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Abstract

Kronecker’s Theorem and Rabin’s Theorem are fundamental results about computable fields

F and the decidability of the set of irreducible polynomials over F . We adapt these theorems

to the setting of differential fields K, with constrained pairs of differential polynomials over

K assuming the role of the irreducible polynomials. We prove that two of the three basic

aspects of Kronecker’s Theorem remain true here, and that the reducibility in one direction

(but not the other) from Rabin’s Theorem also continues to hold.
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1. Introduction

Differential algebra is the study of differential equations from a purely algebraic
standpoint. The differential equations studied use polynomials in a variable Y and
its derivatives δY, δ(δY ), . . ., with coefficients from a specific field K which admits

Email addresses: Russell.Miller@qc.cuny.edu (Russell Miller), aovchinnikov@qc.cuny.edu (Alexey
Ovchinnikov), trushindima@yandex.ru (Dmitry Trushin)

1R. Miller was partially supported by the NSF grant DMS-1001306, by the Infinity Project of the Tem-
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differentiation on its own elements via the operator δ. Such a field K is known as a
differential field : it is simply a field with one or more additional unary functions δ
on its elements, satisfying the usual properties of derivatives: δ(x+ y) = (δx) + (δy)
and δ(x · y) = (x · δy) + (y · δx).

It is therefore natural to think of the field elements as functions, and standard
examples include the field Q(X) of rational functions in one variable under dif-
ferentiation d

dX , and the field Q(t, δt, δ2t, . . .) with a differential transcendental t
satisfying no differential equation over the ground field Q. Additionally, every field
becomes a differential field when we set δx = 0 for all x in the field; we call such a
differential field a constant field, since an element whose derivative is 0 is commonly
called a constant. We give a good deal of further background on computability and
on differential fields in Sections 2, 3, and 4. First, though, without dwelling on
formal definitions, we summarize the situation addressed in this article.

Although the natural examples are fields of functions, the treatment of differ-
ential fields regards the field elements merely as points. There are strong con-
nections between differential algebra and algebraic geometry, with such notions as
the ring K{Y } of differential polynomials (namely the algebraic polynomial ring
K[Y, δY, δ2Y, . . .], with each δiY treated as a separate variable), differential ideal,
differential variety, and differential Galois group all being direct adaptations of the
corresponding notions from field theory.

Characteristically, these concepts behave similarly in both areas, but the dif-
ferential versions are often a bit more complicated. In terms of model theory, the
theories ACF0 and DCF0 (of algebraically closed fields and differentially closed
fields, respectively, of characteristic 0) are both complete and ω-stable with effective
quantifier elimination, but ACF0 has Morley rank 1, whereas DCF0 has Morley
rank ω. The higher Morley rank has elicited intense interest in DCF0 from model
theorists.

Just as the algebraic closure F of a field F (of characteristic 0) can be defined as
the prime model of the theory ACF0 ∪∆(F ) (where ∆(F ) is the atomic diagram
of F ), the differential closure K̂ of a differential field K is normally taken to be the
prime model of DCF0 ∪∆(K). This K̂ is unique up to isomorphism over K, but
not always minimal: it is possible for K̂ to embed into itself over K (i.e., fixing K
pointwise) with image a proper subset of itself. This has to do with the fact that
some 1-types over K are realized infinitely often in K̂, so that the image of the
embedding can omit some of those realizations.

As a prime model, the differential closure realizes exactly those 1-types which
are principal over K, i.e., generated by a single formula with parameters from K.
It therefore omits the type of a differential transcendental over K, since this type is
not principal, and so every element of K̂ satisfies some differential polynomial over
K. On the other hand, the type of a transcendental constant, i.e., an element x with
δx = 0 but not algebraic over K, is also non-principal and hence is also omitted,
even though such an element would be “differentially algebraic” over K.
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The goal of this article is to adapt the two fundamental theorems from com-
putable field theory to computable differential fields. These two theorems, each
used very frequently in work on computable fields, are the following.

Theorem 1.1 (Kronecker’s Theorem (1882); see [11] or [2], or Theorem 3.3 below).

1. The field Q has a splitting algorithm. That is, the set of irreducible polynomials
in Q[X], commonly known as the splitting set of Q, is decidable.

2. If a computable field F has a splitting algorithm, so does the field F (x), for
every element x algebraic over F (within a larger computable field).

3. If a computable field F has a splitting algorithm, then so does the field F (t),
for every element t transcendental over F .

(The algorithms deciding irreducibility in Parts II and III are different, and no
unifying algorithm exists.)

Theorem 1.2 (Rabin’s Theorem (1960); see [19], or Theorem 3.5 below).

1. Every computable field F has a Rabin embedding, i.e., a computable field
embedding g : F → E such that E is a computable, algebraically closed field
which is algebraic over the image g(F ).

2. For every Rabin embedding g of F , the image g(F ) is Turing-equivalent to the
splitting set SF of F .

For differential fields, the analogue of the first part of Rabin’s Theorem was
proven in 1974 by Harrington [6], who showed that for every computable differential
field K, there is a computable embedding g of K into a computable, differentially
closed field L such that L is a differential closure of the image g(K). Harrington’s
proof used a different method from that of Rabin, and therefore did not address the
question of the Turing degree of the image. Indeed, the first question to address, in
attempting to adapt either of these theorems for differential fields, is the choice of
an appropriate analogue for the splitting set SF in the differential context.

Kronecker, like many others before and since, saw the question of reducibility
of a polynomial in F [X] as a natural question to ask, with applications in a broad
range of areas. However, with twentieth century model theory, we can specify more
exactly the reasons why it is important. Specifically, every irreducible polynomial
p(X) ∈ F [X] generates a principal type over the theory ACF0 ∪∆(F ), and every
principal type is generated by a unique monic irreducible polynomial. (More exactly,
the formula p(X) = 0 generates such a type.)

On the other hand, no reducible polynomial generates such a type (with the
exception of powers p(X)n of irreducible polynomials, in which case p(X) generates
the same type). So the splitting set SF gives us a list of generators of principal types,
and every element of F satisfies exactly one polynomial on the list. Moreover, since
these generating formulas are quantifier-free, we can readily decide whether a given
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element satisfies a given formula from the list or not. Thus, a decidable splitting set
allows us to identify elements of F very precisely, up to their orbit over F .

From model theory, we find that the set TK of constrained pairs over a differential
field K plays the same role for the differential closure. A pair (p, q) of differential
polynomials from K{Y } is constrained if

• p is monic and irreducible and of greater order than q (i.e., for some r, p(Y )
involves δrY nontrivially while q(Y ) ∈ K[Y, δY, . . . , δr−1Y ]), and

• for every x, y ∈ K̂, if p(x) = p(y) = 0 and q(x) 6= 0 6= q(y), then for every
h ∈ K{Y }, either h(x) = 0 = h(y) or h(y) 6= 0 6= h(x). This says that, if x
and y both satisfy the pair (p, q), then the differential fields K〈x〉 and K〈y〉
that they generate within K̂ must be isomorphic, via an isomorphism fixing K
pointwise and mapping x to y.

This is sufficient to ensure that the formula p(Y ) = 0 6= q(Y ) generates a principal
type over DCF0 ∪∆K, and conversely, every principal type is generated by such a
formula with (p, q) a constrained pair.

For these reasons, model theorists have come to see constrained pairs as the ap-
propriate differential analogue of irreducible polynomials. Computability theorists
have reserved their judgment. They would go along with the model theorists if it
could be shown that every other list of existential generators of the principal types
over DCF0∪∆K has complexity ≥T TK , or even if this could be shown at least for
those computable differential fields appearing commonly in differential algebra; but
this is not known. Essentially, the question turns on whether Kronecker’s Theorem
can be adapted and proven in the setting of computable differential fields K and
constraint sets TK .

With this background, we may state our results, first addressing Rabin’s Theorem
and then Kronecker’s.

Theorem 1.3 (See Theorem 6.1 and Proposition 6.2). For every embedding g of
a computable differential field as described by Harrington in [6], the image g(K) is
Turing-computable from the set TK . So too is algebraic independence of finite tuples
from K̂, and also the function mapping each x ∈ K̂ to its minimal differential
polynomial over K. However, there do exist such embeddings g for which TK has no
Turing reduction to g(K).

Theorem 1.4 (See Theorem 8.6 and Theorem 9.6). Let K be a computable non-
constant differential field, and let z be an element of a larger computable differential
field L ⊇ K such that K is computably enumerable within L. (So K〈z〉 is also c.e.
within L, and thus has a computable presentation.)

• If z is constrained over K, then TK〈z〉 is Turing-computable from TK .

• If z is differentially transcendental and K̂ is not algebraic over K, then TK〈z〉
is Turing-computable from TK .
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So the last two parts of Kronecker’s Theorem hold in most cases. The first
part remains open: it is unknown whether the set TQ of constrained pairs over the
constant differential field Q is decidable. We regard this as the most important
question currently open in this area of study. A positive answer would likely give
us a much better intuition about the structure of various simple differentially closed
fields, well beyond any current understanding. It would also be desirable to make
the failure of the second part of Rabin’s Theorem more precise, by finding sets which
are always equivalent to the Rabin image g(K), and by finding sets which are always
equivalent to TK .
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2. Background in Computability

We recall here the concepts from computability theory which will be essential to
our work on differential fields. Computable functions are defined in [25], and indeed,
several very different definitions give rise to the same class of functions. Functions on
the set ω of nonnegative integers are usually identified with their graphs in ω2, and
we then code ω2 into ω, so that the graph corresponds to a subset of ω. Conversely,
for our purposes, a subset A of ω may be identified with its characteristic function
χA, and we say that A is computable (or decidable) if the function χA is computable.

The partial computable functions (those for which the computation procedure
halts on certain inputs from ω, but not necessarily on all of them) can be enumer-
ated effectively, and are usually denoted as φ0, φ1, . . ., with the index e coding the
program for computing φe(x) on x ∈ ω. The domains of these functions constitute
the computably enumerable sets, and we write We for the domain of φe. These are
precisely the sets which are definable by Σ0

1 formulas, i.e., sets of the form

{x ∈ ω : ∃y1 · · · ∃ym (x, y1, . . . , ym) ∈ R},

where m ∈ ω is arbitrary and R may be any computable subset of ωm+1. We
usually write “φe(x)↓= y” to indicate that the computation of φe on input x halts
and outputs y, and so φe(x) ↓ iff x ∈ We; otherwise we write φe(x) ↑. Also, if the
computation halts within s steps, we write φe,s(x)↓. The set We,s is the domain of
φe,s, so We = ∪sWe,s. Every set We,s is computable (although the union We may
not be), and we take it as a convention of our computations that only numbers ≤ s
lie in We,s.

More generally, we define the Σ0
n formulas by induction on n. The Σ0

0 formulas
are those formulas with free variables x1, . . . , xm which define computable subsets
of ωm (for any m ∈ ω). A Π0

n formula is the negation of a Σ0
n formula. Therefore,
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the Π0
0 formulas are exactly the Σ0

0 formulas, but for n > 0 this is no longer true: for
instance a Π0

1 formula is universal, in the same sense that a Σ0
1 formula is existential.

A Σ0
n+1 formula in the variable x is a formula of the form

∃y1 · · · ∃ym R(x, y1, . . . , ym),

where R is a Π0
n formula. Thus the subscript counts the number of quantifier

alternations. (We sometimes omit the superscript 0, which refers to the fact that
we quantify only over natural numbers, not over sets of naturals, or sets of sets of
naturals, etc.)

Turing reducibility and 1-reducibility are ways of comparing the complexity of
subsets A,B ⊆ ω. We refer the reader to [25] for the definition of Turing reducibility,
and write A ≤T B to denote that under this reducibility, A is no more complex than
B. 1-Reducibility is more simply defined.

Definition 2.1. A set A is 1-reducible to a set B, written A ≤1 B, if there exists a
computable injective function f , whose domain is all of ω, such that

(∀x)[x ∈ A ⇐⇒ f(x) ∈ B].

It is well known that, for every n ∈ ω, there exists a set S which is Σ0
n+1-complete:

S itself is Σ0
n+1, and every Σ0

n+1 set T has T ≤1 S. Indeed, the Halting Problem,
written here as ∅′, is Σ0

1-complete. The set ∅′′ is the halting problem relative to
∅′, and is Σ0

2-complete, and one iterates this jump operation, always taking the
halting problem relative to the previous set, to get the Σ0

n+1-complete set ∅′′′···, or
∅(n+1). Likewise, the complement of a Σ0

n+1-complete set S is Π0
n+1-complete. This

is regarded as an exact assessment of the complexity of S; among other things,
Σ0
n+1-completeness ensures that S is not Π0

n+1, nor Σ0
n.

Note that the class of Σ0
0 sets and the class of Π0

0 sets coincide: these are the
computable sets. For n > 0, a set which is both Σ0

n and Π0
n is said to be ∆0

n. The
∆0
n+1 sets are exactly those which are Turing-reducible to a Σ0

n-complete oracle set.
As a canonical Σ0

n-complete set, we usually use ∅(n), the n-th jump of the empty
set, as defined in [25].

Turing reducibility ≤T is a partial pre-order on the power set P(ω). We define
A ≡T B, saying that A and B are Turing-equivalent, if A ≤T B and B ≤T A. The
equivalence classes under this relation form the Turing degrees, and are partially
(but not linearly) ordered by ≤T . In fact, they form an upper semi-lattice under
≤T , with least element 0, the degree of the computable sets, but no greatest element.
One often speaks of a set A as being computable in a Turing degree d, meaning that
for some (equivalently, for every) B ∈ d we have A ≤T B.
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3. Background on Fields

The next definition arises from the standard notion of a computable structure.
To avoid confusion, we use the domain {x0, x1, . . .} in place of ω.

Definition 3.1. A computable field F consists of a set {xi : i ∈ I}, where I is an
initial segment of ω, such that these elements form a field with the operations given
by Turing-computable functions f and g:

xi + xj = xf(i,j) xi · xj = xg(i,j).

Fröhlich and Shepherdson were the first to consider computable algebraically
closed fields, in [4]. However, the definitive result on the effectiveness of algebraic
closure is Rabin’s Theorem. To state it, we need the natural notions of the root set
and the splitting set.

Definition 3.2. Let F be any computable field. The root set RF of F is the set of
all polynomials in F [X] having roots in F , and the splitting set SF is the set of all
polynomials in F [X] which are reducible there. That is,

RF = {p(X) ∈ F [X] : (∃a ∈ F ) p(a) = 0}
SF = {p(X) ∈ F [X] : (∃ nonconstant p0, p1 ∈ F [X]) p = p0 · p1}.

If SF is computable, F is said to have a splitting algorithm.

With F computable, RF and SF must both be computably enumerable, being de-
fined by existential conditions. Theorem 3.5 will show them to be Turing-equivalent.
For most computable fields one meets, both are computable; the first steps in this
direction were taken by Kronecker in 1882.

Theorem 3.3 (Kronecker’s Theorem; see [11]).

(i) Q has a splitting algorithm.
(ii) Let L be a c.e. subfield of a computable field F . If L has a splitting algorithm,

then for every x ∈ F algebraic over L, L(x) also has a splitting algorithm. The
specific decision procedure for SL(x) can be determined from that for SL and
from the minimal polynomial of x over L.

(iii) Let L be a c.e. subfield of a computable field F . If L has a splitting algorithm,
then for any x ∈ F transcendental over L, L(x) also has a splitting algorithm,
which can be determined just from that for L, given that x is transcendental.

More generally, for any c.e. subfield L of a computable field F and any x ∈ F , the
splitting set of L(x) is Turing-equivalent to the splitting set for L, via reductions
uniform in x and in the minimal polynomial of x over L (or in the knowledge that
x is transcendental).
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The algorithms for algebraic and transcendental extensions are different, so it is
essential to know whether x is algebraic. If it is, then from SL one can determine
the minimal polynomial of x. This yields the following.

Lemma 3.4. For every computable field F algebraic over its prime subfield P , there
is a computable function which accepts as input any finite tuple ~x = 〈x1, . . . , xn〉
of elements of F and outputs an algorithm for computing the splitting set for the
subfield P [~x] of F . (We therefore say that the splitting set of P [~x] is computable
uniformly in ~x.)

Proof. Clearly there are splitting algorithms for all finite fields, just by checking all
possible factorizations. (So in fact there is a single algorithm which works in all
positive characteristics.) In characteristic 0, one can readily compute the unique
isomorphism onto the prime subfield P of F from the computable presentation of Q
for which Kronecker’s splitting algorithm works, and this computable isomorphism
allows us to compute the splitting set of P .

The lemma then follows by induction on the size of the tuple ~x = 〈x1, . . . , xn〉,
using part (ii) of Theorem 3.3. Since our F is algebraic over P , we may simply search
for a polynomial p(X) with root xn and coefficients in P [x0, . . . , xn−1], and then
factor it, using the splitting algorithm for P [x0, . . . , xn−1] (by inductive hypothesis),
until we have found the minimal polynomial of xn over P [x0, . . . , xn−1].

At the other extreme, if F is algebraically closed, then clearly both RF and SF
are computable. However, there are many computable fields F for which neither
RF nor SF is computable; see the expository article [14, Lemma 7] for a simple
example. Fröhlich and Shepherdson showed that RF is computable if and only if SF
is, and Rabin’s Theorem then related them both to a third natural c.e. set related
to F , namely its image inside its algebraic closure. (Rabin’s work actually ignored
Turing degrees, and focused on SF rather than RF , but the theorem stated here
follows readily from his proof there.) More recent works [15, 26] have compared
these three sets under stronger reducibilities, but here, following Rabin, we consider
only Turing reducibility, denoted by ≤T , and Turing equivalence ≡T .

Theorem 3.5 (Rabin’s Theorem; see [19]). For every computable field F , there exist
an algebraically closed computable field E and a computable field homomorphism
g : F → E such that E is algebraic over the image g(F ). Moreover, for every
embedding g satisfying these conditions, the image g(F ) is Turing-equivalent to both
the root set RF and the splitting set SF of the field F .

We will refer to any embedding g : F → E satisfying the conditions from Rabin’s
Theorem as a Rabin embedding of F . Since this implicitly includes the presenta-
tion of E (which is required by the conditions to be algebraically closed), a Rabin
embedding is essentially a presentation of the algebraic closure of F , with F as a
specific, but perhaps undecidable, subfield.

8



When we begin to consider polynomials in several variables, the connection be-
tween RF and SF breaks down.

Theorem 3.6 (see [3]). Suppose that F is a computable field. Then for every n, the
set of irreducible polynomials in the ring F [X0, . . . , Xn] is computable in an oracle
for the splitting set SF , via a Turing reduction uniform in n.

Hence, in a computable differential field K, it is decidable in SK whether a dif-
ferential polynomial p(Y ) ∈ K{Y }, viewed as an algebraic polynomial over K in
Y, δY, δ2Y, . . ., is irreducible. (Differential polynomials are described in the next sec-
tion.)

For a proof, see [3, §19]. In contrast, the decidability of the existence of rational
solutions to arbitrary polynomials in Q[X1, X2, . . .] remains an open question: this is
Hilbert’s Tenth Problem for Q, the subject of much study. At present, it is not clear
that these questions impinge on single-variable problems for differential fields, but
since a differential polynomial can be viewed as an algebraic polynomial in several
variables, it is not implausible that a connection might exist.

We now turn to questions of algebraic dependence in fields. Predictably, these
issues are closely tied to transcendence bases.

Definition 3.7. For a computable field F with computably enumerable subfield E,
the algebraic dependence set AF/E is the set of all finite tuples of F algebraically
dependent over E:

AF/E =
{

(x1, . . . , xn) ∈ F<ω : (∃ nonzero p ∈ E[X1, . . . , Xn]) p(~x) = 0
}
.

Likewise, for any computable F -vector space V (including computable field exten-
sions of F ), the linear dependence set is

LV =
{
{v1, . . . , vn} ⊆ V : (∃〈c1, . . . , cn〉 ∈ Fn − {〈0, . . . , 0〉})

∑
i≤n

aivi = 0
}
.

Below, when considering a differential field K within its differential closure K̂,
we will often want to consider this set for K̂ over K, and we will write

DK = AK̂/K

for the set of all finite subsets of K̂ algebraically dependent over K. The following
lemma is considered in more depth in [13].

Lemma 3.8. For every computable field F and every computably enumerable sub-
field E, there is a transcendence basis BF/E for F over E computable using the set
AF/E as an oracle. Conversely, for every transcendence basis B for F over E, we
have AF/E ≤T B.
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Proof. We define the canonical transcendence basis BF/E for F over E as ∪sBs,
where B0 = ∅ and

Bs+1 =
{
Bs ∪ {xs}, if this set is algebraically independent over E,

Bs, if not.

Clearly BF/E ≤T AF/E (and so, by the next paragraph, BF/E ≡T AF/E).
If F has finite transcendence degree over E, then every transcendence basis is

computable, with no oracle at all. So we assume the transcendence degree to be
infinite. If B is a transcendence basis and

S = {x1, . . . , xn} ⊆ F,

then S is algebraically independent iff there exist an r ≥ n, an r-element subset
B0 = {b1, . . . , br} ⊆ B, and elements yn+1, . . . , yr ∈ F such that every element in
each of the sets B0 and

{x1, . . . , xn, yn+1, . . . , yr}

is algebraic over the other set. This condition is Σ0
1 relative to B. Of course,

algebraic dependence of S is Σ0
1 (without any oracle), so membership of S in AF/E

is decidable from B.

An exactly analogous proof likewise holds for bases of vector spaces.

Lemma 3.9. For every computable field F and every computable F -vector space V
(such as a computable field extension of F ), the relation LV of linear dependence
is computable relative to any basis for V over F . Conversely, this relation itself
computes a basis.

4. Computable Differential Fields

Differential fields are a generalization of fields, in which the field elements are
often viewed as functions. The elements are not treated as functions, but the dif-
ferential operator(s) on them are modeled on the usual notion of differentiation of
functions.

Definition 4.1. A differential field is a field K with one or more additional unary
functions δi satisfying the following two axioms for all x, y ∈ K:

δi(x+ y) = δix+ δiy δi(x · y) = (x · δiy) + (y · δix).

The constants of K are those x such that, for all i, δix = 0. They form a differential
subfield CK of K.

So every field can be made into a differential field by adjoining the zero operator
δx = 0. For a more common example, consider the field F (X1, . . . , Xn) of rational
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functions over a field F , with the partial derivative operators δi = ∂
∂Xi

. We will be
concerned only with ordinary differential fields, i.e., those with a single differential
operator δ.

A differential field K gives rise to a ring K{Y } of differential polynomials. This
can be described as

K
[
Y, δY, δ2Y, . . .

]
,

the ring of algebraic polynomials in the infinitely many variables shown. However,
for any differential polynomial p and any single y ∈ K, it makes sense to speak of
p(y), by which we mean the element

p
(
y, δy, δ2y, . . .

)
∈ K

calculated using δ and the field operations of K. Likewise, in any differential field
extension L of K, p(x) will be an element of L for every x ∈ L.

We can similarly discuss the derivative of a polynomial, bearing in mind that
the coefficients are elements of K, not necessarily constants, and may require the
Leibniz Rule. For instance, if

p(Y ) = a(δY )2 + bY
(
δ2Y

)
with a, b ∈ K, then

(δp)(Y ) = (δa)(δY )2 + 2a(δY )
(
δ2Y

)
+ (δb)Y

(
δ2Y

)
+ b(δY )

(
δ2Y

)
+ bY

(
δ3Y

)
.

The order of p ∈ K{Y } is the greatest r ≥ 0 such that δrY appears nontrivially
in p(Y ). So, in the example above, p(Y ) has order 2 and δp(Y ) has order 3. The
algebraic polynomials (in K[Y ]) of positive degree in Y have order 0. By convention
the zero polynomial has order −∞, and all other algebraic polynomials of degree 0
have order −1.

Just as polynomials in F [X] are ranked by their degree, differential polynomials
in K{Y } are ranked as well. First, if p, q ∈ K{Y } and ord(p) < ord(q), then p has
lower rank than q. Second, if ord(p) = ord(q) = r but δrY has lesser degree in p

than in q, then p has lower rank than q. This is not the entire notion of rank, but
it is as much as we need in this paper: rank is the lexicographic order on the pair(

ord(p),degδord(p)Y (p)
)
, hence of order type ω2.

The notion of a computable differential field extends that of a computable field
in the natural way.

Definition 4.2. A computable differential field is a computable field with one or
more differential operators δ as in Definition 4.1, each of which is likewise given by
some Turing-computable function h with δ(xi) = xh(i) (where {x0, x1, . . .} is again
the set of elements of the differential field, as in Definition 3.1).
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As we shift to consideration of differential fields, we must first consider the anal-
ogy between algebraic closures of fields and differential closures of differential fields.
The theory DCF0 of differentially closed fields K of characteristic 0 is a complete
theory, and was axiomatized by Blum (see e.g. [1]) using the axioms for differential
fields of characteristic 0, along with axioms stating that, for every pair of nonzero
differential polynomials p, q ∈ K{Y } with ord(p) > ord(q), there exists some y ∈ K
with p(y) = 0 6= q(y). (By convention, all nonzero constant polynomials have order
−1. Blum’s axioms therefore include formulas saying that K is algebraically closed,
by taking q = 1 and arbitrary nonconstant p ∈ K[Y ].)

For a differential field K with extensions containing elements x0 and x1, we will
write

x0
∼=K x1

to denote that K〈x0〉 ∼= K〈x1〉 via an isomorphism fixing K pointwise and sending
x0 to x1. This is equivalent to the property that, for all h ∈ K{Y },

h(x0) = 0 ⇐⇒ h(x1) = 0;

a model theorist would say that x0 and x1 realize the same atomic type over K. The
same notation x0

∼=F x1 could apply to elements of field extensions of a field F , for
which the equivalent property would involve only algebraic polynomials h ∈ K[Y ].

Let K ⊆ L be an extension of differential fields. An element z ∈ L is constrained
over K if z satisfies some constrained pair over K, as defined here. The terminology
of “principal types” reflects the model theory behind the definition. In fact, the
type generated is principal over the theory DCF0 .

Definition 4.3. Let K be a differential field. A pair (p, q) of differential polynomials
in K{Y } generates a principal type if, for all differential field extensions L0 and L1

of K and all xi ∈ Li such that p(xi) = 0 6= q(xi), we have x0
∼=K x1. The pair

(p, q) is constrained for K if p is monic and algebraically irreducible over K, with
ord(q) < ord(p), and (p, q) generates a principal type. Elements x in an extension
of K with p(x) = 0 6= q(x) are said to satisfy the constrained pair (p, q). We let

TK =
{

(p, q) ∈ (K{Y })2 : (p, q) is not a constraint
}

=
{

(p, q) :
(
∃x, y ∈ K̂

)
(∃h ∈ K{Y })[h(x) = 0 6= h(y) & x, y satisfy (p, q)]

}
.

(The second of these equivalent definitions should logically follow Theorem 4.4,
where we define the differential closure K̂ of K, and Proposition 4.5, which estab-
lishes the equivalence.) Thus TK is the constraint set for K. If TK is computable,
we say that K has a constraint algorithm.

The broad intention is to quantify over all x and y in all differential field exten-
sions of K. However, since the definition considers only those x0 and x1 satisfying
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the constrained pair, it turns out to be equivalent to quantify over all x and y in a
differential closure K̂ of K. Once we state Harrington’s Theorem below, the quan-
tification will just be over elements of ω, and so the second definition of TK above
uses a Σ0

1 formula, provided that K is computable. (The first definition can also be
seen directly to be Σ0

1: the model-theoretic notion of generating a principal type is
Π0

1, since the theory DCF0 ∪ ∆(K) described below is complete and decidable.)
This was our reason for defining TK to be the complement of the constraint set: we
thus parallel the notation RF and SF for the corresponding sets for fields, in that
all are existential definitions. (For this purpose we eschew the symbol CK , which is
already widely used to denote the constant subfield of K.)

Definition 4.3 parallels the definition of the splitting set SF in function if not in
form. For fields F , irreducible polynomials p(X) have exactly the same property: if
p(x0) = p(x1) = 0 (for x0 and x1 in any field extensions of F ), then x0

∼=F x1 (that
is, F (x0) ∼= F (x1) via an F -isomorphism mapping x0 to x1). So TK is indeed the
analogue of SF : both are Σ0

1 sets, given that K and F are both computable, and
both are the negations of the properties we need to produce isomorphic extensions.

If x ∈ L is constrained over K by (p, q), then there exists a differential subfield of
L, extending K and containing x, whose transcendence degree as a field extension of
K is finite. Indeed, writing K〈x〉 for the smallest differential subfield of L containing
x and all of K, we see that the transcendence degree of K〈x〉 over K is the smallest
order r of any nonzero element p of K{Y } for which x is a zero, and that{

x, δx, . . . , δr−1x
}

forms a transcendence basis for K〈x〉 as a field extension of K. The unique irre-
ducible p of smallest order is called the minimal differential polynomial of x, and its
order r is called the order of x. (Fact 5.1 and Definition 5.2 will elaborate on this.
For more general results, see [9, II.12, Theorem 6(d)], and also [17, Lemma 6.12] for
ordinary differential fields.) The elements of L which are constrained over K turn
out to form a differential field in their own right. If this subfield is all of L, then L

itself is said to be a constrained extension of K.
An algebraic closure F of a field F is an algebraically closed field which extends

F and is algebraic over it. Of course, one soon proves that this field is unique up to
isomorphism over F (that is, up to isomorphisms which restrict to the identity on
the common subfield F ). On the other hand, each F has many algebraically closed
extensions; the algebraic closure is just the smallest of them. Likewise, each differ-
ential field K has many differentially closed field extensions; a differential closure
of K is such an extension which is constrained over K.

Model-theoretically, the two situations are closely analogous: the algebraic clo-
sure F of F (of characteristic 0) is the prime model of the theory ACF0 ∪ ∆(F ),
given by extending the language to include constants for all elements of F and ad-
joining to ACF0 the atomic diagram ∆(F ). Likewise, the differential closure K̂ of
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K is the prime model of DCF0 ∪∆(K).
As with fields, the differential closure K̂ of K turns out to be unique up to iso-

morphism over K. On the other hand, K̂ is generally not minimal : there exist
differential field embeddings of K̂ into itself over K whose images are proper dif-
ferential subfields of K̂. This provides a first contrast between DCF0 and ACF0,
since the corresponding statement about algebraic closures is false.

Theorem 4.4 ([10, 22, 24]). For every differential field K of characteristic 0, there
exists a differential field extension K̂ ⊇ K which satisfies the axiom set DCF0 and
has the property that every element of K̂ satisfies some constrained pair from TK .
We refer to K̂ as the differential closure of K, since it can be shown to be unique
up to isomorphisms which fix K pointwise.

Our next fact was already cited in Definition 4.3 and is standard.

Proposition 4.5. Let x and y lie in any two differential field extensions of K.
Then x ∼=K y iff, for all h ∈ K{Y }, we have h(x) = 0 iff h(y) = 0.

With this much information in hand, we can now state the parallel to the first
half of Theorem 3.5.

Theorem 4.6 ([6, Corollary 3]). For every computable differential field K, there
exists a differentially closed computable differential field L and a computable differ-
ential field homomorphism g : K → L such that L is constrained over the image
g(K).

For the sake of uniform terminology, we continue to refer to a computable function
g as in Theorem 4.6 as a Rabin embedding for the differential field K.

Harrington actually proves the existence of a computable structure L which is
the prime model of the theory T generated by DCF0 and the atomic diagram of
K. Thus L is a computable structure in the language  L′ in which the language of
differential fields is augmented by constants for each element of K. The embedding
of K into L is accomplished by finding, for any given x ∈ K, the unique element
y ∈ L which is equal to the constant symbol for x. Clearly this is a computable
process, since L is a computable  L′-structure, and so we have our embedding of K
into L. Since L is the prime model of T , it must be constrained over K: otherwise
it could not embed into the constrained closure, which is another model of T . So
L satisfies the definition of the differential closure of K, modulo the computable
embedding.

The root set and splitting set of a differential field K are still defined, of course,
just as for any other field. However, with the differential operator δ now in the
language, several other sets can be defined along the same lines and are of potential
use as we attempt to adapt Rabin’s Theorem. The most important of these is the
constraint set TK , from Definition 4.3, which is analogous in several ways to the
splitting set and will be the focus of our attempts to adapt Kronecker’s Theorem
(Theorem 3.3 above) to differential fields.
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We will also need a version of the Theorem of the Primitive Element for differ-
ential fields. This was provided long since by Kolchin.

Theorem 4.7 ([8, p. 728]). Assume that an ordinary differential field F contains
an element x with δx 6= 0. If E is a differential subfield of the differential closure
F̂ with F ⊂ E, and E is generated (as a differential field over F ) by finitely many
elements, then there is a single element of E that generates all of E as a differential
field over F .

Kolchin extended this theorem to partial differential fields with m derivations:
the generalized condition there is the existence of m elements whose Jacobian is
nonzero. He offered counterexamples in the case where δ is the zero derivation
on F , but in the counterexamples, the generators of E are constants which are
algebraically independent over F and therefore do not lie in F̂ , although they are
differentially algebraic over F . (At that time, the definition of differential closure
was not yet well established.) It remains open whether the theorem as stated here
holds for constant differential fields as well.

One sees readily that Theorem 4.7 can be carried out effectively: given an enu-
meration of F within E, along with the finitely many generators of E over F , it is
easy to find a single generator as described in the theorem, simply by enumerating
the elements generated over F by each single x ∈ E until some such x is seen to
generate all of the finitely many given generators of E. Of course, without Theorem
4.7, one would not be sure whether this process would ever halt.

5. Constrained Pairs

For fields, the usefulness of the set SF of reducible polynomials in SF is that the ir-
reducible polynomials in F [X] exactly define the isolated 1-types over ACF0∪∆(F ).
That is, if x and y lie in field extensions of F and satisfy the same irreducible
p(X) ∈ F [X], then they generate isomorphic subfields: F (x) ∼= F (y), via an isomor-
phism fixing F pointwise and mapping x to y. (Reducible polynomials in F [X] fail
to have the same property, except for the special case of a power of an irreducible
polynomial, which can be recognized effectively using the formal derivative and the
Euclidean algorithm.) Moreover, satisfaction of a particular irreducible polynomial
p(X) by a particular x is decidable, in a computable field extending F : the formula
p(X) = 0 generating the 1-type is quantifier-free, and the field operations are com-
putable. Of course, since ACF0∪∆(F ) has effective quantifier elimination, we could
start with any generating formula and find a quantifier-free generating formula.

The important point is that we have a list of formulas, each of which generates a
principal type, and such that every principal type is generated by a formula on the
list. Theorem 3.3 says that this list can be given effectively for the field Q, and that
the effectiveness carries over to finitely generated computable field extensions. This
is the theorem which we wish to adapt for differential fields K, with the constraint
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set TK in place of the set SF of irreducible polynomials in F [X]. After some further
preliminaries, we will prove that the natural adaptations of parts (ii) and (iii) of
Theorem 3.3 do indeed carry over to differential fields. Whether part (i) can likewise
be adapted remains an open question.

Fact 5.1. Let K be a differential field. Then for each x ∈ K̂, there is exactly one
p ∈ K{Y } such that x satisfies a constrained pair of the form (p, q) ∈ TK . (Recall
that by definition p is required to be monic and irreducible.) Moreover, ord(p) is least
among the orders of all nonzero differential polynomials in the radical differential
ideal IK(x) of x within K{Y }:

IK(x) = {p ∈ K{Y } : p(x) = 0},

and deg(p) is the least degree of δord(p)Y in any polynomial in K{Y } of order ord(p)
with root x.

Proof. Since K̂ is constrained over K, each x ∈ K̂ satisfies at least one constrained
pair (p, q) ∈ TK . Set r = ord(p), and suppose there were a nonzero p̃(Y ) ∈ IK(x)
with ord(p̃) < r. By Blum’s axioms for DCF0, there would exist y ∈ K̂ with

p(y) = 0 6= q(y) · p̃(y),

since the product (q · p̃) has order < r. But then y also satisfies (p, q), yet p̃(y) 6=
0 = p̃(x), so that K〈x〉 6∼= K〈y〉. This would contradict Definition 4.3. Hence r is
the least order of any nonzero differential polynomial with root x.

It follows from minimality of r that
{
x, δx, . . . , δr−1x

}
is algebraically indepen-

dent overK. Next we claim that the minimal polynomial of δrx overK
(
x, . . . , δr−1x

)
must equal

p
(
x, δx, . . . , δr−1x, Y

)
.

Clearly the minimal polynomial must divide p
(
x, δx, . . . , δr−1x, Y

)
, and if it were a

proper factor, then by Blum’s axioms for DCF0 , the quotient of p
(
x, δx, . . . , δr−1x, Y

)
by the minimal polynomial would have a root y with q(y) 6= 0 which would not be a
root of the minimal polynomial, so that K〈x〉 6∼= K〈y〉, contradicting Definition 4.3.
(We used here the fact that with p(Y, δY, . . . , δrY ) irreducible in K

[
Y, δY, . . . , δrY

]
,

p
(
x, δx, . . . , δr−1x, Y

)
cannot be a power of the minimal polynomial.) Thus p is the minimal differential
polynomial of x over K.

Definition 5.2. If K ⊆ L is an extension of differential fields, then for each x ∈ L,
we define ordK(x) = ord(p), where (p, q) is any constrained pair in TK satisfied by
x. Notice that in the differential closure of K, every element has a well-defined
finite order over K, by Fact 5.1. (A more general definition of order for elements of
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differential field extensions sets ordK(x) ≤ ω be the transcendence degree of K〈x〉
as a field extension of K.)

In fact, the irreducibility of p(Y ) is barely necessary in Definition 4.3. The
condition that K〈x〉 ∼= K〈y〉 for all x and y satisfying the constrained pair shows
that p(Y ) cannot factor as the product of two distinct differential polynomials. The
only reason for requiring irreducibility of p is to rule out the possibility of p being
a perfect square, cube, etc. in K{Y }. If these were allowed, the uniqueness in Fact
5.1 would no longer hold.

Proposition 5.3. Let p, q, q̃ ∈ K{Y }, with (p, q) in the constraint set TK and
ord(q̃) < ord(p). Then (p, q̃) ∈ TK iff, for every x ∈ K̂, x satisfies (p, q) iff x

satisfies (p, q̃).

Proof. First suppose (p, q̃) ∈ TK . If x satisfies (p, q), then p is the minimal dif-
ferential polynomial of x over K (by Fact 5.1), and so q̃(x) 6= 0. Likewise, if x
satisfies (p, q̃), then it satisfies (p, q) as well. Conversely, if the second condition
holds, then every x and y satisfying (p, q̃) also satisfy (p, q), hence have x ∼=K y,
putting (p, q̃) ∈ TK .

It is quickly seen that if (p, q) ∈ TK , then also (p, q ·h) ∈ TK for every h ∈ K{Y }.
So Proposition 5.3 is nontrivial, and the constrained pair satisfied by an x ∈ K̂ is
not unique, although its first component is unique. The proposition shows that the
first component essentially determines the constrained pair: two constrained pairs
with the same first component define the same set. On the other hand, not all monic
irreducible differential polynomials p can be the first component of a constrained
pair; the polynomial p(Y ) = δY is a simple counterexample. In Section 7 we will
address the question of constrainability : for which p ∈ K{Y } does there exist some
q ∈ K{Y } with (p, q) ∈ TK?

6. Decidability in the Constraint Set and Rabin Image

6.1. Decidability in the Constraint Set

The two theorems in this section were proven in [16], a preliminary report on
the work in this article. They address the adaptation of Rabin’s Theorem to the
context of differential fields. The proofs are straightforward, and we do not repeat
them here.

Theorem 6.1 ([16, Theorem 10]). Let K be any computable differential field, and
g : K → K̂ a (differential) Rabin embedding of K. Then all of the following are
computable in an oracle for the constraint set TK : the splitting set SK , the Rabin
image g(K), and the order function ordK on K̂. If additionally our derivation is
nontrivial, then the set DK of finite subsets of K̂ algebraically dependent over g(K)
is also computable in a TK-oracle.
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In particular, the Rabin image g(K) is computable in a TK-oracle. This means
that

(
g(K) ∩ CK̂

)
is a TK-computable subfield of the constant field CK̂ , which in

turn is a computable subfield of K̂. Indeed, the restriction of g to CK is a Rabin
embedding of the computable field CK into its algebraic closure CK̂ , in the sense of
Theorem 3.5, the original theorem of Rabin for fields.

Therefore, if C is any computable field without a splitting algorithm, we can
set K = C to be a differential field with CK = C (by using the zero derivation).
Theorem 4.6 gives a Rabin embedding g of this differential field K into a computable
presentation of K̂. Theorem 3.5 shows that g(K) = g(CK) is noncomputable within
the computable subfield CK̂ , and therefore must be noncomputable within K̂ itself.
Finally, Theorem 6.1 shows that the constraint set TK of this differential field K

was noncomputable.
So there do exist computable differential fields, even with the simplest possible

derivation, for which the constraint set is noncomputable. In the opposite direction,
it is certainly true that if K itself is already differentially closed, then its constraint
set is computable, since the constrained pairs are exactly those pairs of the form
(Y − a, b) with a, b ∈ K and b 6= 0. (Such a pair is satisfied by exactly one x ∈ K,
hence by exactly one x ∈ K̂ = g(K), using the identity function as the Rabin
embedding g. Thus it trivially satisfies Definition 4.3.)

We do not yet know any examples of computable differential fields which have
computable constraint set, yet are not differentially closed. The decidability of
the constraint set is a significant open problem for computable differential fields in
general. So likewise is the decidability of constrainability: for which p ∈ K{Y }
does there exist a q with (p, q) ∈ TK? We address this question in Section 7. The
comments in the proof of Theorem 6.1 in [16] make it clear that p(Y ) = δY is an
example of a differential polynomial which is not constrainable.

6.2. Decidability in the Rabin Image

Rabin’s Theorem for fields, stated above as Theorem 3.5, gave the Turing equiv-
alence of the Rabin image g(F ) and the splitting set SF . Our principal analogue of
SF for differential fields K is the set TK , and Theorem 6.1 makes some headway in
identifying sets, including g(K) but not only that set, whose join is Turing-equivalent
to TK . It is also natural to ask about Rabin’s Theorem from the other side: what
set (or what join of sets) must be Turing-equivalent to g(K)? We now present one
step towards an answer to that question, using the notion of a linear differential
polynomial in K{Y }. Recall that “linear” here is used in exactly the sense of field
theory: the polynomial has a constant term, and every other term is of the form
aδiY , for some a ∈ K and i ∈ ω. If the constant term is 0, then the polynomial is
homogeneous as well, every term having degree 1.

The solutions in K̂ of a homogeneous linear polynomial p(Y ) of order r are
well known to form an r-dimensional vector space over the constant field CK̂ . By
additivity, the solutions in K̂ to any linear polynomial of order r then form the
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translation of such a vector space by a single root x of p(Y ). Of course, not all of
the solutions in K̂ need lie in K: the solutions to p(Y ) = 0 in K (if any exist) form
the translation of a vector space over CK of dimension ≤ r.

Proposition 6.2. [16, Proposition 11] In a computable differential field K whose
field CK of constants is algebraically closed, the full linear root set FRK :

{linear p(Y ) ∈ K{Y } : p(Y ) = 0 has solution space in K of dim ord(p)},

is computable from an oracle for the image g(K) of K in any computable differential
closure K̂ of K under any Rabin embedding g. Moreover, the Turing reduction is
uniform in indices for K̂ and g.

It would be of interest to try to extend this result to the case where CK need
not be algebraically closed, and/or to the situation involving the differential closure
of an extension of K by algebraically independent constants.

7. The Constrainability Set

We now address the question of whether a given differential polynomial p(Y ) ∈
K{Y } is constrainable within its computable differential field K. This question asks
whether there exists some q ∈ K{Y } such that (p, q) forms a constrained pair, i.e.,
such that (p, q) /∈ TK . Such a q is called a constraint on p.

Definition 7.1. For a differential field K, the set of unconstrainable differential
polynomials is the set

UK = {p ∈ K{Y } : (∀q ∈ K{Y })(p, q) ∈ TK}.

Any p(Y ) /∈ UK is said to be constrainable.

As the natural c.e. and co-c.e. sets for fields are all named in their existential
forms (RK , SK , TK , and DK), we propose that related Σ0

2 and Π0
2 sets should

always be named in their Π0
2 (that is, ∀∃) forms. As in the case of UK , this will

often involve a single ∀ quantifier over an existential set, which makes a simple and
natural definition. An alternative definition follows from our next proposition.

Fact 7.2. A differential polynomial p ∈ K{Y } is constrainable over K iff p is the
minimal differential polynomial of some x in the differential closure K̂ of K.

Proof. Every constrained pair (p, q) is satisfied by some x ∈ K̂. Fact 5.1 shows
that p must be the minimal differential polynomial of this x, and also shows that
the minimal differential polynomial of each x ∈ K̂ is the first component of the
constrained pair satisfied by that x.
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This alternative definition of constrainability is no simpler, however: it says that
there exists an x satisfying p such that no polynomial in K{Y } of lesser rank than
p can have x as a zero. We now show that UK cannot be defined by any formula
simpler than Π0

2.

Theorem 7.3. There exists a computable differential field K in which the set of
constrainable polynomials p ∈ K{Y } is Σ0

2-complete.

Proof. This proof evolved out of a suggestion by David Marker. The key to the
Π0

2-completeness is Theorem 6.2 from [12, p. 73], which introduces the differential
polynomials

pe(Y ) = δY − te
(
Y 3 − Y 2

)
we will use, over a ground field K0

∼= Q〈t0, t1, . . .〉 in which the elements te form a
differentially independent set over Q. (That is, no tuple 〈t0, . . . , tn〉 is a zero of any
nonzero differential polynomial over Q.) Now pe(Y ) certainly will have zeroes in the
differential closure of K0 (although its only zeroes in K0 itself are the trivial ones 0
and 1), but, imitating the proof of Corollary 6.3 in [12] with f(Y ) = Y 3 − Y 2, we
see that the set of its nonconstant zeroes is algebraically independent over Q.

Moreover, in an extension K of K0 such as we shall build, pe is constrainable
iff K contains only finitely many zeros of pe. This condition is readily exploited to
show Σ0

2-completeness of constrainability, which is to say, Π0
2-completeness of UK ,

using requirements:

Re : pe has infinitely many zeroes in K ⇐⇒ e ∈ Inf.

These will show that the Π0
2-complete set Inf = {e : |We| =∞} is 1-reducible to UK .

Since UK is already known to be Π0
2, it will therefore be Π0

2-complete, and many
computable model theorists could fill in the rest of these details immediately.

The differential field K is built as a c.e. subfield of the differential closure K̂0,
in stages, as a computably enumerable differential subfield of the (computable)
differential closure of Q〈t0, t1, . . .〉. Each requirement Re will be eligible at infinitely
many stages, at each of which it will have the opportunity to add more elements to
K if it needs to.

At stage 0, we apply Harrington’s Theorem 4.6 to (a computable presentation
of) the differential field Q〈t0, t1, . . .〉, as described above, with the te all differentially
independent over Q. This yields a differential Rabin embedding f of Q〈t0, t1, . . .〉
into a computable presentation L of the differential closure of a c.e. subfield K0

which is the image of Q〈t0, t1, . . .〉 under f . We may assume that the function
e 7→ te in the original presentation of Q〈t0, t1, . . .〉 was computable, and thus that
e 7→ f(te) is computable as well. From here on, we deal only with K0, writing

ae = f(te) ∈ K0
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for the image in K0 of each differential transcendental te. Within L, we can now
name the nonconstant zeroes of the polynomials

pe(Y ) = δY − ae
(
Y 3 − Y 2

)
.

There must be infinitely many such zeroes, since L is differentially closed and pe has
order 1, and each list

{ze,0 < ze,1 < ze,2 < . . .}

of all nonconstant zeroes of pe in L is computable, uniformly in e.
We now move to stage s + 1. Here we use the convention that in our enu-

meration of all the c.e. sets We, for each s, there is a unique pair (e, x) for which
x ∈ We,s+1 − We,s (that is, for which x enters We at stage s + 1). Of course,
We,0 = ∅ for every e. So, at the stage s+ 1, we find the unique corresponding pair
(e, x), choose i = |We,s|, and set

Ks+1 = Ks(ze,i) ⊂ L.

Notice that since
δze,i = ae

(
z3
e,i − z2

e,i

)
,

this Ks+1 is closed under δ, hence is a differential subfield of L. Lemma 7.4 will
show that ze,i is transcendental over Ks as a field (even though it is constrained over
Ks as a differential field), making Ks+1 a purely transcendental field extension.

This completes the construction, and the differential field K is the union of
the fields Ks defined at each stage. Thus K is a c.e. subfield of L. (A computable
presentation of K with domain ω may readily be found, since the infinite c.e. set K
is the image of ω under some injective total computable function f . Just pull the
differential field operations from K back to ω via f .)

Lemma 7.4. The set {ze,i : e, i ∈ ω} is algebraically independent over K0.

Proof. Each ze,i by itself is transcendental over K0. A theorem of Rosenlicht which
appears as [12, Theorem 6.2, p. 73], along with Example 2 there, shows that if
z = ze,i and z̃ = zj,k are algebraically dependent over K0, then

aez
2 = aj z̃

2.

Applying δ to both sides and using the equations

δz = ae
(
z3 − z2

)
and δz̃ = aj

(
z̃3 − z̃2

)
,

we derive a second equation

z2δae + 2a2
e

(
z4 − z3

)
= z̃2δaj + 2a2

j

(
z̃4 − z̃3

)
.
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Applying δ and substituting for δz and δz̃ again yields a third polynomial relation
on z, z̃, ae, δae, δ2ae, aj , δaj , and δ2aj . But now these three distinct algebraic
relations show that the field

Q
(
z, z̃, ae, δae, δ

2ae, aj , δaj , δ
2aj
)

has transcendence degree at most 5 over Q. Assuming that e 6= j, this contradicts
the differential independence of ae and aj . If e = j, then the equation aez

2 = aj z̃
2

actually showed that z̃ = ±z, and the only way for z and −z both to be zeroes of pe
is for z = 0 = −z. Thus, every set {ze,i, zj,k} of two distinct elements is algebraically
independent over K0.

One then argues by induction. Let S be any subset of {ze,i : e, i ∈ ω} of size
n+ 1 ≥ 3. Form

S′ = S − {ze,i, zj,k}

by deleting any two elements from S. Then each of ze,i and zj,k is a transcen-
dental over K0(S′), by inductive hypothesis, and the argument from the preceding
paragraph, with K0(S′) and Q(S′) in place of K0 and Q, shows that {ze,i, zj,k}
is algebraically independent over K0(S′), making S algebraically independent over
K0.

Lemma 7.5. In the construction above, the nonconstrainability set UK is Π0
2-

complete.

Proof. If We is finite, then by our construction, there are only finitely many stages at
which any zero ze,i of the polynomial pe(Y ) is added to K. It follows from Lemma 7.4
that the only elements ze,i in K are the ones we specifically enumerated into Ks+1 at
some stage s+ 1: Lemma 7.4 shows that no finite set of such elements ze,i generates
any ze′,i′ as a field, except those already in the finite set, and we remarker in the
proof that the field generated by this set is closed under differentiation. Therefore,
an easy induction on s shows that, for every e and s, pe has exactly |We,s| nontrivial
zeroes in Ks. But now, if |We| = n is finite, then

(pe(Y ), Y (Y − 1)(Y − ze,0) · . . . · (Y − ze,n−1)) /∈ TK ,

and so pe /∈ UK .
Conversely, if We is infinite, then pe(Y ) has infinitely many zeroes in K, since a

new one is added at each stage at which We receives a new element. But then there
is no q ∈ K{Y } with (pe, q) /∈ TK : such a q would have to have order 0, since pe has
order 1, and hence q would have only finitely many zeroes in K. This would leave
infinitely many ze,i in K satisfying (pe, q), yet clearly ze,i 6∼=K ze,j for all i 6= j with
either ze,i or ze,j in K, since no isomorphism fixing K pointwise could map ze,i to
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any element except itself. Thus

pe ∈ UK ⇐⇒ e ∈ Inf,

and the computable injective function e 7→ pe is a 1-reduction from Inf to UK ,
proving the lemma. (Recall that Definition 7.1 shows that UK is a Π0

2 set.)

This completes the proof of Theorem 7.3.

The usual examples of nonconstrainable polynomials are along the lines of p(Y ) =
δY . Based on just this, one might wonder whether the nonconstrainable polynomials
in K{Y } are exactly those of the form δp̃ for some p̃ ∈ K{Y }. In one direction, this
holds true: polynomials δp̃ are nonconstrainable. To see this, note that for every
constant c ∈ K and every q ∈ K{Y } of order < ord(δp̃) the polynomial (p̃(Y )− c)
would have order > ord(q), so there would exist an xc ∈ K̂ satisfying

p̃(xc)− c = 0 6= q(xc),

by Blum’s axioms. Every such xc would satisfy (δp̃, q), yet for constants c 6= d, we
would have

p̃(xc) = c 6= d = p̃(xd),

proving that (δp̃, q) is not a constrained pair.
However, Theorem 7.3 shows that nonconstrainability is not always equivalent

being the derivative of another polynomial.

Corollary 7.6. There exist a computable differential field K and a differential poly-
nomial p ∈ K{Y } such that, for all p̃ ∈ K{Y }, p 6= δp̃, yet p0 is not constrainable
in K{Y }.

Proof. In the differential field K built in Theorem 7.3, nonconstrainability cannot
be equivalent to being a derivative, since nonconstrainability cannot be defined by
the Σ0

1 condition
(∃p̃ ∈ K{Y })δp̃ = p.

We argued above that every δp̃ with p̃ ∈ K{Y } is nonconstrainable, so the opposite
containment relation must fail. That is, there must exist some nonconstrainable p
which is not a derivative.

In fact, we can say specifically that in the field K constructed in Theorem 7.3,
those pe which turned out to be nonconstrainable are specific instances of Corollary
7.6. If such a pe were of the form δp̃, then p̃ would have appeared in K{Y } at some
finite stage s, and thus pe would have been nonconstrainable even in the differential
subfield Ks generated by the elements enumerated by stage s. But this did not
happen: each pe was constrainable within each Ks, even though certain of them
became nonconstrainable in the larger field K.
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Finally, we note that although UK is Π0
2-complete for this particular K, there

may still be many other computable differential fields L for which UL is not this
complex. Theorem 7.3 shows that no definition of the constrainability set can be
any simpler than Π0

2, but in specific cases a definition equivalent to constrainability
might have lower complexity. In particular, for a constant differential field F , and
especially for the constant field Q itself, one suspects that the complexity may be
lower. These questions remain open.

8. Extension by Constrained Elements

Since the constraint set TK plays the same role for a differential field K that
the splitting set SF plays for an algebraic field F , it is natural to ask which results
about SF carry over to TK . The most basic results about SF are those of Theorem
3.3, given by Kronecker in [11]: that SQ is computable, and that the splitting set
SF (x) for a computable extension F (x) of a computable field F is computable from
an oracle for SF .

Moreover, the process of computing SF (x) from SF is uniform in F and in one
single piece of information about x, namely, whether x is algebraic or transcendental
over F . (It is often said that the process is uniform in the minimal polynomial of x
over F , but if we know that x is algebraic, then we can find its minimal polynomial
using the SF oracle.)

It follows that every finitely generated computable field of characteristic 0 has
computable splitting set, and this fact is extremely useful when one tries to build
embeddings or isomorphisms among computable fields. The same holds in char-
acteristic p > 0, since the splitting set of a finite field such as Fp is obviously
computable.

In this section, we investigate the analogue of this result for constrained dif-
ferential field extensions. If K is a computable differential field, with computable
extension K〈z〉, must TK〈z〉 ≤T TK? We will show that when z is constrained over
K, the answer is always positive, uniformly in z, provided only that K is noncon-
stant. For constant K, the question remains open.

In the previous section we exploited the fact that if K ⊆ L ⊆ K̂, then K̂ can
fail to be (isomorphic over L to) a differential closure of L, although it must contain
some subfield L̂ ⊇ L which is a differential closure of L. The problem was that
certain elements of K̂ turned out not to be constrainable over L. When we consider
a finitely generated differential field extension L = K〈z0, . . . , zn〉 ⊆ K̂, this is no
longer possible.

Lemma 8.1 ([10, §4, Proposition 5]). Let K be a differential field and L a sub-
field of any differential closure K̂ of K, with L finitely differentially generated as a
differential field extension of K. Then K̂ must also be a differential closure of its
differential subfield L.
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Lemma 8.1 shows that every x ∈ K̂ satisfies a constrained pair over K〈z〉, but
does not specify the two polynomials which constitute that constrained pair. Below
we will prove Theorem 8.6, stating that if we can recognize constrained pairs over
K, then we can also recognize them over K〈z〉. Once this is known, then given an
oracle for TK , we will be able to identify the constrained pair over K〈z〉 satisfied by
x, simply by searching for it. However, there is a good deal of work still to be done
before we can prove Theorem 8.6.

Lemma 8.2. For a computable differential field K with Rabin embedding g : K →
K̂, and an arbitrary z ∈ K̂, the splitting set SK〈z〉 is computable in an oracle for
TK , uniformly in z.

Proof. With the oracle TK , we can find a constrained pair (p, q) ∈ TK satisfied by
z. Then, with r = ord(p), the differential field K〈z〉 is the field

K
(
z, δz, . . . δr−1z

)
[δrz],

and p gives the minimal polynomial of δrz over the purely transcendental field
extension K

(
z, δz, . . . δr−1z

)
. With this information, Kronecker’s Theorem allows

us to compute the splitting set of K〈z〉 from SK .

The same holds when z is differentially transcendental over K: then K〈z〉 is
just the field K

(
z, δz, δ2z, . . .

)
, with computable transcendence basis

{
δiz : i ∈ ω

}
,

hence has a splitting algorithm. However, the uniformity of the result fails when we
do not know whether z is constrained or not.

In what follows, for p ∈ K{Y }, [p] is the least differential ideal in K{Y } con-
taining p. Let r = ord(p). Recall that the initial Ip of p is defined as the leading
coefficient when p is expressed as a polynomial in δrY (say of degree d) with coeffi-
cients in K(Y, . . . , δr−1Y ), so that p = Ip(δrY )d + · · · . Let

hp = Ip · sp, where sp =
∂p

∂(δrY )
.

For example, if p = Y (δY )2 + δY + 1, then hp = Y · (2Y δY + 1). For J ⊂ K{Y },
we define the colon ideal J : h∞p by:

J : h∞p =
{
f ∈ K{Y } | hnp · f ∈ J for some n ≥ 0

}
.

It turns out that [p] : h∞p is a prime differential ideal if and only if (p) : h∞p is a
prime ideal [9, III.8, Lemma 6 and IV.9, Lemma 2]. Moreover, if p is an irreducible
polynomial, then (p) is a prime ideal. Therefore, in this case, (p) : h∞p is prime as
well. Thus, if p is irreducible, then [p] : h∞p is a prime differential ideal.

Lemma 8.3. For every computable differential field K and every differential poly-
nomial p ∈ K{Y }, the relation of equivalence mod [p] : h∞p is computable in K{Y },

25



uniformly in K and p, and so there is a computable presentation of the differential
ring K{Y }

/
[p] : h∞p .

Proof. The basic point of the proof is that we have an algorithm, called differential
pseudo-division, which takes an f ∈ K{Y } as input and produces g ∈ K{Y } of
lower rank than p, with

f − g ∈ [p] : h∞p ,

(Recall that “lower rank” means that either ord(g) < r = ord(p) or else ord(g) = r

and δrY has strictly lesser degree in g than its degree d in p.) First, if ord(f) = s > r,
then δs−rp has order s and is linear in δsY with “leading coefficient” sp. So, by
subtracting an appropriate multiple of δsY from sp · f , we get an f0 with order < s

such that
(sp · f − f0) ∈ [p].

Repeating this process produces an fn of order ≤ r. If its order is exactly r, then
we reduce it by multiples of p until the degree of the variable δrY in fm is < d

multiplying by hp whenever needed. A general algorithm is described in [9, I.9].
Of course, if S is the set of all f ∈ K{Y } for which either ord(f) < r or else

ord(f) = r and δrY has degree < d in f , then no two distinct elements of S can be
equivalent mod [p] : h∞p , since

[p] : h∞p ∩ S = {0}.

So two elements of K{Y } are equivalent mod [p] : h∞p iff the above algorithm on
those elements gives the same output for both. Moreover, S is computable and
is the domain of our computable presentation of K{Y }/[p] : h∞p , with addition,
multiplication, and differentiation computed exactly as in K{Y }, with the result
reduced modulo [p] : h∞p to an element of S in the sense of the algorithm described
above.

Corollary 8.4. For every computable differential field K, every Rabin embedding
g : K → K̂, and every z ∈ K̂, the differential subfield g(K)〈z〉 is computably
presentable, uniformly in the minimal differential polynomial p of z over K. (In
turn, p can be computed from z using a DK oracle.)

Proof. K〈z〉 is isomorphic to the differential field Quot(K{Y }/[p] : h∞p ), with z

mapping to the equivalence class of Y . In this case, the irreducible polynomial
p ∈ K{Y } forms a characteristic set of the prime differential ideal P := ker(K{Y } →
K〈z〉) [9, I.10].

Of course, this corollary is clear for other reasons, even without needing to know
p. g(K)〈z〉 is a c.e. differential subfield of K̂, hence can easily be pulled back to a
computable presentation. The interesting point is that one cannot readily use the
subfield g(K)〈z〉 to prove the uniformity over p in Lemma 8.3. It is easy to find
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zeroes z ∈ K̂ of the given p, but unless DK is computable, one cannot decide which
of these zeroes, if any, is generic for p – that is, which z have minimal differential
polynomial p.

Moreover, if p were unconstrainable, then no z at all would be generic for p over
K. So the proof of Lemma 8.3 is essential to the study of computable differential
fields, particularly those for which DK or UK is noncomputable. (For computable
fields F , the analogous procedure works for all irreducible p ∈ F [X], so one only
needs to be able to decide the splitting set SF , which is always c.e., whereas in
general UK is only Σ0

2.)
We will need the following lemma as well.

Lemma 8.5. Let K̂ be a computable differentially closed field. Then it is com-
putable, given arbitrary m, n, and coefficients for differential polynomials f0, . . . , fm
and g0, . . . , gn in K̂{Y }, whether V (f0, . . . , fm) ⊆ V (g0, . . . , gn), where these are the
differential varieties in K̂ defined by these polynomials. Consequently, it is also uni-
formly computable whether V

(
f
)

= V (g), and whether containment or equality holds

between the radical differential ideals
√[

f
]

and
√

[g].

Proof. This follows from quantifier elimination for the theory DCF0, but it can also
be seen as a pleasing application of the Differential Nullstellensatz, which states that

with K̂ differentially closed, V
(
f
)
⊆ V (g) iff

√
[g] ⊆

√[
f
]
. (The analogous result

over algebraically closed fields is Hilbert’s Nullstellensatz.) So the statement about
radical differential ideals will follow from that about varieties.

Moreover, the reversal between the two inclusions quickly yields the lemma, since
V (f) ⊆ V (g) is a universal condition, saying that every common zero of all fi is

also a zero of every gj , while
√

[g] ⊆
√[

f
]

is an existential condition: each of

the (finitely many) gi in g lies in
√[

f
]

iff there exist kj and a linear combination

(over K̂{Y }) of the fi’s and their derivatives such that the combination is equal to
g
kj

j . Being defined uniformly by both an existential and a universal condition, the
containment is therefore computable.

We now come to the differential analogue of Kronecker’s Theorem, for finitely
generated constrained extensions.

Theorem 8.6. Let L be any computable ordinary differential field with nontrivial
derivation δ, and K its image under any differential Rabin embedding of L into any
K̂. Then for every z ∈ K̂, the constraint set TK〈z〉 is computable in an oracle for
TK . Also, the constrainability set UK〈z〉 is computably enumerable relative to TK .
Both the computation of TK〈z〉 and the enumeration of UK〈z〉 are uniform in z and
TK .

Proof. First, using the oracle TK , search for a pair (pz, qz) ∈ TK satisfied by z.
Since z ∈ K̂, we eventually find such a pair, in which pz is the minimal differential
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polynomial of z over K. Set rz = ord(pz). Then K〈z〉 has transcendence basis

B0 =
{
z, δz, . . . , δrz−1z

}
over K, and is generated by this basis along with δrzz, whose minimal polynomial
over the transcendence basis is pz

(
z, . . . , δrz−1z, Y

)
. With this information, we can

compute the splitting set SK〈z〉 from SK , which in turn is computable from our
TK-oracle, by Theorem 6.1.

Moreover, TK can also compute DK , the set of finite subsets of K̂ which are
algebraically dependent over K. But a finite subset S of K̂〈z〉 = K̂ is algebraically
independent over K〈z〉 iff S ∩B0 = ∅ and S ∪B0 /∈ DK . Thus

DK〈z〉 ≤T DK ≤T TK ,

again uniformly in z. (“Computing DK〈z〉” normally means deciding algebraic in-
dependence over K〈z〉 for all finite subsets from some particular differential closure
of K〈z〉. In this case, by Lemma 8.1, the identity map from K〈z〉 into K̂ is a
differential Rabin embedding, and we have given a process for deciding algebraic
independence over K〈z〉 which works for all finite tuples from K̂.)

Since K〈z〉 is a computable differential field, TK〈z〉 is Σ0
1, uniformly in z (and

even in K). So we need only show that its complement is Σ0
1 relative to TK . Briefly

summarizing, the following argument says that there are two ways for (p, q) to lie
in TK〈z〉: either p is nonconstrainable there, or else q is not the correct constraint
for p. Constrainability is Σ1 in an oracle for DK , which we have. Assuming p is
constrainable, we use the differential closure to find some x satisfying (p, q), and
then use Lemma 8.3 to compare q over [p] : h∞p with a constrained pair (p, q̃) over
K〈z〉, which x is known to satisfy. (Possibly (p, q̃) is not actually a constrained pair
over K〈z〉, but it is known to generate a principal type there, which is sufficient for
our purpose.)

We claim that, for every (p, q) ∈ (K〈z〉{Y })2, the following process will halt iff
(p, q) /∈ TK〈z〉. Set r = ord(p), and check first that r > ord(q), and that p is monic
and irreducible as an algebraic polynomial over K〈z〉. (This uses SK〈z〉.) If so, then
we search for an x ∈ K̂ with the properties that

p(x) = 0 6= q(x) and
{
x, δx, . . . , δr−1x

}
/∈ DK〈z〉.

Assuming (p, q) /∈ TK〈z〉, such an x exists, so eventually we find one, and Fact 5.1
shows that p is the minimal differential polynomial of this x over K〈z〉, hence is
constrainable, by Fact 7.2. (If p were not constrainable, then no such x could exist,
since we have already confirmed that p is irreducible.) Moreover, the differential
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ideal [p] : h∞p in K〈z〉{X} is precisely the ideal

{j ∈ K〈z〉{X} : j(x) = 0}.

Having found this x, we search for some u in the c.e. subfield K〈x, z〉 of K̂ such that
x and z both lie in K〈u〉.

Theorem 4.7 shows that we do eventually find such a u in K̂, since we assumed
δ to be nontrivial, and indeed we find differential rational functions f, g, h with
coefficients in K such that

f(x, z) = u, g(u) = x, and h(u) = z.

We also use the oracle to find a pair (pu, qu) ∈ TK satisfied by u, and another pair
(px, qx) ∈ TK satisfied by x. Now

h(f(x, z))− z = 0,

and if we choose h0, h1 ∈ K〈z〉{X} so that

h0(X)
h1(X)

= h(f(X, z))− z,

then h0(x) = 0 6= h1(x). Similarly, setting

g0(X)
g1(X)

= g(f(X, z))−X and
p0(X)
p1(X)

= pu(f(X, z))

gives g0(x) = 0 6= g1(x) and p0(x) = 0 6= p1(x), with all these polynomials in
K〈z〉{X}.

Now we define q̃ ∈ K〈z〉{X} by

q̃(X) = qu(f(X, z)) · g1(X) · h1(X) · p1(X) · hp(X),

with hp as on page 25 for our p. Suppose x̃ ∈ K̂ satisfies (p, q̃). Now every j ∈
K〈z〉{X} with j(x) = 0 lies in [p] : h∞p , hence must have j(x̃) = 0 (since hp(x̃) 6= 0).
We also know that x satisfies (p, q̃), since hp has strictly lesser rank than the minimal
differential polynomial p of x, and thus must have hp(x) 6= 0. We set

ũ = f(x̃, z),

so by our assumption about x̃, we know qu(ũ) 6= 0. Also,

0 = pu(u) = pu(f(x, z)),
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so p0 lies in [p] : h∞p , while p1(x̃) 6= 0, and therefore

0 = pu(f(x̃, z)) = pu(ũ)

as well. Therefore this ũ satisfies the constrained pair (pu, qu) ∈ TK , and so the map
σ with σ(u) = ũ which restricts to the identity on K is an isomorphism from K〈u〉
onto K〈ũ〉.

Now 0 = h0(x̃) = g0(x̃), since these differential polynomials both have x as a
zero, while we know

g1(x̃) · h1(x̃) 6= 0.

It follows that
h(f(x̃, z))− z = 0 = g(f(x̃, z))− x̃,

and so h(ũ) = z and g(ũ) = x̃. But g and h have coefficients in K, so

σ(z) = σ(h(u)) = h(σ(u)) = h(ũ) = z and σ(x) = σ(g(u)) = g(σ(u)) = g(ũ) = x̃.

Thus this σ maps x to x̃, fixes z, and fixesK pointwise, so σ witnesses that x ∼=K〈z〉 x̃.
We have thus shown that (p(X), q̃(X)) generates a principal type over K〈z〉 and is
satisfied by x.

Notice that (p, q̃) could fail to be a constrained pair, since q̃ could have order
≥ ord(p), but it has the basic property of constrained pairs, which is to generate a
principal type. (Recall that this means that every two elements of K̂〈z〉 which both
satisfy (p, q) are isomorphic over K〈z〉.)

Now suppose t ∈ V (p, q). Then q(t) = 0 6= q(x), so

x 6∼=K〈z〉 t.

Since x satisfies (p, q̃), t cannot satisfy it, and with p(t) = 0, this forces q̃(t) = 0.
Thus

V (p, q) ⊆ V (p, q̃).

We now claim that

V (p, q̃) = V (p, q) ⇐⇒ (p, q) ∈ TK〈z〉.

For the forwards direction, suppose t and v both satisfy (p, q). Then

t /∈ V (p, q) = V (p, q̃),

but p(t) = 0, so q̃(t) 6= 0. Thus t satisfies (p, q̃), and so does v, by the same
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argument. Since (p, q̃) generates a principal type, we have t ∼=K〈z〉 v, which proves

(p, q) ∈ TK〈z〉.

For the converse, suppose
V (p, q̃) 6= V (p, q).

Then there must exist some w ∈ V (p, q̃)−V (p, q), since we saw above that V (p, q) ⊆
V (p, q̃). Thus p(w) = 0 and q(w) 6= 0, so w satisfies (p, q), as does x. Yet

q̃(x) 6= 0 = q̃(w)

(since w ∈ V (p, q̃)), and so x 6∼=K〈z〉 w, which proves

(p, q) /∈ TK〈z〉.

So we use Lemma 8.5 to check whether V (p, q̃) = V (p, q), and if so, we conclude
that (p, q) is a constrained pair over K〈z〉. Thus, being such a constrained pair is
Σ0

1 relative to TK , and not being such a constrained pair is Σ0
1 without any oracle.

Finally, since a TK〈z〉-oracle can enumerate UK〈z〉, so can a TK-oracle, now that we
know TK〈z〉 ≤T TK . This completes the proof of Theorem 8.6.

9. Extension by Differential Transcendentals

Lemma 9.1. Suppose that p ∈ K{Y } is algebraically irreducible and has order r.
If an element y ∈ K̂ has p(y) = 0, but p is not the minimal differential polynomial
of y, then there exists some h ∈ K{Y } of order < r such that h(y) = 0 as well.

Proof. This y must have a minimal differential polynomial h over K. If h has order
≥ r, then by minimality it must have order r and degree < d, the degree of δrY in
p(Y ). But h(y) = 0 gives the minimal (algebraic) polynomial in

K
(
y, δy, . . . , δr−1y

)
[δrY ]

of δry over K
(
y, δy, . . . , δr−1y

)
. Thus h must divide p, contradicting the irreducibil-

ity of p.

Lemma 9.2. Suppose that p ∈ K〈z〉{Y }, where z is differentially transcendental
over K. Suppose further that all coefficients of p lie within the field K(z, δz, . . . , δrz).
If there are elements x, y in the differential closure of K〈z〉 for which p(x) = p(y) = 0
but x 6∼=K〈z〉 y, then there exists g ∈ K(z, . . . , δrz){Y } of strictly lesser rank (in z)
than p, such that

either g(x) = 0 6= g(y) or g(y) = 0 6= g(x).

31



If p is constrainable over K〈z〉, and g(x) = 0 6= g(y), then there is also some ỹ and
some g̃ ∈ K

(
z, . . . , δr−1z

)
{Y } such that g̃(x) = p(ỹ) = 0 6= g̃(ỹ).

Proof. The proof of the main statement is by induction on the rank of p with respect
to the variable z, where we view p as a polynomial in both Y and z, clearing
denominators if needed. (Technically, this is a transfinite induction, since ranks of
differential polynomials, even in our simple definition, form an order of type ω2.)
The base case is trivial, since when r = −1, then the two elements x and y must
satisfy x 6∼=K y, and Proposition 4.5 then provides a polynomial g ∈ K{Y } with
g(x) = 0 6= g(y) (or vice versa).

For the inductive step, let p, x, and y be as described. Since x 6∼=K〈z〉 y, Propo-
sition 4.5 yields some h ∈ K〈z〉{Y } with

h(x) = 0 6= h(y).

That proposition does not provide any a priori bound on the order of z in the
coefficients of this h, but we may view h(Y ) as a differential polynomial in the two
variables Y and z (clearing denominators in h(Y ) if needed) and reduce h modulo
[p] : h∞p with respect to z, finding some g, whose rank with respect to z is less than
the rank of p(Y ), and some exponent k such that hkp ·h−g ∈ [p] (see [9, Section I.9]).
Therefore,

hp(x)k · h(x)− g(x) = 0,

forcing g(x) = 0. Now either g satisfies the lemma (if g(y) 6= 0), or we apply
induction to g (if g(y) = 0), since g also has strictly lesser rank than p.

Now suppose that p is also constrainable. (Notice that, if (p, q) ∈ TK〈z〉, then q

has lower order than p in the variable Y , but not necessarily in z. So we cannot
simply take g̃ to equal q.) Assume that g has positive degree in δrz, since otherwise
we can set g̃ = g. This degree must be less than that of p, since g has lower
rank than p, and so we may apply the pseudo-division algorithm from Lemma 8.3
repeatedly, with respect to the degree of the variable δrz over coefficients from
K(z, . . . , δr−1z){Y }. This yields

ig(Y )mg · p(Y ) = g(Y ) · d1(Y ) + q1(Y )

iq1(Y )m1 · g(Y ) = q1(Y ) · d2(Y ) + q2(Y )
...

iqn
(Y )mn · qn−1(Y ) = qn(Y ) · dn+1(Y ) + qn+1(Y ),

where, for all i ≤ n, qi+1(Y ) has strictly lower degree in δrz than qi(Y ) has (including
i = 0, with q0 = g). The process ends when we reach an n for which qn+1(Y ) has
degree 0 in δrz. Notice that if qn+1(Y ) were the zero polynomial, then qn(Y ) would
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have positive degree in δrz and would divide

ig(Y )mg · iq0(Y )m0 · . . . · iqn
(Y )mn · p(Y ),

which is impossible, since

ig(Y )mg · iq0(Y )m0 · . . . · iqn
(Y )mn

is free of δrz and the constrainable polynomial p, even after its denominators were
cleared, must be irreducible (as a polynomial in Y, δY, δ2Y . . .) and can have no
nontrivial factor from K〈z〉. Therefore,

qn+1(Y ) ∈ K
(
z, . . . , δr−1z

)
{Y }

is nonzero. But by induction on i, we see that either iqi
(x) = 0, or else qi(x) = 0

for every x, since p(x) = g(x) = 0. In the first case, we take g̃ := ig, while in the
second case, g̃ = qn+1 is the desired differential polynomial. In both cases, we get

g̃(x) = 0 = p(x),

while Fact 7.2 yields some ỹ in the differential closure of K〈z〉 with p(ỹ) = 0 6=
g̃(ỹ).

We state the next lemma in a specific form which will be useful for the results
in this section.

Lemma 9.3. For any differential polynomials p, q, h ∈ K{Y }, the set{
x ∈ K̂ : p(x) = h(x) = 0 6= q(x)

}
is empty iff 1 ∈

√
[p, h] : q.

Proof. If p(x) = h(x) = 0 6= q(x), then every f ∈
√

[p, h] : q has fn · qn ∈ [p, h] for
some n, hence has f(x) = 0, precluding the constant function 1 from appearing in√

[p, h] : q.
Conversely, if 1 /∈

√
[p, h] : q, then, for every n, we have qn /∈ [p, h], and the

Differential Nullstellensatz yields an x ∈ K̂ with p(x) = h(x) = 0 but q(x) 6= 0.

Corollary 9.4. Suppose the pair (p, q) from K{Y } has p monic and irreducible of
order > ord(q). Then the following are equivalent.

1. (p, q) ∈ TK .
2. For all h ∈ K{Y } of lesser rank than p, 1 ∈

√
[p, h] : q.

3. For all g ∈ K{Y }, we have either 1 ∈
√

[p, g] : q or g ∈
√

[p] : q.
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Proof. If (p, q) is a constrained pair, then p is the minimal differential polynomial
of some y ∈ K̂, and so q(y) 6= 0 6= h(y) for every h of lesser rank than p. But now
every x with p(x) = 0 6= q(x) has x ∼=K y, so h(x) 6= 0 for all such h, forcing{

x ∈ K̂ : p(x) = h(x) = 0 6= q(x)
}

to be empty. By Lemma 9.3, it follows that 1 ∈
√

[p, h] : q for all such h.
Conversely, suppose 1 ∈

√
[p, h] : q for all h ∈ K{Y } of lesser rank than p. Then,

for every such h, {
x ∈ K̂ : p(x) = h(x) = 0 6= q(x)

}
is empty, by Lemma 9.3. Therefore, if x, y ∈ K̂ both satisfy (p, q), then h(x) 6= 0 6=
h(y) for every such h, and Lemma 9.2 then shows that x ∼=K y. Thus, (p, q) /∈ TK ,
and so (1) ⇐⇒ (2).

The equivalence of (2) and (3) follows because every g is equivalent modulo√
[p] : q to some h of lesser rank than p. If this h is zero, then g ∈

√
[p] : q, while if

not, then every x with p(x) = 0 6= q(x) has g(x) = h(x) 6= 0, and so 1 ∈
√

[p, g] : q
by Lemma 9.3.

Lemma 9.5. If K̂ is not algebraic over K, then this extension is of infinite tran-
scendence degree, and indeed K̂ contains elements of arbitrarily large order over
K.

Proof. The argument showing the first part of the statement is due to Michael
Singer. For simplicity, assume that K is algebraically closed. When K and K̂

have the same field of constants, one can use [23, Corollary, p. 489] to show that
the transcendence degree of K̂ over K is infinite. To see this, assume that this
transcendence degree is finite, say n. Since K is algebraically closed, n > 1. Let y
be in K̂ and transcendental over K. Let

vi = yi, i = 1, . . . , n+ 1.

Since K̂ is differentially closed, let ui ∈ K̂ satisfy

δ(ui)/ui = −δ(vi) i = 1, . . . , n+ 1.

The conclusion of the corollary implies that there exist constants ci such that
∑

i ciy
i

is algebraic over K, which is a contradiction.
When K̂ has new constants, argue as follows. Let C be the constants of K̂. If K̂

is not algebraic over KC, then there is y ∈ K̂ transcendental over KC, and we can
argue as above to get a contradiction. Therefore, we can assume K̂ is algebraic over
KC. We can assume that K contains a non-constant x (otherwise there are lots
of elements in K̂ that are algebraically independent over K, for example, non-zero
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solutions of
δ(Y ) = zn · Y, n ≥ 0,

where z ∈ K̂ with δ(z) = 1) and that δ(x) = 1 (replacing δ by (1/δ(x)) ·δ if needed).
Since K is algebraically closed, there is a constant c ∈ K̂ not algebraic over K. Since
K̂ is differentially closed, there is y ∈ K̂ such that

δ(y) = 1/(c+ x).

Since y is algebraic over KC, taking traces, we see [18, Exercise 1.24] that there is
z ∈ KC such that

δ(z) = 1/(c+ x).

Since KC is an extension of K(c) by constants, [20, Proposition 1.2] yields w =
p(c)/q(c) ∈ K(c) such that

δ(w) = 1/(c+ x).

Expanding w in partial fractions with respect to c, differentiating and comparing
terms shows that this is impossible.

Now we consider the orders of elements of K̂. If K is nonconstant, Theorem 4.7
then implies that K̂ contains individual elements of arbitrarily large order over K.
In the case where K is a constant differential field, let x ∈ K̂ be such that x′ = 1;
such an element exists in K̂ by Blum’s axioms, and must be transcendental over K
since an element algebraic over the constant field K would also be constant. Then,
for all a1, ..., an ∈ K,

f(a1, ..., an) := xn/n! + a1x
n−1 + ...+ an

satisfies f (n) = 1. Now there exist a1, ..., an ∈ K such that f(a1, ..., an) is not a
solution of any polynomial differential equation F of order n− 1 or less. Indeed, for
each q < n, the coefficient of x0 in f (q) is equal to

q! · an−q.

(This coefficient is often referred to as the “constant term” of f (q), but it would be
confusing to call it that in this context.) Hence, for all q1, . . . , qr from {0, 1, . . . , n−1}
and all n1, . . . , nr, the coefficient of x0 of∏

i

(
f (qi)

)ni

is equal to ∏
i

(
qi! · an−qi

)ni

Thus, the coefficient of x0 in F (f) is a polynomial in a1, ..., an, which is not identi-
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cally zero. This implies the result as K is infinite.

In the proof of Theorem 9.6, we use the technique of characteristic sets from
differential algebra. We will give a short introduction to it for the convenience
of the reader unfamiliar with characteristic sets and differential rankings. Earlier,
we introduced the ring of differential polynomials in one differential indeterminate,
which we denoted by K{Y } most often. Let us now have finitely many differential
indeterminates {y1, . . . , yn} (in the proof of Theorem 9.6, we will just need the case
of n = 2). A ranking is a total order > on the set of derivatives

D :=
{
y

(p)
i

∣∣ p ≥ 0, 1 ≤ i ≤ n
}

satisfying the following conditions for all p > 0 and u, v ∈ D:

1. u(p) > u, and
2. u ≥ v =⇒ u(p) ≥ v(p).

Similarly to our previous introduced notation, K{y1, . . . , yn} := K[D] (as commu-
tative rings, and the δ-action is defined naturally) and, for u = y

(q)
j , ordu := q.

If f ∈ K{y1, . . . , yn} \K, then ord f denotes the maximal order of the derivatives
appearing effectively in f .

A ranking > is called orderly if, for all u, v ∈ D, ordu > ord v implies u > v. A
ranking > is called elimination with yi1 < . . . < yin if

y
(p)
ij

< y
(q)
ij+1

, p, q ≥ 0, 1 ≤ j ≤ n.

For example, in an orderly ranking with y1 < y2, we have: y′1 > y2 and y′1 < y′2.
However, in an elimination ranking with y1 < y2, we have: y′1 < y2 and y′1 < y′2.

Let a ranking > be fixed on S. The derivative y(p)
j of the highest rank appearing

in f ∈ K{y1, . . . , yn}\K is called the leader of f , which we denote by uf . Represent
f as a univariate polynomial in uf :

f = ifu
d
f + a1u

d−1
f + . . .+ ad. (1)

The monomial udf is called the rank of f . Extend the ranking relation on derivatives
to ranks: ud1

1 > ud2
2 if either u1 > u2, or u1 = u2 and d1 > d2. As at the beginning

of Section 8, the polynomial if is called the initial of f . Applying δ to f , we obtain

δf =
∂f

∂uf
δuf + δifu

d
f + δa1u

d−1
f + . . .+ δad.

The leader of δf is δuf , and the initial of δf is called the separant of f , which is
denoted by sf . Note that the initial of any proper derivative (i.e., a derivative of
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order greater than 0) of f is equal to sf . For example, if K = Q(x), δ(x) = 1, the
ranking is elimination with y1 > y2 and

f = (y2y
′
1 + 1)y′′21 + y′21 y

′3
2 y
′′
1 + y1y

3
2 + x,

then uf = y′′1 , the rank of f is y′′21 , if = y′1y2 + 1,

δf =
(
2(y2y

′
1 + 1)y′′1 + y′21 y

′3
2

)
y′′′1 +

+ (y2y
′′
1 + y′2y

′
1)y′′21 + (2y′1y

′′
1y
′3
2 + 3y′21 y

′2
2 y
′′
2)y′′1 + y′1y

3
2 + 3y1y

2
2y
′
2 + 1

and sf = 2(y2y
′
1 + 1)y′′1 + y′1

2y′2
3.

We say that f ∈ K{y1, . . . , yn} is partially reduced w.r.t. g ∈ K{y1, . . . , yn} \K
if no proper derivative of ug appears in f . Also, f is said to be algebraically reduced
w.r.t. g if degug

f < degug
g. Finally, f is called reduced w.r.t. g if f is partially and

algebraically reduced w.r.t. g. Let A ⊂ K{y1, . . . , yn} \ K. For example, y′1 + y2

is reduced w.r.t. y′2 + y1 in an orderly ranking but is not partially reduced w.r.t.
y′2 + y1 in an elimination ranking with y1 > y2. Also, y1 is partially reduced but
not reduced w.r.t. y1. We say that A is autoreduced if each element of A is reduced
w.r.t. all the others. So, in an orderly ranking, the set y′1 +y2, y

′
2 +y1 is autoreduced.

However, it is not autoreduced in any elimination ranking.
Every autoreduced set is finite [9, Chapter I, Section 9]. For such sets we use the

notation A = A1, . . . , Ap to specify the list of the elements of A arranged in order
of increasing rank. We denote the sets of initials and separants of elements of A by
iA and sA, respectively. Let HA = iA ∪ sA. For a finite set S in a commutative ring
R, denote the smallest multiplicative set containing 1 and S by S∞. Let I be an
ideal of R. The colon ideal I : S∞ is defined as

{a ∈ R | ∃s ∈ S∞ : sa ∈ I}.

If R is a differential ring I is a differential ideal, then I : S∞ is also a differential
ideal (see [9]).

Let A = A1, . . . , Ar and B = B1, . . . , Bs be autoreduced sets. We say the rank
of A is lower than the rank of B if

• there exists k ≤ min(r, s) such that rankAi = rankBi for all i, 1 ≤ i < k, and
rankAk < rankBk,

• or if r > s and rankAi = rankBi for all i, 1 ≤ i ≤ s.

We say that rankA = rankB if r = s and rankAi = rankBi for all i, 1 ≤ i ≤ r.
For instance, let A := y′1 + y2, y

′
2 + y1 and B := y′1 + y2. Then, in an orderly ranking

with y1 < y2, the rank of A is lower than the rank of B because rankA1 = rankB1,
but A has more elements than B does. For an orderly ranking with y2 < y1, we
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write A = y′2 + y1, y
′
1 + y2, and the rank of A is lower than the rank of B because

now rankA1 < rankB1.
For a differential ideal I ⊂ K{y1, . . . , yn}, its autoreduced subset of the least

rank is called a characteristic set of I [9, p. 82]. If the differential ideal I is prime
and C is its characteristic set, then I = [C] : H∞C [9, Lemma 2, Chapter IV,
Section 9]. For example, the smallest radical differential ideal I of K{y} containing
y′2 + y is not prime, having two minimal differential prime ideals containing it,
P1 = [y′2 + y, 2y′′ + 1] and P2 = [y]. Moreover, y′2 + y and y are characteristic sets
of P1 and P2, respectively, and P1 = [y′2 + y] : y′∞. Also, y′2 + y is a characteristic
set of I, but [y′2 + y] : y′∞ strictly contains I.

Theorem 9.6. Consider any computable ordinary nonconstant differential field K,
and assume that K̂ is not an algebraic field extension of K. Let K〈z〉 be a com-
putable differential field extension generated by an element z which is differentially
transcendental over K, presented so that K is a computably enumerable subset of
K〈z〉. Then the constraint set TK〈z〉 is computable in an oracle for TK . Also, the
constrainability set UK〈z〉 is computably enumerable relative to TK . Both the com-
putation of TK〈z〉 and the enumeration of UK〈z〉 are uniform in z and TK .

Proof. It is only necessary to show that TK〈z〉 has both an existential definition and a
universal definition, in which the quantifier-free parts are allowed to use the relation
of membership in the oracle set TK . Of course, TK〈z〉 is computably enumerable
without any oracle; indeed, its existential definition comes straight from Definition
4.3, with no TK-oracle required:

(p, q) ∈ TK〈z〉 ⇐⇒
(
∃x, y ∈ K̂〈z〉

)
(∃h ∈ K〈z〉{Y })

[h(x) = 0 = p(x) 6= q(x) & h(y) 6= 0 = p(y) 6= q(y)].

So we need only give a universal definition of TK〈z〉 (equivalently, an existential
definition of TK〈z〉) relative to TK . For any p, q ∈ K〈z〉{Y }, clear the denominators
of the coefficients to form polynomials p0, q0 ∈ K{z, Y }. We claim that

(p, q) ∈TK〈z〉 ⇐⇒ (∃f, g ∈ K{Z})
(
∃z̃ ∈ K̂

)[
(f, g) ∈ TK & f(z̃) = 0 6= g(z̃)

& (p0(z̃, Y ), q0(z̃, Y )) ∈ TK〈z̃〉 & p ∈ K
(
z, δz, . . . , δ(ord(f)−ordY (p)−1)/2z

)
{Y }

]
Once we have proven this equivalence, we will have a decision procedure for TK〈z〉
relative to TK : given input (p, q), search simultaneously for witnesses to either of the
two existential statements above. (Notice that a TK-oracle will decide membership
in TK〈z̃〉, for every z̃ ∈ K̂, uniformly in z̃, according to Theorem 8.6.) Eventually,
this procedure must find a witness for one or the other, and when it does, we have
determined whether (p, q) ∈ TK〈z〉 or not.

For the forwards implication, let (p, q) ∈ TK〈z〉. Then, for every h0 ∈ K{z, Y } of
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rank (with respect to Y ) less than the rank of p0, we know that

1 ∈
√

[p0, h0] : q0,

by Corollary 9.4. Therefore, no matter what f and g we choose from K{Z}, we will
have

1 ∈
√

[p0, h0, f ] : (g · q0)

for every such h0, and hence 1 will also lie in the ideal√
[p0(z̃, Y ), h0(z̃, Y )] : q0(z̃, Y ) ⊂ K〈z̃〉{Y }

for each z̃ ∈ K̂ satisfying (f, g). Set

p̃(Y ) = p0(z̃, Y ) and q̃(Y ) = q0(z̃, Y ).

Now every h̃ ∈ K〈z̃〉{Y } of rank (with respect to Y ) less than the rank of p̃ has
lower rank than p, since p̃ has rank ≤ the rank of p, and so viewing h̃ as a polynomial
in both z̃ and Y and clearing denominators yields an h0 as above and shows that

1 ∈
√[

p̃, h̃
]

: q̃.

Then we apply Corollary 9.4 once more to see that (p̃, q̃) lies in TK〈z〉, as required.
By Lemma 9.5, there must exist a pair (f, g) ∈ TK with ordz(f) large enough that

p ∈ K
(
z, δz, . . . , δ(ordz(f)−ordY (p)−1)/2z

)
{Y },

and this pair, along with any z̃ ∈ K̂ satisfying it, satisfies the existential condition
given.

We prove the backwards implication by contraposition. Suppose that (p, q) ∈
TK〈z〉. Fix an r such that

p, q ∈ K
(
z, δz, . . . , δrz

)
{Y }.

Then there exist elements x and y in the differential closure of K〈z〉 which both
satisfy (p, q), but such that some h ∈ K{z, Y } has

h(z, x) = 0 6= h(z, y). (2)

Let h0(z, Y ) ∈ K{z, Y } be the result of multiplying h by the least common multiple
of all denominators of its coefficients, as with p0 and q0. By Lemma 9.2, we may
assume that h0 is of rank lower than that of p0 (under the orderly ranking with

39



z < Y ), that is,

ordz(h0) + ordY (h0) ≤ ordz(p0) + ordY (p0) =: b (3)

holds. It follows from (2) that

1 /∈
√

[p, h] : q and h /∈
√

[p] : q (4)

implying that √
[p0, h0] : q0 ∩K{z} = {0}. (5)

It follows from (5) that there exists a minimal differential prime component of√
[p0, h0] : q0

such that one of its characteristic sets C with respect to the elimination ranking
with z < Y has the form {C1} for some irreducible C1 ∈ K{z, Y } \K{z}. Indeed,
suppose it had two elements in it, B1 < B2. We know that a characteristic set is
autoreduced, and that z < Y and the ranking is elimination. So, the leaders of B1

and B2 must be derivatives of z and Y , respectively. Again, since the ranking is
elimination and z < Y , B1 cannot depend on Y , which would contradict (5). It now
follows from [5, Proposition 14] and (3) that

ordz(C1) ≤ ordz(C1) + ordY (C1) ≤
≤ max(ordz(h0), ordz(q0), ordz(p0)) + max(ordY (h0), ordY (q0), ordY (p0)) ≤ 2b.

Moreover, for every irreducible C0 ∈ K{z} with ordz(C0) > 2b, the set C :=
{C0, C1} is autoreduced and, by the Rosenfeld Lemma (see [7, Theorem 4.8]),

1 ∈ [C] : H∞C ⇐⇒ 1 ∈ (C) : H∞C (6)

with the latter statement being impossible because of the choice of C0 and C1 (see
[21, pages 88–90]). Fix any (f, g) ∈ TK with f of order ≥ 2b + 1, and any z̃ ∈ K̂
satisfying (f, g), and let p̃, q̃, and h̃ be the result of replacing z by z̃ in p0, q0, and
h0, respectively. Now (4) and (6) imply that

1 /∈
√[

p̃, h̃
]

: q̃ ⊂ K̂{Y }. (7)

Therefore, Corollary 9.4 shows that (p̃, q̃) ∈ TK〈z̃〉. This completes the proof of
the backwards direction, and shows that our existential definition of TK〈z〉 was
correct.
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