetric functions in his construction of free
commutative Rota-Baxter algebras.

I In the 1990s, Rota made the conjecture that Rota-Baxter algebra
should be the suitable framework to study generalizations of
symmetric functions.

I Evidences in support of Rota’s conjecture appeared over the years
as pieces of free Rota-Baxter algebras were realized as
quasi-symmetric functions.

I In recent papers, the full free commutative nonunitary and unitary
Rota-Baxter algebras were realized as generalizations of
quasi-symmetric functions.
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Background on Rota-Baxter algebras
I Fix λ in a base ring k. A Rota-Baxter operator or a Baxter operator of

weight λ on a k-algebra R is a linear map P : R → R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy), ∀ x , y ∈ R.

I Examples. Integration: R = Cont(R) (ring of continuous functions
on R). P : R → R,P[f ](x) :=

∫ x

0
f (t)dt .

Then P is a weight 0 Rota-Baxter operator:I

F (x) := P[f ](x) =
∫ x

0
f (t)dt , G(x) := P[g](x) =

∫ x

0
g(t)dt .

Then the integration by parts formula states∫ x

0
F (t)G′(t)dt = F (x)G(x)−

∫ x

0
F ′(t)G(t)dt

(F (0) = G(0) = 0). That is,

P[P[f ]g](x) = P[f ](x)P[g](x)− P[fP[g]](x).

3



I Summation: On a suitable class of functions, define

P[f ](x) :=
∑
n≥1

f (x + n).

I Then P is a Rota-Baxter operator of weight 1:

P[f ](x)P[g](x) = P[P[f ]g](x) + P[fP[g]](x) + P[fg](x).

I Laurent series: Let R = C[ε−1, ε]] be the ring of Laurent series∑∞
n=−k anε

n, k ≥ 0. Define the pole part projection

P(
∞∑

n=−k

anε
n) =

−1∑
n=−k

anε
n.

Then P is a Rota-Baxter operator of weight -1.
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I Classical Yang-Baxter equation: Let g be a Lie algebra with a
perfect pairing g⊗ g→ k. Then g⊗2 ∼= g⊗ g∗ ∼= End(g). Let r12 ∈ g⊗2

be anti-symmetric. Then r12 is a solution (r-matrix) of the classical
Yang-Baxter equation (CYB)

CYB(r) := [r12, r13] + [r12, r23] + [r13, r23] = 0
if and only if the corresponding P ∈ End(g) is a (Lie algebra)
Rota-Baxter operator of weight 0:

[P(x),P(y)] = P[P(x), y ] + P[x ,P(y)]
Others: Partial sums, scalar product, Hochschild homology ring,
associative Yang-Baxter equation, dendriform algebras, rooted trees,
divided powers, ....
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Rota’s standard RBA
I As a motivation, we recall the first construction of free commutative

Rota–Baxter algebras given by Rota, called the standard
Rota–Baxter algebra, and their relationship with symmetric functions.

I Let X be a given set. Let t(x)
n ,n ≥ 1, x ∈ X , be distinct symbols.

I Denote
X =

⋃
x∈X

{
t(x)
n | n ≥ 1

}
and let A(X ) = k[X ]P denote the algebra of sequences with entries in
the polynomial algebra k[X ], with componentwise operations.

I Define

Pr
X : A(X )→ A(X ), (a1,a2,a3, · · · ) 7→ (0,a1,a1+a2,a1+a2+a3, · · · ).

Then Pr
X defines a Rota–Baxter operator on A(X ).

I The standard Rota–Baxter algebra on X is the Rota–Baxter
subalgebra S(X ) of A(X ) generated by the sequences
t(x) := (t(x)

1 , · · · , t(x)
n , · · · ), x ∈ X .

I Theorem (Rota, 1969) (S(X ),Pr
X ) is the free commutative

Rota–Baxter algebra on X . 6



Spitzer’s Identity

I Spitzer’s Identity. Let (R,P) be a unitary commutative Rota-Baxter
Q-algebra of weight 1. Then for a ∈ R, we have

exp (P(log(1 + λat))) =
∞∑

n=0

tn P
(
P(P(· · · (P(a)a)a)a)

)︸ ︷︷ ︸
n-iterations

in the ring of power series R[[t ]].
I With the notation Pa(c) := P(ac), this becomes

exp

(
−
∞∑

k=1

(−t)kP(ak )

k

)
=
∞∑

n=0

tnPn
a (1).

I Take X = {x}, xn := t(x)
n , R = k[xn,n ≥ 1]P, P the partial sum

operator and a := (x1, · · · , xn, · · · ).
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Rota-Baxter algebras and Symmetric functions
I Then

Pn
a (1) = (0,en(x1),en(x1, x2),en(x1, x2, x3), · · · )

where en(x1, · · · , xm) =
∑

1≤i1<i2<···<in≤m
xi1xi2 · · · xin is the elementary

symmetric function of degree n in the variables x1, · · · , xm with the
convention that e0(x1, · · · , xm) = 1 and en(x1, · · · , xm) = 0 if m < n.

I Also by definition,

P(ak ) = (0,pk (x1),pk (x1, x2),pk (x1, x2, x3), · · · ),

where pk (x1, · · · , xm) = xk
1 + xk

2 + · · ·+ xk
m is the power sum

symmetric function of degree k in the variables x1, · · · , xm.
I So Spitzer’s Identity becomes Waring’s formula:

exp

(
−
∞∑

k=1

(−1)k tkpk (x1, x2, · · · , xm)/k

)

=
∞∑

n=0

en(x1, x2, · · · , xm)tn for all m ≥ 1.
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Rota’s Conjecture/Question

I Rota conjectured in 1995:
a very close relationship exists between the Baxter identity and
the algebra of symmetric functions.

I and concluded
The theory of symmetric functions of vector arguments (or Gessel
functions) fits nicely with Baxter operators; in fact, identities for
such functions easily translate into identities for Baxter operators.
· · · In short: Baxter algebras represent the ultimate and most
natural generalization of the algebra of symmetric functions.

I As it turns out, Rota-Baxter algebras are closely relates to
quasi-symmetric functions.
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Free commutative Rota-Baxter algebras
I A basic question for a Rota-Baxter algebra is how to multiply its two

elements.
I Integration by parts:∫ x

0
f (t)dt

∫ x

0
g(t)dt =

∫ x

0
f (t)
(∫ t

0
g(s)ds

)
dt+

∫ x

0

(∫ t

0
f (s)ds

)
g(t)dt .

So a product of two integrals is the sum of two nested integrals.
I What about the product of two double integrals:(∫ x

0
f1(t1)

(∫ t1

0
f2(t2)dt1

))(∫ x

0
g1(s1)

(∫ s1

0
g2(s2)ds1

))
=?

I What about the product of any two iterated integrals?
I Such products are reduced to the construction of free Rota-Baxter

algebras, since an equation in a free Rota-Baxter algebra
automatically holds for every Rota-Baxter algebra.
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Multiplication in commutative Rota-Baxter algebras
I The Rota-Baxter axiom

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy)

indicates that any Rota-Baxter “couple” P(x)P(y) can be replaced by
some nested ones.

I Any element of a commutative Rota-Baxter algebra (R,P) can be
rewrittne in the form a0P(a1P(a2 · · ·P(ak ) · · · )) 7→ a0 ⊗ a1 ⊗ · · · ⊗ am.

I For two elements a0P(a1 · · ·P(am) · · · ) and b0P(b1 · · ·P(bn) · · · ),
their product(

a0P(a1 · · ·P(am) · · · )
)(

b0P(b1 · · ·P(bn) · · · )
)

= (a0b0)
(
P(a1 · · ·P(am) · · · )

)(
P(b1 · · ·P(bn) · · · )

)
is lifted to a suitable product

(a0 ⊗ · · · ⊗ am) � (b0 ⊗ · · · ⊗ bn)

= (a0b0)
(
1⊗ · · · ⊗ am) � (1⊗ · · · ⊗ bn)

=: (a0b0)
(
(a1 ⊗ · · · ⊗ am)Xλ(b1 ⊗ · · · ⊗ bn)

)
.

I We next determine the product Xλ.
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Mixable Shuffle Product
I Let A be a commutative k-algebra. Let

X+(A)(= QS(A)) =
⊕

n≥0 A⊗n(= T (A)). Consider the following
products on X+(A). Define 1k ∈ k to be the unit. Let
a = a1 ⊗ · · · ⊗ am ∈ A⊗m and b = b1 ⊗ · · · ⊗ bn ∈ A⊗n.

I Mixable shuffle product: Guo-Keigher (2000) on Rota-Baxter
algebras, Goncharov (2002) on motivic shuffle relations and
Hazewinckle on overlapping shuffle products.

I A shuffle of a = a1 ⊗ . . .⊗ am and b = b1 ⊗ . . .⊗ bn is a tensor list of
ai and bj without change the order of the ais and bjs.

I A mixable shuffle is a shuffle in which some pairs ai ⊗ bj are merged
into λaibj .
Define (a1 ⊗ . . .⊗ am)Xλ(b1 ⊗ . . .⊗ bn) to be the sum of mixable
shuffles of a1 ⊗ . . .⊗ am and b1 ⊗ . . .⊗ bn.

I Example:

a1Xλ(b1 ⊗ b2)

= a1 ⊗ b1 ⊗ b2 + b1 ⊗ a1 ⊗ b2 + b1 ⊗ b2 ⊗ a1 (shuffles)

+ λa1b1 ⊗ b2 + b1 ⊗ λa1b2 (merged shuffles).
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Quasi-shuffle product

I Quasi-shuffle product: Hoffman (2000) on multiple zeta values and
quasi-symmetric functions.
Write a = a1 ⊗ a′, b = b1 ⊗ b′. Recursively define

(a1⊗a′)∗(b1⊗b′) = a1⊗(a′∗(b1⊗b′)))+b1⊗((a1⊗a′)∗b′)+λa1b1⊗(a′∗b′),

with the convention that if a = a1, then a′ multiples as the identity. It
defines the shuffle product without the third term.

I Example.
a1 ∗ (b1⊗b2) = a1⊗ (a′ ∗ (b1⊗b2))+b1⊗ (a1 ∗b2)+(λa1b1)⊗ (a′ ∗b2)
= a1 ⊗ (b1 ⊗ b2) + b1 ⊗ (a1 ∗ b2) + (a1b1)⊗ b2.
= a1⊗b1⊗b2 +b1⊗a1⊗b2 +b1⊗b2⊗a1 +b1⊗λa1b2 +λa1b1⊗b2.

I In general,
∗ = Xλ.
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I A free Rota-Baxter algebra over another algebra A is a
Rota-Baxter algebra X(A) with an algebra homomorphism
jA : A→X(A) such that for any Rota-Baxter algebra R and algebra
homomorphism f : A→ R, there is a unique Rota-Baxter algebra
homomorphism making the diagram commute

A
jA //

f

''

X(A)

f̄
��

R

I When A = k[X ], we have the free Rota-Baxter algebra over X .
I Recall that (X+(A), �) is an associative algebra. Then the tensor

product algebra (scalar extension) X(A) := A⊗X+(A) is an
A-algebra.
Theorem (Guo-Keigher, 2000) X(A) with the shift operator
P(a) := 1⊗ a is the free commutative Rota-Baxter algebra over A.

I Let A = k 1⊕ A+. The restriction to X(A)0 := ⊕k≥0(A⊗k ⊗ A+) is the
free commutative nonunitary Rota-Baxter algebra on A.
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Previous progresses on Rota’s Conjecture

I The quasi-shuffle algebra on A := xQ[x ] is identified with the algebra
QS(A) of quasi-symmetric functions, spanned by monomial
quasi-symmetric functions

M(a1,··· ,ak ) :=
∑

1≤i1<···<ik

xa1
i1
· · · xak

ik
∈ Q[x1, · · · , xn, · · · ],

for compositions (vectors) α := (a1, · · · ,ak ),ai ≥ 1. (It is called a
composition of n ≥ 1 if a1 + · · ·+ ak = n.)

I At the same time, QS(xQ[x ]) is the main part of the free nonunitary
Rota-Baxter algebra X(xQ[x ])0. Thus to pursue Rota’s Conjecture, it
is desirable to identity the whole commutative Rota-Baxter algebra
X(Q[x ]) with some generalized quasi-symmetric functions.

I We achieved this in two steps, first for nonunitary Rota-Baxter
algebras, next for unitary Rota-Baxter algebras.
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Step one: the nonunitary case

I QS(xk[x ]) ∼= QSym ⊆ LWCQSym ⊆WCQSym.
I A vector α := (a1, · · · ,ak ) ∈ Zk

≥0 is called a left weak composition if
ak > 0.

I For a left weak comp composition α, define a monomial
quasi-symmetric function

Mα :=
∑

1≤i1<···<ik

xa1
i1
· · · xak

ik
∈ Q[[x1, · · · , xn, · · · ]].

I Let LWCQSym be the subalgebra of Q[[x1, · · · , xn, · · · ]] spanned by
Mα.

I Theorem (L. Guo-H. Yu-J. Zhao, 2016) Q[x ]LWCQSym is the free
commutative nonunitary Rota-Baxter algebra on x .
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Step two: the unitary case

I In order to apply this approach to free commutative unitary
Rota-Baxter algebras, we need to consider weak compositions, not
just left weak compositions.

I For a weak composition α := (a1, · · · ,ak ),ai ≥ 0, the expression Mα

might not make sense.
I Example: α = (0) gives Mα =

∑
n≥1 x0

n =
∑

n≥1 1.

I To fix this problem, we “modify” the rule x0 = 1 by considering formal
power series and quasi-symmetric functions with semigroup
exponents.
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Power series with semigroup exponents
I In a formal power series, a monomials xα1

i1
xα2

i2
· · · xαk

ik
can be

regarded as the locus of the map from X := {xn |n ≥ 1} to N sending
xij to αj , 1 ≤ j ≤ k , and everything else in X to zero.

I Our generalization of the formal power series algebra is simply to
replace N by a suitable additive monoid with a zero element.

I Let B be a commutative additive monoid with zero 0 such that B\{0}
is a subsemigroup. Let X be a set. The set of B-valued maps is
defined to be BX := {f : X → B | S(f ) is finite } , where
S(f ) := {x ∈ X | f (x) 6= 0} denotes the support of f .

I The addition on B equips BX with an additive monoid by

(f + g)(x) := f (x) + g(x) for all f ,g ∈ BX and x ∈ X .

I As with formal power series, we identify f ∈ BX with its locus
{(x , f (x)) | x ∈ S(f )} expressed in the form of a formal product

X f :=
∏
x∈X

x f (x) =
∏

x∈S(f )

x f (x),

called a B-exponent monomial, with the convention x0 = 1.
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I By abuse of notation, the addition on BX becomes

X f X g = X f +g for all f ,g ∈ BX .

I We then form the semigroup algebra k[X ]B := kBX consisting of
linear combinations of BX , called the algebra of B-exponent
polynomials.

I Similarly, we can define the free k-module k[[X ]]B consisting of
possibly infinite linear combinations of BX , called B-exponent
formal power series.

I If B is additively finite in the sense that for any a ∈ B there are finite
number of pairs (b, c) ∈ B2 such that b + c = a, then the
multiplication above extends by bilinearity to a multiplication on
k[[X ]]B, making it into a k-algebra, called the algebra of formal power
series with B-exponents.

19



Back to weak compositions

I Let B be a finitely generated free commutative additively finite
monoid with generating set {b1,b2, · · · ,bt}. Then

k[X ]B = k[xbi |1 ≤ i ≤ t , x ∈ X ].

I For example, taking B as the additive monoid N of nonnegative
integers, then BX is simply the free monoid generated by X and
k[X ]B is the free commutative algebra k[X ].

I Now taking B := Ñ := N ∪ {ε}, with 0 < ε < 1, we obtain
quasi-symmetric functions for weak compositions WCQSym. Further
WCQSym is a Hopf algebra with contains QSym as both a sub and
quotient Hopf algebra.

I Theorem (Yu-Guo-Thibon, 2017) Q[x ]WCQSym is isomorphic to the
free commutative unitary Rota-Baxter algebra X(x).

I This equips X(x) with a natural Hopf algebra structure.
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