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Resistance Origins

Drug resistance is a complicated phenomena, with many nonlinear
interacting factors

Simplistic model to study basic properties at a very high-level

Indeed, won’t even consider a specific resistance mechanism

Concerned instead with the origin of drug resistance

Spontaneous (drug independent) vs. drug-induced (drug dependent)

General competitive effects between sensitive and resistant phenotypes
Gillet and Gottesman. Mechanisms of multidrug resistance in cancer, Methods Mol. Biol., 596: 47-76, 2010
Housman et al. Drug resistance in cancer, and overview, Cancers (Basel), 6(3): 1769-1792, 2014
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Paradigms of Origins of Resistance

Classical: Mechanisms conferring resistance may arise via stochastic
genetic alterations (point mutations, gene amplification, chromosomal
translocations)

Rare events

Resistant cells are then selected during chemotherapy via standard
Darwinian evolution

Saunders et al. Role of intratumoral heterogeneity in cancer drug resistance: molecular and clinical perspectives, E.M.B.O.
Mol. Med., 4(8): 675-684, 2012

Marusyk and Polyak. Tumor heterogeneity: Causes and consequences, Biochim Biophys Acta., 1805(1): 105-117, 2010
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Paradigms (continued)

More recent: Non-genetic cell-state dynamics via spontaneous switching
within a clonal population (phenotype plasticity)

Not necessarily rare

Often reversible

Importantly: still operates via Darwinian selection

Most recent: Phenotype plasticity induced by the chemotherapeutic
agent

Saunders et al. Role of intratumoral heterogeneity in cancer drug resistance: molecular and clinical perspectives, E.M.B.O.
Mol. Med., 4(8): 675-684, 2012

Marusyk and Polyak. Tumor heterogeneity: Causes and consequences, Biochim Biophys Acta., 1805(1): 105-117, 2010
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Drug-induced resistance

Cytotoxic cancer chemotherapies may cause genomic mutations

Nitrogen mustards: induce base substitutions and chromosomal
rearrangements

Topoisomerase II inhibitors: induce chromosomal translocations

Antimetabolites: induce double stranded breaks and chromosomal
aberrations

Furthermore, resistance may be induced at the epigenetic level via DNA
methylation and histone modification

Recent studies have revealed that phenotypic state transitions could be
a consequence of external cues, including radiation and chemotherapy

Usually rapid

Dose dependence

Reversible (although we don’t study this yet)
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Experimental Evidence of Drug-Induced Phenotype
Switching and Drug Resistance

NSCLC cell line (PC9) treated with erlotinib (2010)

Persisters (DTPs) and DTEPs arise

Reversal to drug sensitivity upon drug removal (days)
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Experimental Evidence of Drug-Induced Phenotype
Switching and Drug Resistance

Leukemic cells (HL60) treated with the chemotherapeutic agent vincristine
(2013)

1-2 days of treatment: induction dominated expression of MDR1

NOT by selection of MDR1-expressing cells

Validated induction on individual cells
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Experimental Evidence of Drug-Induced Phenotype
Switching and Drug Resistance

Explants derived from tumor biopsies (breast cancer) treated with taxanes
(docetaxel)

Transition towards a CD44HiCD24Hi expression status in
dose-dependent manner

Alleviated by immediate treatment with SFK inhibitors (dasatinib)
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Experimental Evidence of Drug-Induced Phenotype
Switching and Drug Resistance
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Differentiating Selection vs. Induction

Although there is experimental evidence to suggest induction plays a role in
drug resistance, it is still difficult to experimentally differentiate selection vs.
induction

in vitro: hard

in vivo: impossible?

Mathematical modeling can assist by precisely defining and characterizing
the separate phenomena

Discover qualitative differences between origins of resistance

Possibly even suggest experiments to determine rate

Clinically: suggest treatment protocols based on discovered rate
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Mathematical Model

Assume both spontaneous and induced resistance are generated

dS

dt
= r

(
1− V

K

)
S −

(
ε+ αu(t)

)
S − du(t)S + γR,

dR

dt
= rR

(
1− V

K

)
R +

(
ε+ αu(t)

)
S − dRu(t)R − γR.

where

S = Sensitive (wild-type) cells

R = Resistant cells

V = S + R

Basic assumptions underlying model:

u(t) = treatment (control) - bounded, measurable
Random phenotype switching (εS and γR)
Rate of induction is proportional to dosage (αu(t)S)
Competitive inhibition equal among all compartments

dR < d .
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(Reduced) Model

Interested in role of induced phenotypic alterations in treatment dynamics
compared to classical drug-independent (genetic or phenotypic) changes

Role of αu(t)S term in dynamics and control

Dynamics (e.g. control structures) change as a function of α

Consider a simplified (and rescaled) system

dS

dt
= (1− (S + R))S − (ε+ αu(t) )S − du(t)S ,

dR

dt
= pr (1− (S + R))R + (ε+ αu(t) )S .

No back “mutations” (γ = 0)

Complete resistance (dR = 0)

Note: interesting only when pr < 1.
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Asymptotic Dynamics

dS

dt
= (1− (S + R))S − (ε+ αu(t))S − du(t)S ,

dR

dt
= pr (1− (S + R))R + (ε+ αu(t))S .

For all feasible controls, the long-time dynamics are invariant:

Theorem

For any bounded measurable control u : [0,∞)→ [0,M], with M <∞, and
initial conditions (S0,R0) ∈ Ω, solutions of the above system will approach
the steady state (S ,R) = (0, 1):

(S(t),R(t))
t→∞−−−→ (0, 1).
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Treatment Evaluation

Even though asymptotically, all trajectories approach (S ,R) = (0, 1),
transient dynamics may be very different for different controls

Utilize competition to prolong patient life

Control is still possible

Note: therapy has contradictory effects

Metric to rank therapies: tc defined by V (tc) := S(tc) + R(tc) = Vc

dS

dt
= (1− (S + R)) S − (ε + αu(t))S − du(t)S,

dR

dt
= pr (1− (S + R)) R + (ε + αu(t))S.
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Effect of Phenotype Switching on Therapy Outcome

Fundamental question: does induction (α) have an impact on efficacy?

Compare outcomes of two standard treatment protocols:

for the two different scenarios:

αs = 0, αi = 10−2.

Fundamental question restated: Is there a difference on which is optimal,
based solely on α?
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Constant vs. Pulsed Comparison

Answer: Yes! αs = 0
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Constant is more successful for αs = 0 : tc,c − tc,p ≈ 88

Pulsed is more successful for αi = 10−2 : tc,p − tc,c ≈ 19
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Identifiability

Demonstrated that α parameter may have large impact on treatment
outcome

Thus, a fundamental clinical goal is to identify it (i.e. reverse engineer) α
value from various inputs u(t)

Is this even possible?

If not, not really worth studying

What are our observables?

Time t and total tumor volume V (t) = S(t) + R(t) (and derivatives,
but see later)

Don’t assume we can measure sensitive and resistant subpopulations
(clinical)
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Lie Derivatives

We can identify all parameters (including α) using the following technique
from control theory:

x :=

(
S
R

)
, f :=

(
(1− (x1 + x2))x1 − εx1

pr (1− (x1 + x2))x2 + εx1

)
, g :=

(
−αx1 − dx1

αx1

)

ẋ = f (x) + u(t)g(x),

y = x1 + x2.

Idea: measure derivatives of output y at t = 0 for different inputs u(t)

Specifically, measure y(0), y ′(0), y ′′(0), y ′′′(0) for u(t) ≡ 0, 1, 2, t

Call them Y0,Y1,Y2, etc.

All Lie derivatives Lf y(0), Lgy(0), L2
f y(0), Lf Lgy(0), etc. can be

written in terms of the Yi (linear)
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Lie Derivatives and Elementary Observables

ẋ = f (x) + u(t)g(x) y := h(x) = x1 + x2

Unique structural identifiability is equivalent to injectivity of the map

p 7→ (u(t), y(t, p))

Two sets of observables are associated to the control system:

F1 = spanR

{
Y (x0,U) |U ∈ Rk , k ≥ 0

}
F2 = spanR

{
Li1 . . . Likh(x0) | (i1, . . . ik) ∈ {g , f }k , k ≥ 0

}
where

Y (x0,U) =
dk

dtk

∣∣∣∣
t=0

h(x(t))

Wang and Sontag proved that F1 = F2, so that structural identifiability is
equivalent to injectivity of the map

p 7→
(
Li1 . . . Likh(x0) | (i1, . . . ik) ∈ {g , f }k , k ≥ 0

)
Wang and Sontag, On two definitions of observation spaces, Systems & Control Letters, 13(4): 279-289, 1989Jim Greene (RU,CQB) Kolchin November 30, 2018 20 / 49



Lie Derivatives continued

It is thus sufficient to show that the parameters may be obtained by iterated
Lie derivatives (F2):

S0 = h(x0),

d = −Lgh(x0)

S0
,

α=
L2
gh(x0)

dS0
− d ,

ε =
Lf Lgh(x0)

dS0
+ 1− S0,

pr =
S0

1− S0
+

LgLf h(x0)

αS0(1− S0)
−
(

1 +
d

α

)(
1− S0

1− S0

)
.

Alternatively, we may obtain via a relatively simple set of controls:

u(t) = 0, 1, 2, t
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Other Methods of Identifiability

Previous: demonstrated that all parameters can be experimentally
determined via relatively simple set of controls

u(t) ≡ 0, 1, 2, t

However, it is important to note that this involved measure derivatives at
time t = 0

y(0), y ′(0), y ′′(0), y ′′′(0), where y = V

This may be unrealistic, especially if data is noisy

Is there another way to determine parameter α?

Equivalently, what are the qualitative differences between α = 0 and
α > 0?

Is there a way to distinguish utilizing only constant therapies?
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Dose-Response Curves

Compute standard dose-response curves for a
fixed set of parameters

Only measuring tc = tc(u, d , α) and Vc

For a fixed value of d (= 0.1):

Very similar qualitative dynamics for both types of drug

Maximum response time occurring at intermediate dosage (singular controls)
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Aside: Maximum Response Dose

Observed an intermediate constant dosage yielding the maximum response
time (uc)

Understand via
competition
between sensitive
and resistant cells

Critical size Vc is approximately the carrying capacity of sensitive cells
(ignoring resistant dynamics)

uc ≈
1− ε− Vc

α + d

d
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Varying d

Imagine we can, in vitro, vary the drug sensitivity d

May be difficult
But may be possible to alter the expression of MDR1 via ABCBC1 or
even CDX2
Correlate d with MDR1 expression

αs = 0 αi = 10−2
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d=0.1
d=0.2
d=0.95
d=1.45
d=2.95

Maximum response time is:

Constant for α = 0

Increasing in d for α > 0
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Maximum Response Time

Tα(d) := sup
u
{tc(u, d , α)}

αs = 0 αi = 10−2
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Shape of maximum response time is an indicator of phenotype-switching induction
of drug

Did not even have to know anything about mechanisms
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Identifying α (Part II)

Tα(d) := sup
u
{tc(u, d , α)}

In principle, we should be able to measure α from Tα(d) curve
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Limitations

Practical limitations to consider:

Difficult to precisely vary drug sensitivity d

Measuring derivatives from experimental data is not realistic

Control over administered dose must be exact

tc has a high degree of sensitivity for u ≈ uc

Focus on qualitative distinctions of induced drug resistance (α > 0) under
simplest treatment regime (constant)

“Thought experiment”
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Formulation of Control Problem

Recall:

Treatment outcome may be impacted by induction rate of treatment
(α)

We can (theoretically and “practically”) identify this rate (not shown)

Natural then to ask what is the best therapy (i.e. optimal control problem)

Specifically: how (and if!) does the structure change as a function of α

uα(t) := uopt(t;α)

Method to characterize level of resistance induction of a drug

Testable (in vitro)

Clinically relevant!

Dose densification may no longer be optimal (Norton-Simon)
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Formulation (continued)

ẋ = f (x) + u(t)g(x), x =

(
S
R

)
∈ R2

𝑹

𝑺

Ω𝑐

𝑥0 = (𝑆0, 𝑅0)

(0,1)

Only natural metric to rank therapies in simplified model:

tc = sup
u(t)∈U

{J(u(t))} ,

J(u(t)) = tf =

∫ tf

0
1dt,

U = {u : [0,T ]→ [0,M] |T > 0, u is Lebesgue measurable}.

Note that a path constraint exists along the boundary V = Vc :

ψ(S(t),R(t)) := S(t) + R(t)− Vc ≤ 0
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Existence Results

ẋ = f (x) + u(t)g(x)

tc = sup
u(t)∈U

{∫ tf

0
1 dt

}
𝑹

𝑺

Ω𝑐

𝑥0 = (𝑆0, 𝑅0)

(0,1)

Maximization of time trajectory remains inside the region Ωc

Is this maximum obtained?

sup
u∈U

tc(u) <∞

Since (0, 1) is globally attracting for all u ∈ U : Yes!

Otherwise we could construct a control that remains a fixed positive
distance ε from (0, 1):

u∗ = u1,∗ ∗ u2,∗ ∗ · · ·
Thus we can apply the Maximum Principle to analyze necessary conditions
satisfied by extremals
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Elimination of Path Constraints

Synthesize unconstrained (int(Ωc))
and path-constrained (∂Ωc) optimal
controls

𝑹

𝑺

Ω𝑐

(0,1)

𝑥0 = (𝑆0, 𝑅0)

𝑥(𝑇)

𝑥(𝑇 − 𝜖)

𝜕Ω𝑐

Theorem
Suppose that x∗ is an optimal trajectory. Let T be the first time such that x(t) ∈ N. Fix ε > 0
such that T − ε > 0, and

ξ = x(T − ε).

Define z(t) := x∗(t)|t∈[0,T−ε]. Then the trajectory z is a local solution of the corresponding time

maximization problem tf with boundary conditions x(0) = x0, x(tf ) = ξ, and no additional path

constraints.

Idea: Optimal control consists of concatenations of controls obtained from the unconstrained
necessary conditions and controls of the form

up(S ,R) =
1

d

(1− (S + R))(S + prR)

S
.
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Unconstrained Maximum Principle

We can then use the Maximum Principle to analyze necessary conditions
satisfied by extremals at point interior to Ωc :

Minimize Hamiltonian H = H(λ, x , u) pointwise w.r.t. u along extremal
lifts Γ = ((x , u), λ):

H(x , u, λ) = −1 + 〈λ, f (x)〉+ u〈λ, g(x)〉

Note: we have converted to a minimization problem to be consistent with
the literature
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Basic Properties of Extremals (int(Ωc))

H(x , u, λ) = −1 + 〈λ(t), f (x)〉+ u〈λ(t), g(x)〉
ẋ = f (x) + u(t)g(x)

λ̇ = −λ (Df (x(t)) + uDg(x(t)))

Properties independent of α:

λ0 = 1, since abnormal extremals (λ0 = 0) are simply classified
(u∗(t) ≡ 0,M)

λ(t) 6= 0

H(t) := H(x(t), u(t), λ(t)) ≡ 0 on [0, tc ] for any extremal lift Γ

The switching function Φ(t) is given by

Φ(t) = 〈λ(t), g(x(t))〉

along Γ, so that an extremal control must satisfy

u∗(t) =

{
0 Φ(t) > 0,

M Φ(t) < 0.

Note: H(t) = −1 + 〈λ(t), f (x)〉+ u(t)Φ(t)
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Singular Arcs

u(t) =

{
0 Φ(t) > 0,

M Φ(t) < 0.

ẋ = f (x) + u(t)g(x)

Φ(t) = 〈λ(t), g(x(t))〉

Control structure is bang-bang (u(t) = 0 or u(t) = M) outside of possible
singular arcs (0 < u(t) < M):

Φ(t) ≡ 0Questions:

On what subsets of the SR-plane are singular arcs allowed?
How does the geometry of the subsets depend on α?
Are singular arcs (hence intermediate dosages) optimal?

Differential geometric arguments inspired by Sussmann (1982, 1986)
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Switching Function

u(t) =

{
0 Φ(t) > 0,

M Φ(t) < 0.

ẋ = f (x) + u(t)g(x)

Φ(t) = 〈λ(t), g(x(t))〉

On singular arcs, the switching function Φ(t) must satisfy

Φ(t) ≡ 0

This is a strong condition, which implies all higher-order derivatives must
also vanish identically:

Φ̇(t) ≡ 0

Φ̈(t) ≡ 0, etc.

Furthermore, these derivatives can be calculated via iterated Lie brackets:

Φ̇(t) = 〈λ(t), [f , g ](x(t))〉
Φ̈(t) = 〈λ(t), [f , [f , g ]](x(t))〉+ u(t)〈λ(t), [g , [f , g ]](x(t))〉

where
[f , g ](x(t)) = Dg(x(t))f (x(t))− Df (x(t))g(x(t))
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Switching Function (continued)

u(t) =

{
0 Φ(t) > 0,

M Φ(t) < 0.

ẋ = f (x) + u(t)g(x)

Φ(t) = 〈λ(t), g(x(t))〉
Φ̇(t) = 〈λ(t), [f , g ](x(t))〉

Key observation: f (x) and g(x) are linearly independent in our region of
interest Ω (0 < V ≤ Vc < 1), which implies

[f , g ](x) = γ(x) f (x) + β(x)g(x)

γ(x): determines geometric structure of singular arc

Allow us to write closed form system of ODEs for x(t) and Φ(t) along
extremals (solutions NOT unique)
Indeed, since H(t) ≡ 0, we may solve for 〈λ(t), f (x)〉 to obtain

Φ̇(t) = γ(x(t)) +
(
β(x(t))− u(t)γ(x(t))

)
Φ(t)

Theorem

Singular arcs can only occur in the SR plane where γ(x) = 0. Furthermore,
in Ω, this is precisely the line aS + bR = c.
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Geometry of Singular Arc

u(t) =

{
0 Φ(t) > 0,

M Φ(t) < 0.
Φ̇(t) = γ(x(t)) +

(
β(x(t))− u(t)γ(x(t))

)
Φ(t)

Denote the bang-bang controls via X and Y :

X = f (x) (⇔ u = 0), Y := f (x) + Mg(x) (⇔ u = M)

Switching point (τ such that Φ(τ) = 0) order is determined by sign of γ
away from singular arcs:

=⇒ structure determined outside of singular arc

𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

𝑺
∗

R∗
 ℒ

𝒀𝑿

𝑿𝒀

𝒖 = 𝒖 𝒙

⟺  ℒ
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Geometry of Singular Arc

Other properties of extremals:

Singular arc L̄ is an extremal

Control u(x) is uniquely
determined there via

u(x) = M
LXγ(x)

LXγ(x)− LY γ(x)

Non-restrictive assumptions
(M, ε) imply that L̄ is in Γ and
feasible AND extremal:

0 < u(x) < M

𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

𝑺
∗

R∗
 ℒ

𝒀𝑿

𝑿𝒀

𝒖 = 𝒖 𝒙

⟺  ℒ

Note: last claim requires α > 0, and will determine structure globally
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Non-Induced Control Structure (α = 0)

X := f (x) Y := f (x) + Mg(x)

Theorem

In the case of a non drug resistance inducing drug (α = 0), the optimal
control structure is of the form

u = YXupY

Proof
𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝑎𝑆 + 𝑏𝑅 = 𝑐

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

𝒀𝑿

𝑿𝒀

𝑋
𝑌

Recall that the resistant population is always increasing
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Induced control structure (α > 0)

Proven that control structure in classical drug-independent paradigm is
bang-bang, with at most two switches.

What about when α > 0?

Are singular arcs (locally)
optimal?

Does switching structure
change?

𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

𝑺
∗

R∗
 ℒ

𝒀𝑿

𝑿𝒀

𝒖 = 𝒖 𝒙

⟺  ℒ
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Singular controls are NOT optimal
𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

ഥℒ

𝒀𝑿

𝑿𝒀
⟺ ഥℒ

𝒒𝟏

𝒒𝟏

⟺ 𝑢𝑠

𝑹

Δ

𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

ഥℒ

𝒀𝑿

𝑿𝒀
⟺ ഥℒ

𝒒𝟏

Using the Lie algebra structure of vector field, we can show that the singular
arc L̄ is not optimal. That is, L is a fast singular arc.

Legendre-Clebsch condition is violated
Explicit clock-form ω ∈ (TΩ)∨ to compare times along bang-bang and
singular arcs:

s + t − τ =

∫
∆
ω =

∫
R
dω = −

∫
R

γ

det(f , g)

If α > 0, optimal control is still bang locally near L̄
Hence global interior structure of control is bang-bang
However: switches through the arc L̄ are allowed
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Switching Structure for α > 0

Theorem

For any α ≥ 0, the optimal control to maximize the time to reach a critical
time is a concatenation of bang-bang and path-constraint controls. In fact,
the general control structure takes the form

(YX )nupY , (1)

where (YX )n := (YX )n−1YX and n ∈ N, and the order should be
interpreted left to right.

How does n = n(α) vary as α is increased?

n(0) = 1 (at most two switches in case of non-resistant inducing drug)

Switches can only occur across singular arc L̄
At most one bang in a (sufficiently small) neighborhood of arc
(g -conjugate points, variational vector fields)

Larger sections L̄ lie in the control set U as α increases
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Variation in L̄
𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝑎𝑆 + 𝑏𝑅 = 𝑐 (𝛾 = 0)

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

⟺  ℒ

α = 0

Geometry of arc L̄ suggests that number of switchings increases as α
increases

α = 0 : u = YXupY
α > 0 : u = (YX )n(α)upY
n(α) increases with induction rate α
At least for small values of α:

L̄ becomes vertical (hence outside of U) for large α
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Number of Switchings

Cartoon of bang-bang structure as a function of induction rate α

All other parameters constant

Maximum for an intermediate α where region L̄ is largest

Note: just a cartoon
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Conclusions

dS

dt
= (1− (S + R)) S − (ε+ αu(t))S − du(t)S ,

dR

dt
= pr (1− (S + R))R + (ε+ αu(t))S .

Formulated a mathematical framework to distinguish mechanisms by which
drug resistance originates

Random (drug-independent) resistance
Induced phenotype switching

Control structure varies as a function of the degree to which the drug
promotes the resistant phenotype

α = 0: u = YXupY
α > 0: u = (YX )nupY , n ≥ 1
Geometry suggests that ∂n

∂α > 0, at least initially (small α)

Clinically relevant:

Suggests different treatment strategies based on how “mutagenic”
chemotherapy is
Provides testable hypothesis to determine α in vitro

Test which types of treatment strategies are better to infer α valueJim Greene (RU,CQB) Kolchin November 30, 2018 46 / 49



Current and Future Work

Understand fully switching structure as a function of α

No proofs yet

Numerical results suggest switching is optimal, at least along some
regions of L̄

Further control techniques related to feedback

Switching dictated along aS + bR = c , which we cannot a priori
measure

Possibly approximate via volume measurements?

Adaptive therapy, à la Gatenby

Validate and expand with experimental data

Working with A. Pisco (CZF) utilizing Nature Communications data
(2013)

Extend to sequential therapy by targeting induced resistant cells
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Multidrug and Sequential Therapy Extension

Leverage induction to study optimal treatment combinations

Ṅ = r
N

(
1− V

K

)
N − d

N ,1u1(t)N − d
N ,2u2(t)N

Ṡ = r
S

(
1− V

K

)
S − (ε+ αu1(t))S − d

S ,1u1(t)S − d
S ,2u2(t)S + γR

Ṙ = r
R

(
1− V

K

)
R + (ε+ αu1(t))S − γR − d

R ,2u2(t)R

Two treatments with distinct mechanisms of action:

u1 : docetaxel (induces resistance via activation of SFK/Hck)

u2 : dasatinib (SFK/BCR-Abl inhibitor)
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Numerical Results

Sequential versus combination therapy

Sequential therapy yields a small tumor volume at conclusion of treatment

Order is therapy is important

Natural control questions
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