A truly universal ordinary differential equation

Amaury Pouly ${ }^{1}$
Joint work with Olivier Bournez²

${ }^{1}$ Max Planck Institute for Software Systems, Germany
${ }^{2}$ LIX, École Polytechnique, France
11 May 2018

Universal differential algebraic equation (Rubel)

Theorem (Rubel, 1981)

For any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ to

$$
\begin{aligned}
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime 2} & -4 y^{\prime 4} y^{\prime \prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{\prime 3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime} \\
& -12 y^{\prime 3} y^{\prime \prime} y^{\prime \prime \prime}-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime 2}+12 y^{\prime \prime 7}
\end{aligned}=0
$$

such that $\forall t \in \mathbb{R}$,

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

Universal differential algebraic equation (Rubel)

Theorem (Rubel, 1981)

There exists a fixed k and nontrivial polynomial p such that for any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ to

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0
$$

such that $\forall t \in \mathbb{R}$,

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

Universal differential algebraic equation (Rubel)

Open Problem

Can we have unicity of the solution with initial conditions?

Theorem (Rubel, 1981)

There exists a fixed k and nontrivial polynomial p such that for any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ to

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0
$$

such that $\forall t \in \mathbb{R}$,

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

Rubel's ("disappointing") proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise. It satisfies $\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0$.

Rubel's ("disappointing") proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

$$
\text { It satisfies }\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0
$$

- For any $a, b, c \in \mathbb{R}, y(t)=c f(a t+b)$ satisfies

$$
\begin{aligned}
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime} 2 & -4 y^{\prime 4} y^{\prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime} \\
& -12 y^{3} y^{\prime \prime} y^{\prime \prime \prime}-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime}+12 y^{\prime \prime 7}=0
\end{aligned}
$$

Rubel's ("disappointing") proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

It satisfies $\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0$.

- For any $a, b, c \in \mathbb{R}, y(t)=c f(a t+b)$ satisfies

$$
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime} 2-4 y^{4} y^{\prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{\prime 3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime}-12 y^{3} y^{\prime \prime} y^{\prime \prime \prime} 3-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime}+12 y^{\prime \prime 7}=0
$$

- Can glue together arbitrary many such pieces \sim crucial (and tricky) part of the proof

Rubel's ("disappointing") proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

$$
\text { It satisfies }\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0
$$

- For any $a, b, c \in \mathbb{R}, y(t)=c f(a t+b)$ satisfies

$$
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime} 2-4 y^{4} y^{\prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{\prime 3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime}-12 y^{\prime 3} y^{\prime \prime} y^{\prime \prime \prime} 3-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime}{ }^{2}+12 y^{\prime \prime 7}=0
$$

- Can glue together arbitrary many such pieces \leadsto crucial (and tricky) part of the proof
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Rubel's ("disappointing") proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

It satisfies $\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0$.

- For any $a, b, c \in \mathbb{R}, y(t)=c f(a t+b)$ satisfies

$$
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime 2}-4 y^{\prime 4} y^{\prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{\prime 3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime}-12 y^{\prime 3} y^{\prime \prime} y^{\prime \prime \prime 3}-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime} 2+12 y^{\prime \prime 7}=0
$$

- Can glue together arbitrary many such pieces \leadsto crucial (and tricky) part of the proof
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are dense in C^{0}

The problem with Rubel's DAE

The solution y is not unique, even with added initial conditions :

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0, \quad y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, \ldots, y^{(k)}(0)=\alpha_{k}
$$

In fact, this is fundamental for Rubel's proof to work!

The problem with Rubel's DAE

The solution y is not unique, even with added initial conditions :

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0, \quad y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, \ldots, y^{(k)}(0)=\alpha_{k}
$$

In fact, this is fundamental for Rubel's proof to work!

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE $y^{\prime}=p(y)$?
Note : explicit polynomial $O D E \Rightarrow$ unique solution

Universal explicit ordinary differential equation

Main result

There exists a fixed (vector of) polynomial p such that for any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t)
$$

Universal explicit ordinary differential equation

Notes:
 - system of ODEs,

- y must be analytic,
- we need $d \approx 300$.

Main result

There exists a fixed (vector of) polynomial p such that for any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t)
$$

Universal explicit ordinary differential equation

Notes:

- system of ODEs,
- y must be analytic,
- we need $d \approx 300$.

Main result

There exists a fixed (vector of) polynomial p such that for any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t)
$$

Futhermore, α is computable ${ }^{\dagger}$ from f and ε.
\dagger. This statement can be made precise with the theory of Computable Analysis.

Universal DAE, again but better

Corollary of main result

There exists a fixed k and nontrivial polynomial p such that for any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists $\alpha_{0}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0, \quad y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, \ldots, y^{(k)}(0)=\alpha_{k}
$$

has a unique analytic solution $y: \mathbb{R} \rightarrow \mathbb{R}$ and $\forall t \in \mathbb{R}$,

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

- They are equivalent to Turing machines !
- One can characterize \mathbf{P} with pODEs (ICALP 2016)

Take away : polynomial ODEs are a natural programming language.

Example of differential equation

General Purpose Analog Computer (GPAC) Shannon's model of the Differential Analyser

$$
\ddot{\theta}+\frac{g}{\ell} \sin (\theta)=0
$$

$$
\left\{\begin{array} { l }
{ y _ { 1 } ^ { \prime } = y _ { 2 } } \\
{ y _ { 2 } ^ { \prime } = - \frac { g } { \ell } y _ { 3 } } \\
{ y _ { 3 } ^ { \prime } = y _ { 2 } y _ { 4 } } \\
{ y _ { 4 } ^ { \prime } = - y _ { 2 } y _ { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
y_{1}=\theta \\
y_{2}=\dot{\theta} \\
y_{3}=\sin (\theta) \\
y_{4}=\cos (\theta)
\end{array}\right.\right.
$$

A brief stop

Before I can explain the proof, you need to know more of polynomial ODEs and what I mean by programming with ODEs.

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Note : existence and unicity of y by Cauchy-Lipschitz theorem.

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=x \quad>$ identity

$$
y(0)=0, \quad y^{\prime}=1 \quad \leadsto \quad y(x)=x
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=x^{2} \quad>$ squaring

$$
\begin{array}{ll}
y_{1}(0)=0, & y_{1}^{\prime}=2 y_{2}
\end{array} \leadsto y_{1}(x)=x^{2}, ~(0)=y_{2}(x)=x .
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example: $f(x)=x^{n}>n^{\text {th }}$ power

$$
\begin{array}{rllc}
y_{1}(0)=0, & y_{1}^{\prime}=n y_{2} & \leadsto y_{1}(x)=x^{n} \\
y_{2}(0)=0, & y_{2}^{\prime}=(n-1) y_{3} & \sim & y_{2}(x)=x^{n-1} \\
\ldots & \ldots & & \ldots \\
y_{n}(0)=0, & y_{n}=1 & \sim & y_{n}(x)=x
\end{array}
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=\exp (x) \quad \triangleright$ exponential

$$
y(0)=1, \quad y^{\prime}=y \quad y(x)=\exp (x)
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.
Example : $f(x)=\sin (x)$ or $f(x)=\cos (x)$

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

$$
\begin{array}{ll}
y_{1}(0)=0, & y_{1}^{\prime}=y_{2} \\
y_{2}(0)=1, & y_{2}^{\prime}=-y_{1} \sim y_{1}(x)=\sin (x) \\
y_{2}(x)=\cos (x)
\end{array}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=\tanh (x) \quad>$ hyperbolic tangent

$$
y(0)=0, \quad y^{\prime}=1-y^{2} \leadsto y(x)=\tanh (x)
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=\frac{1}{1+x^{2}} \quad>$ rational function

$$
\begin{gathered}
f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}=-2 x f(x)^{2} \\
y_{1}(0)=1, \quad y_{1}^{\prime}=-2 y_{2} y_{1}^{2} \\
\leadsto y_{1}(x)=\frac{1}{1+x^{2}} \\
y_{2}(0)=0, \quad y_{2}^{\prime}=1
\end{gathered} \sim y_{2}(x)=x .
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g \pm h \quad \triangleright$ sum/difference

$$
(g \pm h)^{\prime}=g^{\prime} \pm h^{\prime}
$$

assume:

$$
\begin{array}{rlrl}
z(0) & =z_{0}, & z^{\prime}=p(z) & \leadsto z_{1}=g \\
w(0)=w_{0}, & w^{\prime}=q(w) & \leadsto \quad w_{1}=h
\end{array}
$$

then:

$$
y(0)=z_{0,1}+w_{0,1}, \quad y^{\prime}=p_{1}(z) \pm q_{1}(w) \quad \leadsto \quad y=z_{1} \pm w_{1}
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g h \quad \triangleright$ product

$$
(g h)^{\prime}=g^{\prime} h+g h^{\prime}
$$

assume :

$$
\begin{aligned}
z(0) & =z_{0}, & z^{\prime}=p(z) & \sim z_{1}=g \\
w(0)=w_{0}, & w^{\prime}=q(w) & \sim & w_{1}=h
\end{aligned}
$$

then :

$$
y(0)=z_{0,1} w_{0,1}, \quad y^{\prime}=p_{1}(z) w_{1}+z_{1} q_{1}(w) \leadsto y=z_{1} w_{1}
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=\frac{1}{g}$

- inverse

$$
f^{\prime}=\frac{-g^{\prime}}{g^{2}}=-g^{\prime} f^{2}
$$

assume :

$$
z(0)=z_{0}, \quad z^{\prime}=p(z) \quad \leadsto z_{1}=g
$$

then:

$$
y(0)=\frac{1}{z_{0,1}}, \quad y^{\prime}=-p_{1}(z) y^{2} \leadsto \quad y=\frac{1}{z_{1}}
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=\int g \quad$ integral
assume:

$$
z(0)=z_{0}, \quad z^{\prime}=p(z) \leadsto z_{1}=g
$$

then:

$$
y(0)=0, \quad y^{\prime}=z_{1} \quad \leadsto \quad y=\int z_{1}
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g^{\prime} \quad \triangleright$ derivative

$$
f^{\prime}=g^{\prime \prime}=\left(p_{1}(z)\right)^{\prime}=\nabla p_{1}(z) \cdot z^{\prime}
$$

assume:

$$
z(0)=z_{0}, \quad z^{\prime}=p(z) \quad \leadsto z_{1}=g
$$

then:

$$
y(0)=p_{1}\left(z_{0}\right), \quad y^{\prime}=\nabla p_{1}(z) \cdot p(z) \leadsto y=z_{1}^{\prime \prime}
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g \circ h \quad \triangleright$ composition

$$
(z \circ h)^{\prime}=\left(z^{\prime} \circ h\right) h^{\prime}=p(z \circ h) h^{\prime}
$$

assume:

$$
\begin{aligned}
& z(0)=z_{0}, \quad z^{\prime}=p(z) \quad \leadsto \quad z_{1}=g \\
& w(0)=w_{0}, \quad w^{\prime}=q(w) \quad \sim \quad w_{1}=h
\end{aligned}
$$

then :

$$
y(0)=z\left(w_{0}\right), \quad y^{\prime}=p(y) z_{1} \quad \leadsto \quad y=z \circ h
$$

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g \circ h \quad \triangleright$ composition

$$
(z \circ h)^{\prime}=\left(z^{\prime} \circ h\right) h^{\prime}=p(z \circ h) h^{\prime}
$$

assume:

$$
\begin{array}{rlrl}
z(0)=z_{0}, & & z^{\prime}=p(z) & \leadsto \\
w(0)=z_{0} & =g \\
w & & w^{\prime}=q(w) & \leadsto w_{1}=h
\end{array}
$$

then:

$$
y(0)=z\left(w_{0}\right), \quad y^{\prime}=p(y) z_{1} \quad \leadsto \quad y=z \circ h
$$

Is this coefficient in \mathbb{K} ?

Generable functions (total, univariate)

Definition
 Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g \circ h \quad \triangleright$ composition

$$
(z \circ h)^{\prime}=\left(z^{\prime} \circ h\right) h^{\prime}=p(z \circ h) h^{\prime}
$$

assume :

$$
\begin{array}{rlrl}
z(0)=z_{0}, & & z^{\prime}=p(z) & \leadsto \\
w(0)=z_{0} & =g \\
w & & w^{\prime}=q(w) & \leadsto w_{1}=h
\end{array}
$$

then:

$$
y(0)=z\left(w_{0}\right), \quad y^{\prime}=p(y) z_{1} \quad \leadsto \quad y=z \circ h
$$

Is this coefficient in \mathbb{K} ? Fields with this property are called generable.

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p

- $d \in \mathbb{N}$: dimension and y_{0} such that the solution y to
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector (coef. in \mathbb{K})
satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.
- $y_{0} \in \mathbb{K}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f^{\prime}=\tanh \circ f \quad$ Non-polynomial differential equation

$$
f^{\prime \prime}=\left(\tanh ^{\prime} \circ f\right) f^{\prime}=\left(1-(\tanh \circ f)^{2}\right) f^{\prime}
$$

$$
\begin{array}{lll}
y_{1}(0)=f(0), & y_{1}^{\prime}=y_{2} & \leadsto y_{1}(x)=f(x) \\
y_{2}(0)=\tanh (f(0)), & y_{2}^{\prime}=\left(1-y_{2}^{2}\right) y_{2} & \sim
\end{array} y_{2}(x)=\tanh (f(x))
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.
Example: $f(0)=f_{0}, f^{\prime}=g \circ f \quad \perp$ Initial Value Problem (IVP)

$$
f^{\prime}=g^{\prime \prime}=\left(p_{1}(z)\right)^{\prime}=\nabla p_{1}(z) \cdot z^{\prime}
$$

assume :

$$
z(0)=z_{0}, \quad z^{\prime}=p(z) \quad \leadsto z_{1}=g
$$

then:

$$
y(0)=p_{1}\left(z_{0}\right), \quad y^{\prime}=\nabla p_{1}(z) \cdot p(z) \leadsto y=z_{1}^{\prime \prime}
$$

Generable functions : a first summary

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /$, o and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ
- solutions to polynomial ODEs form a very large class

Generable functions : a first summary

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /$, o and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ
- solutions to polynomial ODEs form a very large class

Limitations:

- total functions
- univariate

Generable functions (generalization)

Definition

$f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_{0}, y_{0}, y$ such that

$$
y\left(x_{0}\right)=y_{0}, \quad J_{y}(x)=p(y(x))
$$

and $f(x)=y_{1}(x)$ for all $x \in X$.
$J_{y}(x)=$ Jacobian matrix of y at x

Notes:

- Partial differential equation!
- Unicity of solution y...
- ... but not existence (ie you have to show it exists)

Generable functions (generalization)

Definition

$f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_{0}, y_{0}, y$ such that

$$
y\left(x_{0}\right)=y_{0}, \quad J_{y}(x)=p(y(x))
$$

and $f(x)=y_{1}(x)$ for all $x \in X$.
$J_{y}(x)=$ Jacobian matrix of y at x
Example : $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} \quad(n=2, d=3)$

$$
y(0,0)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad J_{y}=\left(\begin{array}{cc}
y_{3}^{2} & 3 y_{2} y_{3} \\
1 & 0 \\
0 & 1
\end{array}\right) \quad y(x)=\left(\begin{array}{c}
x_{1} x_{2}^{2} \\
x_{1} \\
x_{2}
\end{array}\right)
$$

Generable functions (generalization)

Definition

$f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_{0}, y_{0}, y$ such that

$$
y\left(x_{0}\right)=y_{0}, \quad J_{y}(x)=p(y(x))
$$

and $f(x)=y_{1}(x)$ for all $x \in X$.
$J_{y}(x)=$ Jacobian matrix of y at x

Types

- $n \in \mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}\left[\mathbb{R}^{d}\right]$: polynomial matrix
- $x_{0} \in \mathbb{K}^{n}$
- $y_{0} \in \mathbb{K}^{d}, y: X \rightarrow \mathbb{R}^{d}$

Example : $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2}$

- monomial

$$
\begin{array}{llllr}
y_{1}(0,0)=0, & \partial_{x_{1}} y_{1}=y_{3}^{2}, & \partial_{x_{2}} y_{1}=3 y_{2} y_{3} & \sim & y_{1}(x)=x_{1} x_{2}^{2} \\
y_{2}(0,0)=0, & \partial_{x_{1}} y_{2}=1, & \partial_{x_{2}} y_{2}=0 & \sim & y_{2}(x)=x_{1} \\
y_{3}(0,0)=0, & \partial_{x_{1}} y_{3}=0, & \partial_{x_{2}} y_{3}=1 & \sim & y_{3}(x)=x_{2}
\end{array}
$$

This is tedious!

Generable functions (generalization)

Definition

$f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_{0}, y_{0}, y$ such that

$$
y\left(x_{0}\right)=y_{0}, \quad J_{y}(x)=p(y(x))
$$

and $f(x)=y_{1}(x)$ for all $x \in X$.
$J_{y}(x)=$ Jacobian matrix of y at x

Types

- $n \in \mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}\left[\mathbb{R}^{d}\right]$: polynomial matrix
- $x_{0} \in \mathbb{K}^{n}$
- $y_{0} \in \mathbb{K}^{d}, y: X \rightarrow \mathbb{R}^{d}$
- inverse function

$$
y(1)=1, \quad \partial_{x} y=-y^{2} \quad \leadsto \quad y(x)=\frac{1}{x}
$$

Generable functions : summary

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ
- requires partial differential equations

Generable functions : summary

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ
- requires partial differential equations

Exercice : are all analytic functions generable?

Generable functions : summary

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ
- requires partial differential equations

Exercice : are all analytic functions generable? No Riemann Γ and ζ are not generable.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Why is this useful?

Writing polynomial ODEs by hand is hard.
Using generable functions, we can build complicated multivariate partial functions using other operations, and we know they are solutions to polynomial ODEs by construction.

Why is this useful?

Writing polynomial ODEs by hand is hard.
Using generable functions, we can build complicated multivariate partial functions using other operations, and we know they are solutions to polynomial ODEs by construction.

Example (almost rounding function)

There exists a generable function round such that for any $n \in \mathbb{Z}, x \in \mathbb{R}$, $\lambda>2$ and $\mu \geqslant 0$:

- if $x \in\left[n-\frac{1}{2}, n+\frac{1}{2}\right]$ then $|\operatorname{round}(x, \mu, \lambda)-n| \leqslant \frac{1}{2}$,
- if $x \in\left[n-\frac{1}{2}+\frac{1}{\lambda}, n+\frac{1}{2}-\frac{1}{\lambda}\right]$ then $|\operatorname{round}(x, \mu, \lambda)-n| \leqslant e^{-\mu}$.

Reminder of the result

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t) .
$$

A simplified proof

binary stream generator

$\alpha \in \mathbb{R} \longrightarrow \mathrm{ODE} \longrightarrow \uparrow 0$| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | \cdots | | | | | | |t This is the ideal curve, the real

one is an approximation of it.

A simplified proof

binary stream generator

digits of α

$\alpha \in \mathbb{R} \longrightarrow \mathrm{ODE} \longrightarrow \uparrow$| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\cdots, t

"Digital" to Analog
Converter (fixed frequency)

Approximate Lipschitz and bounded functions with fixed precision.

That's the trickiest part.

A simplified proof

binary stream generator

digits of α

$\alpha \in \mathbb{R} \longrightarrow \widehat{O D E} \longrightarrow$| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\cdots t$

"Digital" to Analog
Converter (fixed frequency)

A simplified proof

binary stream generator

digits of α

$\alpha \in \mathbb{R} \longrightarrow \mathrm{ODE} \longrightarrow \uparrow$| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | \cdots | | | | | | |t

"Digital" to Analog
Converter (fixed frequency)

A less simplified proof

binary stream generator : digits of $\alpha \in \mathbb{R}$

$$
f(\alpha, \mu, \lambda, t)=\frac{1}{2}+\frac{1}{2} \tanh \left(\mu \sin \left(2 \alpha \pi 4^{\text {round }(t-1 / 4, \lambda)}+4 \pi / 3\right)\right)
$$

It's horrible, but generable

A less simplified proof

binary stream generator : digits of $\alpha \in \mathbb{R}$

dyadic stream generator: $d_{i}=m_{i} 2^{-d_{i}}, a_{i}=9 i+\sum_{j<i} d_{j}$

$$
\left.f(\alpha, \gamma, t)=\sin \left(2 \alpha \pi 2^{\text {round }(t-1 / 4, \gamma)}\right)\right)
$$

A less simplified proof

This copy operation is the "non-trivial" part.

A less simplified proof

We can do almost piecewise constant functions...

A less simplified proof

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

A less simplified proof

We can do almost piecewise constant functions...

- ...that are bounded by $1 . .$.
- ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a polynomial ODE even have arbitrary growth?

An old question on growth

Building a fast-growing ODE, that exists over \mathbb{R} :

$$
y_{1}^{\prime}=y_{1} \quad \sim \quad y_{1}(t)=\exp (t)
$$

An old question on growth

Building a fast-growing ODE, that exists over \mathbb{R} :

$$
\begin{array}{lll}
y_{1}^{\prime}=y_{1} & \sim & y_{1}(t)=\exp (t) \\
y_{2}^{\prime}=y_{1} y_{2} & \sim & y_{1}(t)=\exp (\exp (t))
\end{array}
$$

An old question on growth

Building a fast-growing ODE, that exists over \mathbb{R} :

$$
\begin{array}{lll}
y_{1}^{\prime}=y_{1} & \leadsto & y_{1}(t)=\exp (t) \\
y_{2}^{\prime}=y_{1} y_{2} & \sim & y_{1}(t)=\exp (\exp (t)) \\
\cdots & & \cdots \\
y_{n}^{\prime}=y_{1} \cdots y_{n} & \leadsto & y_{n}(t)=\exp (\cdots \exp (t) \cdots):=e_{n}(t)
\end{array}
$$

An old question on growth

Building a fast-growing ODE, that exists over \mathbb{R} :

$$
\begin{array}{lll}
y_{1}^{\prime}=y_{1} & \leadsto & y_{1}(t)=\exp (t) \\
y_{2}^{\prime}=y_{1} y_{2} & \sim & y_{1}(t)=\exp (\exp (t)) \\
\cdots & & \cdots \\
y_{n}^{\prime}=y_{1} \cdots y_{n} & \sim & y_{n}(t)=\exp (\cdots \exp (t) \cdots):=e_{n}(t)
\end{array}
$$

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than $\mathcal{O}_{t}\left(e_{n}\left(A t^{k}\right)\right)$.

An old question on growth

$e_{n}(t)=\exp (\cdots \exp (t) \cdots) \quad$ (n compositions)

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than $\mathcal{O}_{t}\left(e_{n}\left(A t^{k}\right)\right)$.
Counter-example (Vijayaraghavan, 1932)

$$
\frac{1}{2-\cos (t)-\cos (\alpha t)}
$$

Sequence of arbitrarily growing spikes.

An old question on growth

$$
e_{n}(t)=\exp (\cdots \exp (t) \cdots) \quad(n \text { compositions })
$$

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than $\mathcal{O}_{t}\left(e_{n}\left(A t^{k}\right)\right)$.
Counter-example (Vijayaraghavan, 1932)

$$
\frac{1}{2-\cos (t)-\cos (\alpha t)}
$$

Sequence of arbitrarily growing spikes. But not good enough for us.

An old question on growth

$$
e_{n}(t)=\exp (\cdots \exp (t) \cdots) \quad(n \text { compositions })
$$

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than $\mathcal{O}_{t}\left(e_{n}\left(A t^{k}\right)\right)$.
Counter-example (Vijayaraghavan, 1932)

$$
\frac{1}{2-\cos (t)-\cos (\alpha t)}
$$

Theorem (In the paper)

There exists a polynomial $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that for any continuous function $f: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}$, we can find $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

satisfies

$$
y_{1}(t) \geqslant f(t), \quad \forall t \geqslant 0
$$

An old question on growth

$$
e_{n}(t)=\exp (\cdots \exp (t) \cdots) \quad(n \text { compositions })
$$

Conjecture (Emil Borel, 1899)
With n variables, cannot do better than $\mathcal{O}_{t}\left(e_{n}\left(A t^{k}\right)\right)$.
Counter-example (Vijayaraghavan, 1932)

$$
\frac{1}{2-\cos (t)-\cos (\alpha t)}
$$

Theorem (In the paper)

There exists a polynomial $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that for any continuous function $f: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}$, we can find $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

satisfies

$$
y_{1}(t) \geqslant f(t), \quad \forall t \geqslant 0
$$

Note : both results require α to be transcendental. Conjecture still open for rational (or algebraic) coefficients.

Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Main result, remark and end

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any $f \in C^{0}(\mathbb{R})$ and $\varepsilon \in C^{0}\left(\mathbb{R}, \mathbb{R}_{>0}\right)$, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t)
$$

Futhermore, α is computable from f and ε.

Remarks:

- if f and ε are computable then α is computable
- if f or ε is not computable then α is not computable
- in all cases α is a horrible transcendental number

