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Outline of the talk

Given a theory T of large topological fields with quantifier
elimination, the class of existentially closed differential
expansions is axiomatizable by a set of axioms T ∗D ,

Immediate transfer results from T to T ∗D ,

Transfer results (continued) : elimination of imaginaries,
continuous definable functions, open core,

Transfer results to the theory of dense pairs of models of T .



Examples of topological fields

Let K̄ := (K ,+, ·,−, 0, 1).
• (K̄ , <) an ordered real-closed field, ie a model of RCF
[o-minimal theory]
• (K̄ , v) a p-adically closed valued field of rank d , respectively of

pCFd [p-minimal theory]
• (K̄ , <, v) an ordered valued real-closed field, respectively of
RCVF respectively [weakly o-minimal theory].
• (K̄ , v) a non-trivially valued algebraically closed field,
respectively of ACVF0,0 [C -minimal],



Large fields

All these fields share a common algebraic property: they are large.
[Pop, 1996] A field K is large iff K is existentially closed in the
field of Laurent series K ((t)) (K ⊆ec K ((t))) and equivalently in
any iterated Laurent series field extension K ((t1))((t2)) · · · ((tn)),
for some natural number n ≥ 1 (also denoted by K ((Zn))).

(This second equivalence is straightforward using Frayne’s
embedding theorem: if a structure A is existentially closed in B
(A ⊆ec B), then there is an embedding of B in an ultrapower of
A, which is the identity on A.)



dp-minimal fields

They also share a common model-theoretic property, called
dp-minimal.

Definition

A theory T is not dp-minimal if there is a model M of T , aij ∈ M
and uniformly unary definable sets Xi , Yj ⊆ M, i , j ∈ N, such that
aij ∈ Xi ′ ↔ i = i ′,
aij ∈ Yj ′ ↔ j = j .′



dp-minimal fields

[Johnson, 2016] If K := (K ,+, ·, 0, 1, · · · ) is an expansion of an
infinite field with a dp-minimal theory but not strongly minimal,
then K can be endowed with a non-discrete Hausdorff definable
field topology, namely K has a uniformly definable basis of
neighbourhoods of zero compatible with the field operations.
Furthermore, in this case the topology is induced either by a
non-trivial valuation or an absolute value.

Moreover, any definable subset of K has finite boundary and every
infinite definable set has non-empty interior (so K eliminates ∃∞,
namely there is a bound on a uniformly definable family of finite
sets).



Results of Simon and Walsberg on dp-minimal
fields-dimension

• In a dp-minimal field K, we have always the notion of a
topological dimension:
let X ⊆ Kn, then t-dim(X ) := max{` : there is a projection
π : Kn → K ` such that π(X ) has non-empty interior}.

Let X be a definable subset of Kn.
• One can define acl-dim as follows: acl-dim(ū/A) := min{` : there
is a subtuple d̄ of ū of length ` such that ū ∈ acl(A, d̄)}. Then
acl-dim(X/A) := max{acl-dim(ū/A) : ū ∈ X}.
Note that it is not assumed that acl has the exchange.

Theorem (Simon-Walsberg, to appear)

Then t-dim(X )=acl-dim(X ).

From now on we will use dim for any of these dimensions.



Correspondences

Definition

Let E , F be two definable subsets of Kn, then a correspondence f
is a definable subset graph(f ) of E × F such that

0 < |{y ∈ F : (x , y) ∈ graph(f )}| <∞, forall x ∈ E .

A correspondance f is an m-correspondence if for all x ∈ E ,
|{y ∈ F : (x , y) ∈ graph(f )}| = m.

Now for a dp-minimal field K, we will describe a generalisation of a
cell decomposition theorem due to L. Mathews (for certain
topological fields).



Results of Simon and Walsberg on dp-minimal
fields-definable sets

Let X be a A-definable subset of Kn with A a subset of K , then:

Theorem (Proposition 4.1, Simon-Walsberg, to appear)

There a finitely many A-definable subsets Xi with X =
⋃

Xi such
that Xi is the graph of a A-definable continuous m-correspondance
f : Ui ⇒ Kn−d , where Ui is a A-definable open subset of Kd , for
some 0 ≤ d ≤ n.

Conventions: if d = 0, f : K 0 ⇒ Kn−d , then graph(f ) is identified
with a finite set and if d = n, f : U ⇒ K 0, graph(f ) is identified
with U (an open subset of Kn).

Theorem (Proposition 4.3, Simon-Walsberg, to appear)

Let Fr(X ) := closure(X ) \ X , then dim(Fr(X )) < dim(X ).



Theories of large fields

Let K be a topological field (K ,+,−, ·, 0, 1, · · · ) of characteristic 0
and assume that χ(x , ȳ) be an L-formula such that for any ā ⊂ K ,
χ(K , ā) is an open neighbourhood of 0 in K . We put the product
topology on Kn.

From now on we will always consider a language L which is a
relational expansion of the ring (field) language and we assume
that every relation and its complement is the union of an algebraic
set set and an open subset.

Let T be the theory of K. We will assume that T admits
quantifier elimination in the language L.



Examples

Let L be the language of fields. Let div be a binary relation.

1 Let L< := L ∪ {<}, then RCF admits quantifier elimination
(Tarski),

2 Let Lp := L ∪ {div , c1, · · · , cd ,Pn; n ≥ 1}, then pCFd admits
quantifier elimination in Lp (Macintyre, Prestel-Roquette).

3 Let L<,div := L< ∪ {div}, then RCVF admits
quantifier-elimination (Cherlin-Dickmann).

4 Let Ldiv := L ∪ {div}, then ACVF admits
quantifier-elimination (Robinson).

In all the above cases, the relations and their complements satisfy
the hypothesis to be the union of an open set with an algebraic
set. Moreover any definable set is a finite union of an algebraic set
and an open set.



Differential expansions

We consider the generic expansion of K with a derivation δ,
namely we put no a priori continuity assumptions on δ.
Denote by LD := L ∪ {δ} and TD the LD-theory T∪ {δ is a
derivation }.

Question: under which conditions, the class of existentially closed
models is well-behaved?



Scheme (DL)

Let T and χ be as before. Set T ∗D := TD ∪ (DL), where (DL) is
the following list of axioms:

Let K |= T . For each n ≥ 1, let
Vn := {χ(K , ā1)× · · · × χ(K , ān) : āi ⊂ K , 1 ≤ i ≤ n} be a
(definable) basis of neighbourhoods of 0̄ in Kn.

K satisfies (DL) if for every n ≥ 1, for every differential polynomial
f (X ) ∈ K{X}, with f (X ) = f ∗(X ,X (1), . . . ,X (n)) and for every
W ∈ Vn, we have:
(∃α0, . . . , αn ∈ K )(f ∗(α0, . . . , αn) = 0 ∧ s∗f (α0, . . . , αn) 6= 0)⇒(

(∃z)
(
f (z) = 0 ∧ sf (z) 6= 0 ∧ (z(0) − α0, . . . , z

(n) − αn) ∈W
))

.



Axiomatisation of differential t-large e.c. topological fields
of characteristic 0

Under the further hypothesis, called t-large–it adapts in this
topological setting the property of largeness-, we show that the
theory T ∗D is consistent and axiomatize the class of existentially
closed models of TD .

Theorem (Guzy-P)

Let T be a theory of topological t-large L-fields of characteristic 0,
admitting quantifier elimination.
Then T ∗D is the model-completion of TD and admits quantifier
elimination.



t-large fields

Let K be a model of T and consider the iterated Laurent series
field extension K ((Zn)) := K ((t1)) · · · ((tn)) endowed with the
valuation map v taking its values in the lexicographic product Zn

of n copies of 〈Z,+,−, <, 0, 1〉. We endow K ((Zn)) with the
following fundamental system of neighbourhoods W of zero:

WV ,0 := {a ∈ K ((Zn)) : a =
∑
γ≥0

αγ .t
γ , α0 ∈ V with V ∈ V},

and for γ ∈ (Zn)≥0, Wγ := {a ∈ K ((Zn)) : v(a) ≥ γ}.

We will denote the corresponding topological structure by
〈K ((Zn)),W〉 and let WK ,0 := {WV ,0; V ∈ V}. It is easy to see
that 〈K ((Zn)),W〉 is a topological Lrings -extension of 〈K ,V〉.



A model K of T is t-large if:

given the topological Lrings-extension 〈K ((Zn)),W〉 of K and a
polynomial f (X ) ∈ K ((Zn))[X ] with coefficients in WK ,0,
if f (a) ∼WK ,0

0 and f ′2(a) 6∼WK ,0
0 for some element a ∈WK ,0,

then there exists L̃ a model of T extending K ((Zn)) such that

1 ti ∼K 0, i = 1, . . . , n and

2 there exists an element b of L̃ with f (b) = 0 and a ∼K b.

Note that if L is the language of rings and if K is a large field,
then K is t-large.



Examples

• We obtain for the theory T ∗D :

1 CODF in case T = RCF ,

2 RCVF ∗D in case T = RCVF (an expansion of CODF),

3 pCF ∗D in case T =p CF ,

4 ACVF0,0
∗
D in case T = ACVF0,0 (an expansion of DCF0),



Some notation-(prolongations)

By assumption on L, any LD-term t(x) with x = (x1, . . . , xn), is
equivalent, modulo the theory of differential fields, to an L-term
t∗(δ̄m1(x1), · · · , δ̄mn(xn)) for some (m1, · · · ,mn) ∈ Nn.
So, we may associate with any quantifier-free LD-formula ϕ(x) an
equivalent LD-formula, modulo the theory of differential fields, of
the form ϕ∗(δ̄m(x)), m ∈ N, where ϕ∗ is a L-quantifier-free
formula which arises by uniformly replacing every occurrence
of δm(xi ) by a new variable ym

i in ϕ with the following choice for
the order of variables ϕ∗(y0

1 , · · · , ym
1 , · · · , y0

n , · · · , ym
n ). So we get

ϕ(x1, . . . , xn)⇔ ϕ∗(δ̄m(x1), . . . , δ̄m(xn)).



Order of a definable set

Let A ⊂ K , set Jetm(A) for {δ̄m(a) : a ∈ A}, where
δ̄m(a) := (a, δ(a), · · · , δm(a)).
Likewise for A ⊂ Kn, set Jetm(A) := {δ̄m(a) : a ∈ A} ⊂ K (m+1)n,
where for a = (a1, . . . , an) ∈ Kn, δ̄m(a) := (δ̄m(a1), . . . , δ̄m(an)) ∈
K (m+1)n.

Since T ∗D admits quantifier elimination, every LD-definable set
X ⊆ Kn is of the form Jet−1m (Y ) for some quantifier-free
L-definable set Y ⊆ K (m+1)n.

DEFINITION (Order)

Let X ⊆ Kn be an LD-definable set. The order of X , denoted by
o(X ), is the smallest integer m such that X = Jet−1m (Y ) for some
L-definable set Y ⊆ K (m+1)n.



First properties (direct consequences of the axiomatisation)

Let K |= T ∗D and denote by CK its subfield of constants.
Using the axiomatisation (respectively the geometrical
axiomatisation), two observations:

• Then CK is dense in K .

• (Brouette, Cousins, Pillay, P.–in case L is the language of rings–)
Then CK |= T .

Using the fact that T ∗D admits q.e. (and the forgetful functor), one
can observe:

• (Guzy-P.)If T is NIP, then T ∗D is NIP.

• (Chernikov, 2015) If T is distal, then T ∗D is distal.



Open core

Now we wish to associate with an LD-definable set A, an
L-definable set where the differential points coming from A are
dense.

Let K be a model of T ∗D and assume that it is |K0|+-saturated
where K0 be a differential subfield of K .

Property (?): For any X ⊆ Kn LD-definable non-empty subset,
there is an integer m ≥ o(X ) and an L-definable set Z ⊆ K (m+1)n

such that

1 x ∈ X if and only if Jetm(x) ∈ Z and

2 Z = Jetm(X ).

Note that equivalently in Property (?) one can require that
m = o(X ).



Kolchin polynomial

The L-definable set Z decomposes as a finite disjoint union of cells
C .
Let ū ∈ X and assume that δ̄(ū) belongs to such cell C and
assume it is a L-generic point of C . By hypothesis there is a
projection π[m1,··· ,mn] such that π[m1,··· ,mn](C ) is an open subset of

K (o(X )+1).n, mi ≤ o(X ) + 1, 1 ≤ i ≤ n.
Let α = |{1 ≤ i ≤ n : mi = m + 1}| and
β =

∑n
i=1(m + 1−mi ).

Consider the subfields K
[t]
0 := K0(δ̄t(ū)) of K , t ∈ ω.

Theorem (Johnson, Pong)

The transcendence degree of K
[t]
0 over K0 stabilises for t

sufficiently big and is equal to α.t + β

The coefficient α is the differential transcendence degree of
K0(δ̄`(ū); ` ∈ ω) over K0.



Open core

DEFINITION

Let K |= T . Then (K,D) has L-open core if every LD-definable
open subset is L-definable.
An LD-expansion of T has L-open core if every model of that
expansion has L-open core.

Lemma

Property (?) is equivalent to: T ∗D has L-open core.

(⇒) one shows that given an LD-definable set X , its closure X̄ is
L-definable.
Indeed, X̄ = π(Z̄ ), where Z has the property (?) and π is the
projection sending each block of (m + 1) coordinates to its first
coordinate.



Open core-continued

(⇐) Conversely, if the theory T ∗D has L-open core, then:

If X ⊆ Kn is a non-empty Lδ-definable set, there is an L-definable
set Z ⊆ K (o(X )+1)n such that (?)

1 x ∈ X if and only if Jeto(X )(x) ∈ Z and

2 Z = Jeto(X )(X ).

Take Y ⊂ K (o(X )+1)n be an L-definable set such that
X = Jet−1o(x)(Y ). Set Z := Y ∩ Jeto(X )(X ). Since Jeto(X )(X ) is

both closed and Lδ-definable, it is L-definable since T ∗D has open
core. So the set Z is L-definable. Since
Jeto(X )(X ) ⊆ Z ⊆ Jeto(X )(X ), both properties (1) and (2) are
easily shown.



Elimination of imaginaries

Given an automorphism σ and a set X , we say that X is
σ-invariant if σ fixes X setwise. We say that a theory T admits
elimination of imaginaries if every definable set X has a code e,
namely for any automorphism σ, X σ-invariant iff it fixes e.

Theorem

Suppose that T admits elimination of imaginaries in some
expansion LG of L and that definable subsets in models of T are
endowed with a dimension function dim as before. Suppose that
the theory T ∗D has L-open core .Then the theory T ∗D admits
elimination of imaginaries in LGD .

We follow an idea of Marcus Tressl, associating to an LD-definable
set X , the pair of L-definable sets: (Z , Jet−1o(X )(Z ) \ X ).



Elimination of imaginaries

Let X be a non-empty LD-definable set.
Consider the LD-definable set X̃ := Jet−1o(X )(Z ). Recall that Z is

L-definable. We proceed by induction on dim(Z ).
If dim(Z ) = 0, X is finite.

Claim: dim(Jeto(X )(X̃ \ X )) < dim(Z ).
Suppose the Claim holds, so by induction hypothesis there is e1 a
code for X̃ \ X . Let e2 be a code for Z . Then (e1, e2) is a code for
X .
To show the Claim: we apply both properties of Z and the
following property of dim:

dim(Jeto(X )(X̃ \ X )) ≤ dim(Fr(Z )) < dim(Z ).



Elimination of imaginaries

Fact: CODF has L-open core.
Proof: it eliminates ∃∞ and it is definably complete.

• In case T = RCF , we obtain yet another proof that CODF
admits elimination of imaginaries (e.i.) in the language of
differential fields.

• In case T = RCVF and T =p CF , we know which sorts to add
to L in order to get e.i. and so it transfers to the corresponding
T ∗D , modulo the proof that T ∗D has L-open core. In those two
cases, one can show that using the following property of
continuous LD-definable functions.



Continuous functions

Let T be either one of the following L-theories RCF ,RCVF ,p CF ,
then:

Theorem

Let K be a model of T ∗D , let X ⊂ Kn be an L-definable subset and
let f be a continuous LD-definable function from X to K , then f
is L-definable.

Corollary

T ∗D has L-open core.



Applications to dense pairs

Let L2 := L ∪ {P} where P is a new unary predicate P and let T 2

be the L2-theory of the pairs (K ,F ) (i.e., P is interpreted in K by
F ) with F 4L K , F 6= K and F dense in K .

Theorem (van den Dries, Fornasiero)

The theory T 2 is complete.

Fact

Let K be a model of T ∗D . Then (K ,CK ) is a model of T 2.

Observation Every model (K ,F ) of T 2 has an L2-elementary
extension (K ∗,F ∗) such that K ∗ is a model of T ∗D with constant
field CK∗ = F ∗.

So we get another proof of:

Theorem (Boxall and Hieronymi)

T 2 has L-open core.



Lemma

Let (K ,F ) be a pair of real-closed fields with F a dense subfield.
Then (K ,F ) has an elementary extension (K ∗,F ∗) which has a
distal expansion.

Theorem (Hieronymi, Nell, 2017)

Let T be an o-minimal theory extending the theory of ordered
abelian groups. Then the theory T 2 is not distal.

Theorem (Nell, 2018)

Consider the pair (A,B) with A an ordered vector space and B a
dense subspace. Then it has a distal expansion, namely
(A,B,A/B,+, 0, <).



Let M be a saturated model of T ∗D .

Definition (Hieronymi, Nell (2017))

Let ϕ(x1, · · · , xn; y) be a partitioned L-formula, where xi ,
1 ≤ i ≤ n is a p-tuple of variables and y is a q-tuple of variables,
p, q > 0. Then ϕ is distal (in T ) if for every b ∈ Mq, and every
indiscernible sequence (ai )i∈I in Mp such that

1 I = I1 + c + I2, where both I1, I2 are (countable) infinite dense
linear orders without end points and c is a single element with
I1 < c < I2,

2 the sequence (ai )i∈I1+I2 in Mp is indiscernible over b,

then M |= ϕ(ai1 , · · · , ain ; b)↔ ϕ(aj1 , · · · , ajn ; b) with
i1 < · · · < in, j1 < · · · < jn in I .

Theorem (Chernikov)

Assume that T is a distal theory of topological L-fields and that T
admits quantifier elimination. Then T ∗D is distal.



Erdős-Hajnal property

Definition

Let A be a first-order structure and R ⊂ Am × An a definable
relation.

1 A pair of subsets E1 ⊂ Am,E2 ⊂ An are R-homogeneous if
either E1 × E2 ⊂ R, or E1 × E2 ∩ R = ∅.

2 the relation R has the strong Erdős-Hajnal property if there is
a constant c(R) such that for every finite subsets
E1 ⊂ Am,E2 ⊂ An there are subsets E 0

1 ⊂ E1, E 0
2 ⊂ E2 such

that |E 0
1 | ≥ c .|E1|, |E 0

2 | ≥ c .|E2| and the pair E 0
1 , E 0

2 is
R-homogeneous.



Erdős-Hajnal property

Theorem (Chernikov and Starchenko)

Definable relations in an arbitrary differentially closed field of
characteristic 0 satisfy the strong Erdős-Hajnal property.

One uses the fact that any model of CODF interprets a model of
DCF0 (Singer).

Corollary (to Chernikov’s theorem)

Definable relations in a dense pair of real-closed fields satisfy the
strong Erdős-Hajnal property.


