A truly universal ordinary differential equation

Amaury Pouly¹ Joint work with Olivier Bournez²

¹Max Planck Institute for Software Systems, Germany

²LIX, École Polytechnique, France

11 May 2018

Universal differential algebraic equation (Rubel)

Theorem (Rubel, 1981)

For any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$3{y'}^{4}{y''}{y''''}^{2} -4{y'}^{4}{y'''}^{2}{y''''} + 6{y'}^{3}{y''}^{2}{y'''}{y''''} + 24{y'}^{2}{y''}^{4}{y''''} -12{y'}^{3}{y''}{y'''}^{3} - 29{y'}^{2}{y''}^{3}{y'''}^{2} + 12{y''}^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t) - f(t)| \leq \varepsilon(t).$

Universal differential algebraic equation (Rubel)

Theorem (Rubel, 1981)

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (Rubel)

Open Problem

Can we have unicity of the solution with initial conditions?

Theorem (Rubel, 1981)

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$\begin{array}{rcl} 3{y'}^4{y''}{y'''}^2 & -4{y'}^4{y''}^2{y'''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y'''}'\\ & -12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0 \end{array}$$

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

 Can glue together arbitrary many such pieces →crucial (and tricky) part of the proof

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces →crucial (and tricky) part of the proof
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces →crucial (and tricky) part of the proof
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work !

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work !

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)? Note : explicit polynomial ODE \Rightarrow unique solution

Universal explicit ordinary differential equation

Main result

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Universal explicit ordinary differential equation

Notes :

- system of ODEs,
- y must be analytic,
- we need $d \approx 300$.

Main result

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|\mathbf{y}_1(t) - f(t)| \leq \varepsilon(t).$

Universal explicit ordinary differential equation

Notes :

- system of ODEs,
- y must be analytic,
- we need $d \approx 300$.

Main result

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Futhermore, α is computable [†] from *f* and ε .

†. This statement can be made precise with the theory of Computable Analysis.

Universal DAE, again but better

Corollary of main result

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a **unique analytic solution** $y : \mathbb{R} \to \mathbb{R}$ and $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

- They are **equivalent** to Turing machines!
- One can characterize P with pODEs (ICALP 2016)

Take away : polynomial ODEs are a natural programming language.

Example of differential equation

General Purpose Analog Computer (GPAC) Shannon's model of the Differential Analyser

$$\ddot{ heta} + rac{g}{\ell} \sin(heta) = 0$$

$$\begin{cases} y'_{1} = y_{2} \\ y'_{2} = -\frac{g}{\ell} y_{3} \\ y'_{3} = y_{2} y_{4} \\ y'_{4} = -y_{2} y_{3} \end{cases} \Leftrightarrow \begin{cases} y_{1} = \theta \\ y_{2} = \dot{\theta} \\ y_{3} = \sin(\theta) \\ y_{4} = \cos(\theta) \end{cases}$$

Before I can explain the proof, you need to know more of polynomial ODEs and what I mean by programming with ODEs.

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ (x)Х

Note : existence and unicity of *y* by Cauchy-Lipschitz theorem.

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : f(x) = x identity $y(0) = 0, \qquad y' = 1 \quad \rightsquigarrow \quad y(x) = x$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f(x) = x^2$ squaring $y_1(0) = 0,$ $y'_1 = 2y_2 \rightsquigarrow y_1(x) = x^2$ $y_2(0) = 0,$ $y'_2 = 1 \rightsquigarrow y_2(x) = x$

Definition	Types
$f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $\textit{d} \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f(x) = x^n \rightarrow n^{th}$ power	
$y_1(0)=0, \qquad y_1'=ny_2$	\rightsquigarrow $y_1(x) = x^n$
$y_2(0)=0, \qquad y_2'=(n-1)y_3$	$\rightsquigarrow y_2(x) = x^{n-1}$
$y_n(0) = 0, y_n = 1$	$\rightsquigarrow y_n(x) = x$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f(x) = \exp(x)$ exponential $y(0)=1, \quad y'=y \quad \rightsquigarrow \quad y(x)=\exp(x)$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f(x) = \sin(x)$ or $f(x) = \cos(x)$ ▶ sine/cosine $y_1(0) = 0, \quad y'_1 = y_2 \quad \rightsquigarrow \quad y_1(x) = \sin(x)$ $v_2(0) = 1$, $v_2' = -v_1 \rightsquigarrow v_2(x) = \cos(x)$

Definition	Турез
$f:\mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $\textit{d} \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f(x) = tanh(x)$ hyperbolic tangent	
$y(0)=0, y'=1-y^2 \leadsto$	$y(x) = \tanh(x)$
	\rightarrow X
tanh(x)	

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f(x) = \frac{1}{1+x^2}$ rational function $f'(x) = \frac{-2x}{(1+x^2)^2} = -2xf(x)^2$ $y_1(0) = 1,$ $y'_1 = -2y_2y_1^2 \rightsquigarrow y_1(x) = \frac{1}{1+x^2}$ $y_2(0) = 0,$ $y'_2 = 1 \rightsquigarrow y_2(x) = x$

Definition	Types
$f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $d \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f = g \pm h$ > sum/difference	
$(g\pm h)'=g'\pm h'$	
assume :	
$z(0) = z_0, \qquad z' = p(z)$	$\rightarrow Z_1 = g$
$w(0) = w_0, \qquad w' = q(w)$	$\rightsquigarrow w_1 = h$
	$q_1(w) \rightsquigarrow y = z_1 \pm w_1$

Definition	Types
$f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $\textit{d} \in \mathbb{N}$: dimension
and y_0 such that the solution y to	$\bullet \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : field$
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f = gh$ product	
(gh)'=g'h+g	h'
assume :	
$z(0)=z_0, \qquad z'=p(z)$	$\sim z_1 = g$
$w(0)=w_0, \qquad w'=q(w)$	$\sim W_1 = h$
then :	
$y(0) = z_{0,1} w_{0,1}, \qquad y' = p_1(z) w_1 + $	$z_1 q_1(w) \rightsquigarrow y = z_1 w_1$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f = \frac{1}{a}$ hive rse $f' = \frac{-g'}{a^2} = -g'f^2$ assume : $z(0)=z_0, \qquad z'=p(z) \qquad \rightsquigarrow \quad z_1=g$ then: $y(0) = \frac{1}{z_{0,1}}, \quad y' = -p_1(z)y^2 \quad \rightsquigarrow \quad y = \frac{1}{z_1}$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f = \int g$ hitegral assume : $z(0)=z_0, \quad z'=p(z) \quad \rightsquigarrow \quad z_1=g$ then: $y(0)=0, \quad y'=z_1 \quad \rightsquigarrow \quad y=\int z_1$

Definition	Types
$f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $d \in \mathbb{N}$: dimension
and y_0 such that the solution y to	$\bullet \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : field$
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f = g'$ berivative	
$f'=g''=(p_1(z))'=\nabla p_1(z)\cdot z'$	
assume :	
$z(0)=z_0, \qquad z'=p(z)$	\rightsquigarrow $z_1 = g$
$y(0) = p_1(z_0), y' = \nabla p_1(z)$	$(\cdot p(z) \rightsquigarrow y = z_1'')$

Definition	Types
$f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $d \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f = g \circ h$ > composition	
$(z\circ h)'=(z'\circ h)h'=p(z\circ h)h'$	
assume :	
$z(0) = z_0, \qquad z' = p(z)$	$ \begin{array}{l} \rightsquigarrow z_1 = g \\ \rightsquigarrow w_1 = h \end{array} $
$w(0)=w_0, \qquad w'=q(w)$	$\rightsquigarrow W_1 = D$
$y(0) = z(w_0), \qquad y' = p(y)z$	$z_1 \rightsquigarrow y = z \circ h$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f = g \circ h$ \blacktriangleright composition $(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$ assume : $z(0)=z_0, \qquad z'=p(z) \quad \rightsquigarrow \quad z_1=g$ $w(0) = w_0, \qquad w' = q(w) \quad \rightsquigarrow \quad w_1 = h$ then: $v(0) = z(w_0), \quad y' = p(y)z_1 \quad \rightsquigarrow \quad y = z \circ h$ Is this coefficient in \mathbb{K} ?

Definition	Types
$f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $d \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f = g \circ h$ \blacktriangleright composition	
$(z\circ h)'=(z'\circ h)h'=p(z\circ h)h'$	
assume :	
$z(0) = z_0, \qquad z' = p(z)$	\rightsquigarrow $z_1 = g$
$w(0) = w_0, \qquad w' = q(w)$	$\rightsquigarrow w_1 = h$
then :	
$y(0) = \frac{z(w_0)}{y(y)}, \qquad y' = p(y)z$	$z_1 \rightsquigarrow y = z \circ h$
Is this coefficient in \mathbb{K} ? Fields with this property are called generable.	

Definition	Types
$f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $d \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f' = tanh \circ f$ Non-polynomial differential equation	
$f'' = (\tanh' \circ f)f' = (1 - (\tanh \circ f)^2)f'$	
$y_1(0) = f(0),$ $y'_1 = y_2$ $y_2(0) = \tanh(f(0)),$ $y'_2 = (1 - y_2^2)y_2$	\rightsquigarrow $y_1(x) = f(x)$
$y_2(0) = \tanh(f(0)), y_2' = (1 - y_2^2)y_2$	$\rightarrow y_2(x) = \tanh(f(x))$

Generable functions (total, univariate)

Definition	Types
$f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $d \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0,$ $y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f(0) = f_0, f' = g \circ f$ Initial Value Problem (IVP)	
$f'=g''=(p_1(z))'=\nabla p_1(z)\cdot z'$	
assume :	
$z(0)=z_0, \qquad z'=p(z)$	\rightsquigarrow $z_1 = g$
$y(0) = p_1(z_0), y' = \nabla p_1(z)$	$) \cdot p(z) \rightsquigarrow y = z_1''$

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- $\bullet\,$ stable under $\pm,\times,/,\circ\,$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ
- solutions to polynomial ODEs form a very large class

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ
- solutions to polynomial ODEs form a very large class

Limitations :

- total functions
- univariate

DefinitionTypes $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open
connected and $\exists d, p, x_0, y_0, y$ such that
 $y(x_0) = y_0, \quad J_y(x) = p(y(x))$ • $n \in \mathbb{N}$: input dimension
• $d \in \mathbb{N}$: dimension
• $d \in \mathbb{N}$: dimension
• $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$:
polynomial matrixand $f(x) = y_1(x)$ for all $x \in X$.• $x_0 \in \mathbb{K}^n$
• $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$

Notes :

- Partial differential equation !
- Unicity of solution y...
- ... but not existence (ie you have to show it exists)

Definition	Types
$f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open	• $n \in \mathbb{N}$: input dimension
connected and $\exists d, p, x_0, y_0, y$ such that	• $\textit{d} \in \mathbb{N}$: dimension
$y(x_0) = y_0, \qquad J_y(x) = p(y(x))$	 <i>p</i> ∈ K^{d×d}[ℝ^d] : polynomial matrix
and $f(x) = y_1(x)$ for all $x \in X$.	• $x_0 \in \mathbb{K}^n$
$J_y(x) =$ Jacobian matrix of y at x	• $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$
Example : $f(x_1, x_2) = x_1 x_2^2$ (<i>n</i> = 2, <i>d</i> = 3)	► monomial
$y(0,0) = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}, J_y = egin{pmatrix} y_3^2 & 3y_2y_3 \ 1 & 0 \ 0 & 1 \end{pmatrix}$	$ \ \rightarrow y(x) = \begin{pmatrix} x_1 x_2^2 \\ x_1 \\ x_2 \end{pmatrix} $

Definition	Types
$f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open	• $n \in \mathbb{N}$: input dimension
connected and $\exists d, p, x_0, y_0, y$ such that	• $\textit{d} \in \mathbb{N}$: dimension
$y(x_0) = y_0,$ $J_y(x) = p(y(x))$	• $p \in \mathbb{K}^{d imes d} [\mathbb{R}^d]$: polynomial matrix
and $f(x) = y_1(x)$ for all $x \in X$.	• $x_0 \in \mathbb{K}^n$
$J_y(x) =$ Jacobian matrix of y at x	• $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$
Example : $f(x_1, x_2) = x_1 x_2^2$ Monomial	
$\begin{array}{ll} y_1(0,0) = 0, & \partial_{x_1} y_1 = y_3^2, & \partial_{x_2} y_1 = \\ y_2(0,0) = 0, & \partial_{x_1} y_2 = 1, & \partial_{x_2} y_2 = \\ y_3(0,0) = 0, & \partial_{x_1} y_3 = 0, & \partial_{x_2} y_3 = \end{array}$	$0 \qquad \rightsquigarrow \qquad y_2(x) = \bar{x_1}$

This is tedious!

Definition Types $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open • $n \in \mathbb{N}$: input dimension **connected** and $\exists d, p, x_0, y_0, y$ such that • $d \in \mathbb{N}$: dimension • $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: $y(x_0) = y_0, \qquad J_v(x) = p(y(x))$ polynomial matrix and $f(x) = y_1(x)$ for all $x \in X$. • $x_0 \in \mathbb{K}^n$ • $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$ $J_{y}(x) =$ Jacobian matrix of y at x Last example : $f(x) = \frac{1}{x}$ for $x \in (0, \infty)$ inverse function

$$y(1)=1, \quad \partial_x y=-y^2 \quad \rightsquigarrow \quad y(x)=\frac{1}{x}$$

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Exercice : are all analytic functions generable?

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Exercice : are all analytic functions generable? No Riemann Γ and ζ are not generable.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Example (almost rounding function)

There exists a generable function round such that for any $n \in \mathbb{Z}$, $x \in \mathbb{R}$, $\lambda > 2$ and $\mu \ge 0$:

• if
$$x \in [n - \frac{1}{2}, n + \frac{1}{2}]$$
 then $|\operatorname{round}(x, \mu, \lambda) - n| \leq \frac{1}{2}$,

• if
$$x \in \left[n - \frac{1}{2} + \frac{1}{\lambda}, n + \frac{1}{2} - \frac{1}{\lambda}\right]$$
 then $|\operatorname{round}(x, \mu, \lambda) - n| \leqslant e^{-\mu}$.

Main result (reminder)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$

binary stream generator : digits of $\alpha \in \mathbb{R}$ $1 \qquad 0 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 0 \qquad t$

 $f(\alpha, \mu, \lambda, t) = \frac{1}{2} + \frac{1}{2} \tanh(\mu \sin(2\alpha \pi 4^{\operatorname{round}(t-1/4,\lambda)} + 4\pi/3))$

It's horrible, but generable

round is the mysterious rounding function...

binary stream generator : digits of $\alpha \in \mathbb{R}$

dyadic stream generator : $d_i = m_i 2^{-d_i}$, $a_i = 9i + \sum_{j < i} d_j$ $f(\alpha, \gamma, t) = \sin(2\alpha \pi 2^{\operatorname{round}(t-1/4,\gamma)}))$

round is the mysterious rounding function...

This copy operation is the "non-trivial" part.

We can do almost piecewise constant functions...

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a polynomial ODE even have arbitrary growth?

Building a fast-growing ODE, that exists over ${\mathbb R}$:

$$y'_1 = y_1 \qquad \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

Building a fast-growing ODE, that exists over ${\mathbb R}$:

$$y'_1 = y_1 \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

 $y'_2 = y_1 y_2 \qquad \rightsquigarrow \qquad y_1(t) = \exp(\exp(t))$

Building a fast-growing ODE, that exists over ${\mathbb R}$:

$$\begin{array}{lll} y_1' = y_1 & \rightsquigarrow & y_1(t) = \exp(t) \\ y_2' = y_1 y_2 & \rightsquigarrow & y_1(t) = \exp(\exp(t)) \\ \cdots & \cdots & \cdots \\ y_n' = y_1 \cdots y_n & \rightsquigarrow & y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t) \end{array}$$

Building a fast-growing ODE, that exists over $\mathbb R$:

$$\begin{array}{lll} y_1' = y_1 & \rightsquigarrow & y_1(t) = \exp(t) \\ y_2' = y_1 y_2 & \rightsquigarrow & y_1(t) = \exp(\exp(t)) \\ \cdots & \cdots & \cdots \\ y_n' = y_1 \cdots y_n & \rightsquigarrow & y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t) \end{array}$$

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Sequence of **arbitrarily** growing spikes.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Sequence of **arbitrarily growing** spikes. But not good enough for us.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

satisfies

$$y_1(t) \ge f(t), \qquad \forall t \ge 0.$$

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

satisfies

$$y_1(t) \ge f(t), \quad \forall t \ge 0.$$

Note : both results require α to be **transcendental**. Conjecture still open for **rational** (or algebraic) coefficients.

Main result, remark and end

Main result (reminder)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|\mathbf{y}_1(t) - f(t)| \leq \varepsilon(t).$$

Futhermore, α is computable from *f* and ε .

Remarks :

- if *f* and ε are computable then α is computable
- if f or ε is not computable then α is not computable
- in all cases α is a horrible transcendental number