Sparse resultants in differential and difference algebra: an overview

Wei Li

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

March 14, 2019

CUNY, New York

Jointly with X.S. Gao, C.M. Yuan

Main Problem

Let

$$\begin{cases}
f_0(\mathbf{c}_0; y_1, \dots, y_n) = 0 \\
f_1(\mathbf{c}_1; y_1, \dots, y_n) = 0 \\
\vdots \\
f_n(\mathbf{c}_n; y_1, \dots, y_n) = 0
\end{cases} \tag{1}$$

2/22

be a system of algebraic (differential, difference) equations.

To find conditions, $\mathbf{R}(\mathbf{c}_0,\ldots,\mathbf{c}_n)$, on the coefficients of the f_i s.t.

(1) has a "solution"
$$\iff$$
 $\mathbf{R}(\mathbf{c}_0, \dots, \mathbf{c}_n) = 0$.

Wei Li, AMSS Sparse differential/ce resultants

¹In the sense of Zariski (Kolchin, Cohn) closure.

Main Problem

Let

$$\begin{cases}
f_0(\mathbf{c}_0; y_1, \dots, y_n) = 0 \\
f_1(\mathbf{c}_1; y_1, \dots, y_n) = 0 \\
\vdots \\
f_n(\mathbf{c}_n; y_1, \dots, y_n) = 0
\end{cases} \tag{1}$$

2/22

be a system of algebraic (differential, difference) equations.

To find conditions, $\mathbf{R}(\mathbf{c}_0,\ldots,\mathbf{c}_n)$, on the coefficients of the f_i s.t.

(1) has a "solution"
$$\iff$$
 $\mathbf{R}(\mathbf{c}_0,\ldots,\mathbf{c}_n)=0$.

 $\mathbf{R}(\mathbf{c}_0,\ldots,\mathbf{c}_n)$: the resultant or resultant system.

Wei Li, AMSS Sparse differential/ce resultants

¹In the sense of Zariski (Kolchin, Cohn) closure.

Main Problem

Let

$$\begin{cases}
f_0(\mathbf{c}_0; y_1, \dots, y_n) = 0 \\
f_1(\mathbf{c}_1; y_1, \dots, y_n) = 0 \\
\vdots \\
f_n(\mathbf{c}_n; y_1, \dots, y_n) = 0
\end{cases} \tag{1}$$

2/22

be a system of algebraic (differential, difference) equations.

To find conditions, $\mathbf{R}(\mathbf{c}_0,\ldots,\mathbf{c}_n)$, on the coefficients of the f_i s.t.

(1) has a "solution"
$$\iff$$
 $\mathbf{R}(\mathbf{c}_0,\ldots,\mathbf{c}_n)=0$.

 $\mathbf{R}(\mathbf{c}_0,\ldots,\mathbf{c}_n)$: the resultant or resultant system.

Existence/Properties/Algorithms of such R?

Wei Li, AMSS Sparse differential/ce resultants

¹In the sense of Zariski (Kolchin, Cohn) closure.

Outline

- Motivation: algebraic sparse resultants
- Sparse differential resultants
- Sparse difference resultants
- Summary and problems

Sylvester Resultant (Sylvester 1883)

Two univariate polynomials $f = a_l x^l + a_{l-1} x^{l-1} + \cdots + a_0$ and $g = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0$. The resultant of f and g is

Property: Res $(f,g) = 0 \iff f(x) = g(x) = 0$ has a solution.

Sylvester Resultant (Sylvester 1883)

Two univariate polynomials $f = a_l x^l + a_{l-1} x^{l-1} + \cdots + a_0$ and $g = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0$. The resultant of f and g is

Property: Res $(f,g) = 0 \iff f(x) = g(x) = 0$ has a solution.

Macaulay resultant (1902): n+1 polynomials in n variables.

Algebraic Sparse Poly System

Given
$$F:=(f_1,\ldots,f_n)\subset\mathbb{C}[x_1,\ldots,x_n]$$
 with

$$f_i = \sum_{\alpha \in \mathcal{A}_i} c_{i,\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n}.$$

BKK-bound (Bernshtein, Khovanskii, Kushnirenko)

The number of isolated roots of F in $(\mathbb{C}^*)^n$ is bounded by the mixed volume of $NP(f_i)$.

Example

$$f_1 = a_0 + a_1 x_1 + a_2 x_1^n x_2^n$$
, $f_2 = b_0 + b_1 x_2 + b_2 x_1^n x_2^n$

Bézout-bound: $(2n)^2$

BKK-bound: 2n

Work on Algebraic Sparse Resultant

- Gelfand et al (1991, 1994) introduced the sparse resultant.
- Sturmfels (1993, 1994) proved basic properties.
 - i) The $f_i = 0$ have common solutions in $(\mathbb{C}^*)^n$ iff $\operatorname{Res}(f_0, \dots, f_n) = 0$.
 - ii) (BKK degree) $deg(Res, Coeff(f_i)) = \mathcal{MV}((NP(f_k))_{k \neq i}).$
- Canny-Emiris (1993, 1995, 2000): matrix formulas and efficient algorithms.
- D'Andrea (2002): Res = det(A)/det(B).

Sparse Differential Resultants

 \mathcal{E} : a fixed universal δ -field over a base field (such as $\mathbb{Q}, \mathbb{Q}(x)$).

$$\mathcal{E}^{\wedge} := \{ a \in \mathcal{E} : a^{(k)} \neq 0, k \geq 0 \}.$$

Differential Resultants

- Let $P_i(\mathbf{u}_i; y_1, \dots, y_n)$ be a generic δ -poly of order s_i and degree r_i with coefficients \mathbf{u}_i for $i = 0, \dots, n$;
- $\mathcal{Z}_0 = \{(\mathbf{c}_0, \dots, \mathbf{c}_n) | P_0(\mathbf{c}_0; y_1, \dots, y_n) = \dots = P_n(\mathbf{c}_n; y_1, \dots, y_n) = 0 \text{ has a solution in } \mathcal{E}^n\}.$

Definition(Gao-Li-Yuan, 2013) Let \mathcal{Z} be the Kolchin closure of \mathcal{Z}_0 . By GDIT, there exists an irr. δ -poly $\mathbf{R} \in \mathbb{Q}\{\mathbf{u}_0, \dots, \mathbf{u}_n\}$ s.t.

$$\mathcal{Z} = \mathbb{V}(\mathsf{sat}(\mathbf{R})).$$

R is defined as the **differential resultant** of P_i 's.

Differential Resultants

- Let $P_i(\mathbf{u}_i; y_1, \dots, y_n)$ be a generic δ -poly of order s_i and degree r_i with coefficients \mathbf{u}_i for $i = 0, \dots, n$;
- $\mathcal{Z}_0 = \{(\mathbf{c}_0, \dots, \mathbf{c}_n) | P_0(\mathbf{c}_0; y_1, \dots, y_n) = \dots = P_n(\mathbf{c}_n; y_1, \dots, y_n) = 0 \text{ has a solution in } \mathcal{E}^n\}.$

Definition(Gao-Li-Yuan, 2013) Let \mathcal{Z} be the Kolchin closure of \mathcal{Z}_0 . By GDIT, there exists an irr. δ -poly $\mathbf{R} \in \mathbb{Q}\{\mathbf{u}_0, \dots, \mathbf{u}_n\}$ s.t.

$$\mathcal{Z} = \mathbb{V}(\mathsf{sat}(\mathbf{R})).$$

R is defined as the **differential resultant** of P_i 's.

Note: differential resultant for n = 1 was studied by Ritt (1932).

Sparse Differential Polynomials

Sparse Differential Polynomials: with fixed monomials
 Most differential polynomials in practice are sparse.

A dense δ -Poly of order one and degree five

A sparse
$$\delta$$
-Poly $f = *+$
* $y^4 + *y'^5 + *y^2y'^2$

Sparse differential resultant (Li-Yuan-Gao, 2015)

Let $A_i = \{M_{i0}, \dots, M_{il_i}\}$ $(i = 0, \dots, n)$ be sets of Laurent δ -monomials in $\mathbf{y} = (y_1, \dots, y_n)$, and

$$P_i(\mathbf{u}_i; \mathbf{y}) = \sum_{k=0}^{l_i} u_{ik} M_{ik} \ (i = 0, ..., n)$$
 (2)

be generic Laurent δ -polynomials defined over A_i . Let

$$Z_0 = \big\{ (\mathbf{c}_0, \dots, \mathbf{c}_n) | P_0(\mathbf{c}_0; \mathbf{y}) = \dots = P_0(\mathbf{c}_n; \mathbf{y}) = 0 \text{ has a solution } \mathsf{in}(\mathcal{E}^\wedge)^n \big\}$$

and Z be the Kolchin closure of Z_0 in $\mathbb{P}^{l_0} \times \cdots \times \mathbb{P}^{l_n}$.

Sparse differential resultant (Li-Yuan-Gao, 2015)

Let $A_i = \{M_{i0}, \dots, M_{il_i}\}$ $(i = 0, \dots, n)$ be sets of Laurent δ -monomials in $\mathbf{y} = (y_1, \dots, y_n)$, and

$$P_i(\mathbf{u}_i; \mathbf{y}) = \sum_{k=0}^{l_i} u_{ik} M_{ik} \ (i = 0, ..., n)$$
 (2)

be generic Laurent δ -polynomials defined over A_i . Let

$$Z_0 = \{(\mathbf{c}_0, \dots, \mathbf{c}_n) | P_0(\mathbf{c}_0; \mathbf{y}) = \dots = P_0(\mathbf{c}_n; \mathbf{y}) = 0 \text{ has a solution in} (\mathcal{E}^{\wedge})^n \}$$

and Z be the Kolchin closure of Z_0 in $\mathbb{P}^{I_0} \times \cdots \times \mathbb{P}^{I_n}$.

Definition. If Z is of codimension 1, then $\exists R \in \mathbb{Q}\{u_0 \dots, u_n\}$ s.t.

$$Z = \mathbb{V}(\mathsf{sat}(\mathbf{R})).$$

R: the **sparse differential resultant**, denoted by $Res_{A_0,...,A_n}$.

Criterion for the existence of sparse diff resultant

Assume
$$M_{ik}/M_{i0} = \prod_{j=1}^{n} \prod_{l=0}^{s_i} (y_j^{(l)})^{t_{ikjl}} \ (t_{ikjl} \in \mathbb{Z})$$
. Set $\beta_{ik} = \left(\sum_{l=0}^{s_i} t_{ikjl} x_1^l, \dots, \sum_{l=0}^{s_i} t_{ikjl} x_n^l\right) \in \mathbb{Z}[x_1, \dots, x_n]^n$.

Let

$$\mathbf{M} = \begin{pmatrix} \sum_{k=0}^{l_0} u_{0k} \beta_{0k} \\ \sum_{k=0}^{l_1} u_{1k} \beta_{1k} \\ \vdots \\ \sum_{k=0}^{l_n} u_{nk} \beta_{nk} \end{pmatrix} \in \mathbb{Z}[\mathbf{u}; x_1, \dots, x_n]^{(n+1) \times n}.$$

Theorem. Res_{$A_0,...,A_n$} exists \iff rank(\mathbf{M}) = n

Criterion for the existence of sparse diff resultant

Assume
$$M_{ik}/M_{i0} = \prod_{j=1}^{n} \prod_{l=0}^{s_i} (y_j^{(l)})^{t_{ikjl}} \ (t_{ikjl} \in \mathbb{Z})$$
. Set $\beta_{ik} = \left(\sum_{l=0}^{s_i} t_{ikjl} x_1^l, \dots, \sum_{l=0}^{s_i} t_{ikjl} x_n^l\right) \in \mathbb{Z}[x_1, \dots, x_n]^n$.

Let

$$\mathbf{M} = \begin{pmatrix} \sum_{k=0}^{l_0} u_{0k} \beta_{0k} \\ \sum_{k=0}^{l_1} u_{1k} \beta_{1k} \\ \vdots \\ \sum_{k=0}^{l_n} u_{nk} \beta_{nk} \end{pmatrix} \in \mathbb{Z}[\mathbf{u}; x_1, \dots, x_n]^{(n+1) \times n}.$$

Theorem. Res_{$A_0,...,A_n$} exists \iff rank(\mathbf{M}) = n \iff There exist k_i $(1 \le k_i \le l_i)$ s.t. rank($\mathbf{M}_{k_0,...,k_n}$) = n, where the i-th row of $\mathbf{M}_{k_0,...,k_n}$ is $\beta_{i-1,k_{i-1}}$.

Example

Example

$$\mathcal{A}_0=\{1,y_1y_2\},$$

$$A_1 = \{1, y_1'y_2'\},$$

$$A_2 = \{1, y_1'y_2\}.$$

 $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2$ form a Laurent δ -essential system for

$$\mathbf{M} = \begin{pmatrix} u_{01} & u_{01} \\ u_{11}x_1 & u_{11}x_2 \\ u_{21}x_1 & u_{21} \end{pmatrix} \text{ (or } \mathbf{M}_{1,1,1} = \begin{pmatrix} 1 & 1 \\ x_1 & x_2 \\ x_1 & 1 \end{pmatrix} \text{) has rank 2.}$$

Using differential characteristic method, we have

$$\mathsf{Res} = -\mathit{u}_{11}\mathit{u}_{20}^2\mathit{u}_{01}^2 - \mathit{u}_{01}\mathit{u}_{00}\mathit{u}_{21}^2\mathit{u}_{10} + \mathit{u}_{01}\mathit{u}_{11}\mathit{u}_{20}\mathit{u}_{21}\mathit{u}_{00}' - \mathit{u}_{11}\mathit{u}_{20}\mathit{u}_{00}\mathit{u}_{21}\mathit{u}_{01}'.$$

Necessary/sufficient conditions for the existence of solutions

Differential resultant:

If $P_0(\mathbf{c}_0; \mathbf{y}) = \cdots = P_n(\mathbf{c}_n; \mathbf{y}) = 0$ has a solution in \mathcal{E}^n , then $\mathbf{R}(\mathbf{c}_0, \dots, \mathbf{c}_n) = 0$;

Conversely, if $\mathbf{R}(\mathbf{c}_0,\ldots,\mathbf{c}_n)=0$ and $S_{\mathbf{R}}(\mathbf{c}_0,\ldots,\mathbf{c}_n)\neq 0$, then the system has a solution in \mathcal{E}^n .

Sparse differential resultant:

If $P_0(\mathbf{c}_0; \mathbf{y}) = \cdots = P_n(\mathbf{c}_n; \mathbf{y}) = 0$ has a solution in $(\mathcal{E}^{\wedge})^n$, then $\text{Res}_{A_0,\dots,A_n}(\mathbf{c}_0,\dots,\mathbf{c}_n) = 0$;

Conversely, if $\operatorname{Res}_{\mathcal{A}_0,\ldots,\mathcal{A}_n}(\mathbf{c}_0,\ldots,\mathbf{c}_n)=0$ and $\operatorname{S}_{\operatorname{Res}}(\mathbf{c}_0,\ldots,\mathbf{c}_n)\neq 0$, then the system has a solution in $(\mathcal{E}^\wedge)^n$.

Order and Differential homogeneity

 $G = \{g_1, \dots, g_n\}$: differential polynomials in y_1, \dots, y_n . **Jacobi number**: $Jac(G) = \max_{\sigma \in S_n} \sum_{i=1}^n \operatorname{ord}(g_i, y_{\sigma(i)})$.

Order and Differential homogeneity

```
G = \{g_1, \dots, g_n\}: differential polynomials in y_1, \dots, y_n.

Jacobi number: \operatorname{Jac}(G) = \max_{\sigma \in S_n} \sum_{i=1}^n \operatorname{ord}(g_i, y_{\sigma(i)}).

Jacobi bound conjecture: \operatorname{ord}(\mathbb{V}(G)) \leq \operatorname{Jac}(G)
```

Order and Differential homogeneity

$$G = \{g_1, \dots, g_n\}$$
: differential polynomials in y_1, \dots, y_n .
Jacobi number: $Jac(G) = \max_{\sigma \in S_n} \sum_{i=1}^n \operatorname{ord}(g_i, y_{\sigma(i)})$.
Jacobi bound conjecture: $\operatorname{ord}(\mathbb{V}(G)) \leq \operatorname{Jac}(G)$

Proposition (Order and Differential homogeneity).

- The δ -resultant $\mathbf{R}(\mathbf{u}_0, \dots, \mathbf{u}_n)$ is δ -homogeneous in each \mathbf{u}_i and $\operatorname{ord}(\mathbf{R}, \mathbf{u}_i) = \sum_{i \neq i} \operatorname{ord}(P_i)$.
- Res $_{A_0,...,A_n}$ is δ -homogeneous in each \mathbf{u}_i and

$$\operatorname{ord}(\mathsf{Res}_{\mathcal{A}_0,\ldots,\mathcal{A}_n},\mathsf{u}_i) \leq \mathsf{Jac}(P_{\hat{i}}),$$
 where $P_{\hat{i}} = \{P_0,\ldots,P_n\} ackslash \{P_i\}.$

Algebraic Resultant: $\operatorname{Res}(A(x), B(x)) = c \prod_{\eta, B(\eta) = 0} A(\eta)$.

Algebraic Resultant: Res $(A(x), B(x)) = c \prod_{\eta, B(\eta) = 0} A(\eta)$.

Differential Resultant: $R = A \prod_{\tau} \mathbf{P_0}(\eta_{\tau})^{(s-s_0)}$, where η_{τ} is a generic point of $\mathbb{V}(P_1, \ldots, P_n)$.

Algebraic Resultant: $\operatorname{Res}(A(x), B(x)) = c \prod_{\eta, B(\eta) = 0} A(\eta)$.

Differential Resultant: $R = A \prod_{\tau} \mathbf{P_0}(\eta_{\tau})^{(s-s_0)}$, where η_{τ} is a generic point of $\mathbb{V}(P_1, \ldots, P_n)$.

Sparse Differential Resultant:

$$\operatorname{Res}_{\mathcal{A}_0,...,\mathcal{A}_n}(\mathbf{u}_0,...,\mathbf{u}_n) = A \prod_{\tau=1}^{t_0} (u_{00} + \sum_{k=1}^{l_0} u_{0k} \xi_{\tau k})^{(h_0)}.$$

Algebraic Resultant: $\operatorname{Res}(A(x), B(x)) = c \prod_{\eta, B(\eta) = 0} A(\eta)$.

Differential Resultant: $R = A \prod_{\tau} \mathbf{P_0}(\eta_{\tau})^{(s-s_0)}$, where η_{τ} is a generic point of $\mathbb{V}(P_1, \ldots, P_n)$.

Sparse Differential Resultant:

$$\operatorname{Res}_{\mathcal{A}_0,...,\mathcal{A}_n}(\mathbf{u}_0,...,\mathbf{u}_n) = A \prod_{\tau=1}^{t_0} (u_{00} + \sum_{k=1}^{l_0} u_{0k} \xi_{\tau k})^{(h_0)}.$$

When 1) Any n of the A_i diff independent and

2)
$$\mathbf{e}_j \in \operatorname{Span}_{\mathbb{Z}} \{ \alpha_{ij} - \alpha_{i0} \},$$

$$\operatorname{Res}_{A_0,\ldots,A_n} = A \prod_{\tau=1}^{t_0} \left(\frac{\mathsf{P}_0(\eta_\tau)}{\mathsf{M}_{00(\eta_\tau)}} \right)^{(\mathsf{h}_0)}$$
, and η_τ lies on P_1,\ldots,P_n .

Algebraic Resultant: $\deg(\mathbf{R}, \mathbf{u}_i) = \prod_{j \neq i} \deg(P_j)$.

Algebraic Resultant: $deg(\mathbf{R}, \mathbf{u}_i) = \prod_{j \neq i} deg(P_j)$.

Sparse Resultant: (BKK number) $\mathsf{deg}(\mathsf{Res}_{\mathcal{A}_0,\dots,\mathcal{A}_n}, \mathbf{u}_i) = \mathcal{MV}(\mathcal{Q}_0,\dots,\mathcal{Q}_{i-1},\mathcal{Q}_{i+1},\dots,\mathcal{Q}_n), \text{ where } \mathcal{Q}_k = \mathrm{conv}(\mathcal{A}_k).$

Algebraic Resultant: $deg(\mathbf{R}, \mathbf{u}_i) = \prod_{j \neq i} deg(P_j)$.

Sparse Resultant: (BKK number) $deg(Res_{A_0,...,A_n}, \mathbf{u}_i) = \mathcal{MV}(Q_0,...,Q_{i-1},Q_{i+1},...,Q_n)$, where $Q_k = conv(A_k)$.

Differential Resultant: (BKK-type degree bound) $\deg(\mathbf{R}, \mathbf{u}_i) \leq \sum_{k=0}^{s-s_i} \mathcal{MV}((\mathcal{Q}_{jl})_{j\neq i,0\leq l\leq s-s_j}, \mathcal{Q}_{i0}, \ldots, \mathcal{Q}_{i,k-1}, \mathcal{Q}_{i,k+1}, \ldots, \mathcal{Q}_{i,s-s_i})$ where \mathcal{Q}_{jl} is the Newton polytope of $\delta^l P_i$.

Algebraic Resultant: $deg(\mathbf{R}, \mathbf{u}_i) = \prod_{j \neq i} deg(P_j)$.

Sparse Resultant: (BKK number) $\deg(\operatorname{Res}_{\mathcal{A}_0,\ldots,\mathcal{A}_n},\mathbf{u}_i) = \mathcal{MV}(\mathcal{Q}_0,\ldots,\mathcal{Q}_{i-1},\mathcal{Q}_{i+1},\ldots,\mathcal{Q}_n),$ where $\mathcal{Q}_k = \operatorname{conv}(\mathcal{A}_k).$

Differential Resultant: (BKK-type degree bound) $\deg(\mathbf{R}, \mathbf{u}_i) \leq \sum_{k=0}^{s-s_i} \mathcal{MV}((\mathcal{Q}_{jl})_{j\neq i, 0 \leq l \leq s-s_j}, \mathcal{Q}_{i0}, \dots, \mathcal{Q}_{i,k-1}, \mathcal{Q}_{i,k+1}, \dots, \mathcal{Q}_{i,s-s_i})$ where \mathcal{Q}_{jl} is the Newton polytope of $\delta^I P_j$.

Sparse Differential Resultant:

$$\deg(\mathsf{Res}_{\mathcal{A}_0,\ldots,\mathcal{A}_n},\mathbf{u}_i) \leq \prod_{i=0}^n (\deg(P_i)+1)^{J_i+1}.$$

Algebraic Resultant: $deg(\mathbf{R}, \mathbf{u}_i) = \prod_{j \neq i} deg(P_j)$.

Sparse Resultant: (BKK number) $deg(Res_{\mathcal{A}_0,...,\mathcal{A}_n},\mathbf{u}_i) = \mathcal{MV}(\mathcal{Q}_0,\ldots,\mathcal{Q}_{i-1},\mathcal{Q}_{i+1},\ldots,\mathcal{Q}_n)$, where $\mathcal{Q}_k = \operatorname{conv}(\mathcal{A}_k)$.

Differential Resultant: (BKK-type degree bound) $\deg(\mathbf{R}, \mathbf{u}_i) \leq \sum_{k=0}^{s-s_i} \mathcal{MV}((\mathcal{Q}_{jl})_{j\neq i, 0 \leq l \leq s-s_j}, \mathcal{Q}_{i0}, \dots, \mathcal{Q}_{i,k-1}, \mathcal{Q}_{i,k+1}, \dots, \mathcal{Q}_{i,s-s_i})$ where \mathcal{Q}_{jl} is the Newton polytope of $\delta^I P_j$.

Sparse Differential Resultant:

$$\deg(\mathsf{Res}_{\mathcal{A}_0,\ldots,\mathcal{A}_n},\mathbf{u}_i) \leq \prod_{i=0}^n (\deg(P_i)+1)^{J_i+1}.$$

Example.
$$P_0 = u_{00} + u_{01}y + u_{02}y' + u_{03}y^2 + u_{04}yy' + u_{05}(y')^2$$
; $P_1 = u_{10} + u_{11}y + u_{12}y' + u_{13}y^2 + u_{14}yy' + u_{15}(y')^2$.

Bézout-type bound: $deg(\mathbf{R}) \leq (2+1)^4 = 81$.

BKK-type bound: $deg(\mathbf{R}) \leq 20$.

Algebraic Resultant: Res(A(x), B(x)) = A(x)T(x) + B(x)W(x), with $deg(T) \le deg(B), deg(W) \le deg(A)$.

Algebraic Resultant: Res(A(x), B(x)) = A(x)T(x) + B(x)W(x), with $deg(T) \le deg(B), deg(W) \le deg(A)$.

Differential Resultant: $\mathbf{R}(\mathbf{u}_0, \dots, \mathbf{u}_n) = \sum_{i=0}^n \sum_{j=0}^{s-s_i} h_{ij} \delta^j P_i$, and the h_{ij} have degrees at most $(sn+n)^2 d^{sn+n} + d(sn+n)$.

Algebraic Resultant: Res(A(x), B(x)) = A(x)T(x) + B(x)W(x), with $deg(T) \le deg(B), deg(W) \le deg(A)$.

Differential Resultant: $\mathbf{R}(\mathbf{u}_0, \dots, \mathbf{u}_n) = \sum_{i=0}^n \sum_{j=0}^{s-s_i} h_{ij} \delta^j P_i$, and the h_{ij} have degrees at most $(sn+n)^2 d^{sn+n} + d(sn+n)$.

Sparse Differential Resultant: $\operatorname{Res}_{\mathcal{A}_0,...,\mathcal{A}_n} = \sum_{i=0}^n \sum_{j=0}^{J_i} G_{ij} \delta^j P_i$ and G_{ij} also has a bounded degree $(m+1)\deg(\operatorname{Res})$.

Algebraic Resultant: Res(A(x), B(x)) = A(x)T(x) + B(x)W(x), with $deg(T) \le deg(B), deg(W) \le deg(A)$.

Differential Resultant: $\mathbf{R}(\mathbf{u}_0, \dots, \mathbf{u}_n) = \sum_{i=0}^n \sum_{j=0}^{s-s_i} h_{ij} \delta^j P_i$, and the h_{ij} have degrees at most $(sn+n)^2 d^{sn+n} + d(sn+n)$.

Sparse Differential Resultant: $\operatorname{Res}_{\mathcal{A}_0,...,\mathcal{A}_n} = \sum_{i=0}^n \sum_{j=0}^{J_i} G_{ij} \delta^j P_i$ and G_{ij} also has a bounded degree $(m+1)\operatorname{deg}(\operatorname{Res})$.

Note: If the (sparse) differential resultant of f_0, \ldots, f_n is nonzero, then we have

$$1 = \sum_{i=0}^{n} \sum_{j=0}^{J_i} G_{ij} \delta^j f_i.$$

Single-exponential computational algorithm

• A single exponential algorithm to compute the sparse diff resultant with complexity: $O((J+n)^{O(IJ)})m^{O(IJ2)}$. Here J:Jacobi number; $I = \sum_i I_i$: size of the system.

Single-exponential computational algorithm

• A single exponential algorithm to compute the sparse diff resultant with complexity: $O((J+n)^{O(IJ)})m^{O(IJ2)}$. Here J:Jacobi number; $I = \sum_i I_i$: size of the system.

Unsolved: Matrix representation for (sparse) differential resultant?

Progress on matrix representation:

- Differential resultant for two univariate δ -polynomials of order one (Zhang-Yuan-Gao, 2014);
- Linear sparse differential resultant for some special cases (Rueda, 2016).

Sparse Difference Resultant (Li-Yuan-Gao, 2016)

Comparison of Difference and Differential Resultant:

	Difference Case	Differential Case
Definition	$[P_0,\ldots,P_n] \cap \mathbb{Q}\{\mathbf{u}_0,\ldots,\mathbf{u}_n\}$ = sat(R , R ₁ ,, R _m)	sat(R)
Essential Criterion	$\mathbf{M}_P \in \mathbb{Z}[\mathbf{x}]^{(n+1) imes n}$	$\mathbf{M}_P \in \mathbb{Z}[\mathbf{x}_1, \dots, \mathbf{x}_n]^{(n+1) \times n}$
Matrix Formula	$\mathbf{R} = \det(M)/\det(M_0)$?
Conditions for	Only necessary conditions	Necessary and sufficient
∃ solutions	(non-zero solutions)	(non-poly solutions)
Homogeneity	Transformally homogenous	Differentially homogenous
Property	$(f(\lambda Y) = M(\lambda)f(Y))$	$(f(\lambda Y) = \lambda^m f(Y))$
degree	"=" BKK number	BKK bound
Order	Jacobi bound (Dense: $s - s_i$)	The same

Example (extended)

$$\mathcal{A}_0 = \{1, y_1 y_2\},\$$

$$\mathcal{A}_1 = \{1, y_1^{(1)} y_2^{(1)}\},\$$

$$\mathcal{A}_2 = \{1, y_1^{(1)} y_2\}.$$

The sparse differential resultant is

$$\mathsf{Res} = -u_{11}u_{20}^2u_{01}^2 - u_{01}u_{00}u_{21}^2u_{10} + u_{01}u_{11}u_{20}u_{21}u_{00}' - u_{11}u_{20}u_{00}u_{21}u_{01}'.$$

While the sparse difference resultant is

$$Res = u_{00}^{(1)}u_{11} - u_{01}^{(1)}u_{10}.$$

Summary

A theory of sparse differential/difference resultants is developed and a single exponential computational algorithm is given.

Summary

A theory of sparse differential/difference resultants is developed and a single exponential computational algorithm is given.

Problems for further study:

- Matrix representation for (sparse) differential resultants;
- In the definition of sparse difference resultant, is m = 0?
- Resultant theory for a system of partial differential polynomials?

References:

- W. Li, C.M. Yuan and X.S. Gao. Sparse Differential Resultant for Laurent Differential Polynomials. Found. Comput. Math., 15:451-517, 2015.
- W. Li, C.M. Yuan and X.S. Gao. Sparse Difference Resultant. J. Symb. Comput., 68, 169-203, 2015.
- W. Li, X.S. Gao and C.M. Yuan. Sparse Differential Resultant. *Proc. ISSAC 2011*, San Jose, CA, USA, 225-232, 2011.
- Z.Y. Zhang, C.M. Yuan, and X.S. Gao, Matrix formulae of differential resultant for first order generic ordinary differential polynomials., *Computer Mathematics*, 479-503, 2014.
- S. L. Rueda, Differential elimination by differential specialization of Sylvester style matrices, Adv. Appl. Math., 72, 4–37, 2016.

References:

- W. Li, C.M. Yuan and X.S. Gao. Sparse Differential Resultant for Laurent Differential Polynomials. Found. Comput. Math., 15:451-517, 2015.
- W. Li, C.M. Yuan and X.S. Gao. Sparse Difference Resultant.
 J. Symb. Comput., 68, 169-203, 2015.
- W. Li, X.S. Gao and C.M. Yuan. Sparse Differential Resultant. Proc. ISSAC 2011, San Jose, CA, USA, 225-232, 2011.
- Z.Y. Zhang, C.M. Yuan, and X.S. Gao, Matrix formulae of differential resultant for first order generic ordinary differential polynomials., *Computer Mathematics*, 479-503, 2014.
- S. L. Rueda, Differential elimination by differential specialization of Sylvester style matrices, Adv. Appl. Math., 72, 4–37, 2016.

Thanks!