A complexity theory of constructible sheaves Symbolic-numeric computing seminar CUNY

Saugata Basu

Department of Mathematics Purdue University

November 20, 2015

- Motivation
- Qualitative/Background
- Quantitative/Effective
- 4 Complexity-theoretic

- Motivation
- Qualitative/Background
- Quantitative/Effective
- 4 Complexity-theoretic

- Motivation
- Qualitative/Background
- Quantitative/Effective
- 4 Complexity-theoretic

- Motivation
- Qualitative/Background
- Quantitative/Effective
- Complexity-theoretic

- Provides a more natural geometric language, more expressiveness than (first-order) logic.
- It provides a (topological) generalization of quantifier elimination (Tarski-Seidenberg). It is interesting to study quantitative/algorithmic questions in this more general setting.
- Applications in other areas (*D*-module theory, computational geometry ...).
- Interesting extensions of Blum-Shub-Smale complexity classes leading to P vs NP type questions which (paradoxically) might be easier to resolve than the classical (B-S-S) ones.
- Quantitative study of sheaf cohomology might be interesting on its own

- Provides a more natural geometric language, more expressiveness than (first-order) logic.
- It provides a (topological) generalization of quantifier elimination (Tarski-Seidenberg). It is interesting to study quantitative/algorithmic questions in this more general setting.
- Applications in other areas (*D*-module theory, computational geometry ...).
- Interesting extensions of Blum-Shub-Smale complexity classes leading to P vs NP type questions which (paradoxically) might be easier to resolve than the classical (B-S-S) ones.
- Quantitative study of sheaf cohomology might be interesting on its own.

- Provides a more natural geometric language, more expressiveness than (first-order) logic.
- It provides a (topological) generalization of quantifier elimination (Tarski-Seidenberg). It is interesting to study quantitative/algorithmic questions in this more general setting.
- Applications in other areas (*D*-module theory, computational geometry ...).
- Interesting extensions of Blum-Shub-Smale complexity classes leading to P vs NP type questions which (paradoxically) might be easier to resolve than the classical (B-S-S) ones.
- Quantitative study of sheaf cohomology might be interesting on its own.

- Provides a more natural geometric language, more expressiveness than (first-order) logic.
- It provides a (topological) generalization of quantifier elimination (Tarski-Seidenberg). It is interesting to study quantitative/algorithmic questions in this more general setting.
- Applications in other areas (*D*-module theory, computational geometry ...).
- Interesting extensions of Blum-Shub-Smale complexity classes leading to P vs NP type questions which (paradoxically) might be easier to resolve than the classical (B-S-S) ones.
- Quantitative study of sheaf cohomology might be interesting on its own.

- Provides a more natural geometric language, more expressiveness than (first-order) logic.
- It provides a (topological) generalization of quantifier elimination (Tarski-Seidenberg). It is interesting to study quantitative/algorithmic questions in this more general setting.
- Applications in other areas (*D*-module theory, computational geometry ...).
- Interesting extensions of Blum-Shub-Smale complexity classes leading to P vs NP type questions which (paradoxically) might be easier to resolve than the classical (B-S-S) ones.
- Quantitative study of sheaf cohomology might be interesting on its own.

Semi-algebraic sets and maps

- Semi-algebraic sets are subsets of \mathbb{R}^n defined by Boolean formulas whose atoms are polynomial equalities and inequalities (i.e. P=0, P>0 for $P\in\mathbb{R}[X_1,\ldots,X_n]$).
- A semi-algebraic map is a map $X \xrightarrow{f} Y$ between semi-algebraic sets X and Y, is a map whose graph is a semi-algebraic set.

Semi-algebraic sets and maps

- Semi-algebraic sets are subsets of \mathbb{R}^n defined by Boolean formulas whose atoms are polynomial equalities and inequalities (i.e. P=0, P>0 for $P\in\mathbb{R}[X_1,\ldots,X_n]$).
- A semi-algebraic map is a map $X \xrightarrow{f} Y$ between semi-algebraic sets X and Y, is a map whose graph is a semi-algebraic set.

Easy facts (i.e. follows more-or-less from the definitions) ...

Semi-algebraic sets are closed under:

- Finite unions and intersections, as well as taking complements
- Products (or more generally fibered products over polynomial maps)
- Taking pull-backs (inverse images) under polynomial maps

Easy facts (i.e. follows more-or-less from the definitions) ... Semi-algebraic sets are closed under:

- Finite unions and intersections, as well as taking complements.
- Products (or more generally fibered products over polynomial maps).
- Taking pull-backs (inverse images) under polynomial maps.

Easy facts (i.e. follows more-or-less from the definitions) ... Semi-algebraic sets are closed under:

- Finite unions and intersections, as well as taking complements.
- Products (or more generally fibered products over polynomial maps).
- Taking pull-backs (inverse images) under polynomial maps.

Easy facts (i.e. follows more-or-less from the definitions) ... Semi-algebraic sets are closed under:

- Finite unions and intersections, as well as taking complements.
- Products (or more generally fibered products over polynomial maps).
- Taking pull-backs (inverse images) under polynomial maps.

Quantifier Elimination/ Tarski-Seidenberg

Harder fact (Tarski-Seidenberg Theorem (Tarski, 1951)) ...

- Images of a semi-algebraic sets under polynomial maps are also semi-algebraic.
- Equivalently, the first order theory of the reals admits quantifier elimination.

Quantifier Elimination/ Tarski-Seidenberg

Harder fact (Tarski-Seidenberg Theorem (Tarski, 1951)) ...

- Images of a semi-algebraic sets under polynomial maps are also semi-algebraic.
- Equivalently, the first order theory of the reals admits quantifier elimination.

Quantifier Elimination/ Tarski-Seidenberg

Harder fact (Tarski-Seidenberg Theorem (Tarski, 1951)) ...

- Images of a semi-algebraic sets under polynomial maps are also semi-algebraic.
- Equivalently, the first order theory of the reals admits quantifier elimination.

- Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a map (between sets).
- Then there are induced maps:

$$2^{\mathbf{X}} \overset{f_{\exists}}{\longleftarrow} f^{*} \longrightarrow 2^{\mathbf{Y}} \qquad f_{\exists}(A) := f(A) \ f^{*}(B) := f^{-1}(B) \ f_{orall}(A) := \{ y \in Y \mid A \subset f^{-1}(y) \}$$

• The pairs (f_{\exists}, f^*) and (f^*, f_{\forall}) are not quite pairs of inverses. But ... they do satisfy adjointness relations (namely):

$$f_\exists\dashv f^*\dashv f_\forall$$

as functors between the poset categories 2^{X} , 2^{Y} (the objects are subsets and arrows correspond to inclusions).

This is just a *chic* way of saying that for $A \in 2^{\times}$, $B \in 2^{\times}$

- Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a map (between sets).
- Then there are induced maps:

$$2^{\mathbf{X}} \xleftarrow{f_{\exists} \atop f^{*}} 2^{\mathbf{Y}} \quad \left| egin{array}{c} f_{\exists}(A) := f(A) \ f^{*}(B) := f^{-1}(B) \ f_{orall}(A) := \{y \in Y \mid A \subset f^{-1}(y)\} \end{array}
ight.$$

• The pairs (f_{\exists}, f^*) and (f^*, f_{\forall}) are not quite pairs of inverses. But ... they do satisfy adjointness relations (namely):

$$f_\exists\dashv f^*\dashv f_\forall$$

as functors between the poset categories 2^{X} , 2^{Y} (the objects are subsets and arrows correspond to inclusions).

This is just a *chic* way of saying that for $A \in 2^{\mathbf{X}}$, $B \in 2^{\mathbf{Y}}$, $f_{\exists}(A) \subset B \Leftrightarrow A \subset f^*(B)$, and $A \subset f^*(B) \Leftrightarrow f_{\forall}(A) \subset B$

- Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a map (between sets).
- Then there are induced maps:

$$2^{\mathbf{X}} \stackrel{f_{\exists}}{\longleftarrow} f_{\exists}(A) := f(A) \ f^*(B) := f^{-1}(B) \ f_{orall}(A) := \{ y \in Y \mid A \subset f^{-1}(y) \}$$

• The pairs (f_{\exists}, f^*) and (f^*, f_{\forall}) are not quite pairs of inverses. But ... they do satisfy adjointness relations (namely):

$$f_{\exists} \dashv f^* \dashv f_{\forall}$$

as functors between the poset categories $2^{\mathbf{X}}$, $2^{\mathbf{Y}}$ (the objects are subsets and arrows correspond to inclusions).

This is just a *chic* way of saying that for $A \in 2^{\mathbf{X}}$, $B \in 2^{\mathbf{Y}}$,

 $f_{\exists}(A) \subset B \Leftrightarrow A \subset f^*(B)$, and $A \subset f^*(B) \Leftrightarrow f_{\forall}(A) \subset B$.

- Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a map (between sets).
- Then there are induced maps:

$$2^{\mathbf{X}} \stackrel{f_{\exists}}{\longleftarrow} f_{\exists}(A) := f(A) \ f^*(B) := f^{-1}(B) \ f_{orall}(A) := \{ y \in Y \mid A \subset f^{-1}(y) \}$$

• The pairs (f_{\exists}, f^*) and (f^*, f_{\forall}) are not quite pairs of inverses. But ... they do satisfy adjointness relations (namely):

$$f_{\exists} \dashv f^* \dashv f_{\forall}$$

as functors between the poset categories $2^{\mathbf{X}}$, $2^{\mathbf{Y}}$ (the objects are subsets and arrows correspond to inclusions).

This is just a *chic* way of saying that for $A \in 2^{\mathbf{X}}$, $B \in 2^{\mathbf{Y}}$,

 $f_{\exists}(A) \subset B \Leftrightarrow A \subset f^*(B)$, and $A \subset f^*(B) \Leftrightarrow f_{\forall}(A) \subset B$.

- Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a map (between sets).
- Then there are induced maps:

$$2^{\mathbf{X}} \stackrel{f_{\exists}}{\longleftarrow} f_{\exists}(A) := f(A) \ f^*(B) := f^{-1}(B) \ f_{orall}(A) := \{ y \in Y \mid A \subset f^{-1}(y) \}$$

• The pairs (f_{\exists}, f^*) and (f^*, f_{\forall}) are not quite pairs of inverses. But ... they do satisfy adjointness relations (namely):

$$f_{\exists} \dashv f^* \dashv f_{\forall}$$

as functors between the poset categories $2^{\mathbf{X}}$, $2^{\mathbf{Y}}$ (the objects are subsets and arrows correspond to inclusions).

This is just a *chic* way of saying that for $A \in 2^{\mathbf{X}}$, $B \in 2^{\mathbf{Y}}$, $f_{\exists}(A) \subset B \Leftrightarrow A \subset f^*(B)$, and $A \subset f^*(B) \Leftrightarrow f_{\forall}(A) \subset B$.

- Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a map (between sets).
- Then there are induced maps:

$$2^{\mathbf{X}} \stackrel{f_{\exists}}{\longleftarrow} f_{\exists}(A) := f(A) \ f^*(B) := f^{-1}(B) \ f_{orall}(A) := \{ y \in Y \mid A \subset f^{-1}(y) \}$$

• The pairs (f_{\exists}, f^*) and (f^*, f_{\forall}) are not quite pairs of inverses. But ... they do satisfy adjointness relations (namely):

$$f_{\exists} \dashv f^* \dashv f_{\forall}$$

as functors between the poset categories $2^{\mathbf{X}}$, $2^{\mathbf{Y}}$ (the objects are subsets and arrows correspond to inclusions).

This is just a *chic* way of saying that for $A \in 2^{\mathbf{X}}$, $B \in 2^{\mathbf{Y}}$,

$$f_{\exists}(A) \subset B \Leftrightarrow A \subset f^*(B)$$
, and $A \subset f^*(B) \Leftrightarrow f_{\forall}(A) \subset B$.

Tarski-Seidenberg arrow-theoretically

- For any semi-algebraic set X, let S(X) denote the set of semi-algebraic subsets of X.
- Let X, Y be semi-algebraic sets, and $X \xrightarrow{f} Y$ a polynomial map.
- (Tarski-Seidenberg restated) The restrictions of the maps $f_{\exists}, f^*, f_{\forall}$ give functors (maps)

$$\mathcal{S}(\mathbf{X}) \xrightarrow{f\exists} \mathcal{S}(\mathbf{Y}) \xrightarrow{f*} \mathcal{S}(\mathbf{Y})$$

(i.e. they carry semi-algebraic subsets to semi-algebraic subsets).

Tarski-Seidenberg arrow-theoretically

- For any semi-algebraic set X, let S(X) denote the set of semi-algebraic subsets of X.
- Let X, Y be semi-algebraic sets, and $X \xrightarrow{f} Y$ a polynomial map.
- (Tarski-Seidenberg restated) The restrictions of the maps f_{\exists} , f^* , f_{\forall} give functors (maps)

$$\mathcal{S}(\mathbf{X}) \xrightarrow{f\exists} \mathcal{S}(\mathbf{Y}) \xrightarrow{f*} \mathcal{S}(\mathbf{Y})$$

(i.e. they carry semi-algebraic subsets to semi-algebraic subsets).

Tarski-Seidenberg arrow-theoretically

- For any semi-algebraic set X, let S(X) denote the set of semi-algebraic subsets of X.
- Let X, Y be semi-algebraic sets, and $X \xrightarrow{f} Y$ a polynomial map.
- (Tarski-Seidenberg restated) The restrictions of the maps $f_{\exists}, f^*, f_{\forall}$ give functors (maps)

$$\mathcal{S}(\mathbf{X}) \xrightarrow{f\exists \atop f^*} \mathcal{S}(\mathbf{Y})$$

(i.e. they carry semi-algebraic subsets to semi-algebraic subsets).

Triviality of semi-algebraic maps

Yet harder. More than just Tarski-Seidenberg is true...

We say that a semi-algebraic map $X \xrightarrow{j} Y$ is semi-algebraically trivial, if there exists $y \in Y$, and a semi-algebraic homemorphism $\phi : X \to X_y \times Y$ (denoting $X_y = f^{-1}(y)$) such that the following diagram is commutative.

$$X \xrightarrow{\phi} X_{y} \times Y$$

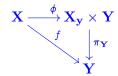
$$\downarrow^{f} \qquad \downarrow^{\pi_{Y}}$$

$$\mathbf{V}$$

Triviality of semi-algebraic maps

Yet harder. More than just Tarski-Seidenberg is true...

We say that a semi-algebraic map $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ is semi-algebraically trivial, if there exists $\mathbf{y} \in \mathbf{Y}$, and a semi-algebraic homemorphism $\phi : \mathbf{X} \to \mathbf{X}_{\mathbf{y}} \times \mathbf{Y}$ (denoting $\mathbf{X}_{\mathbf{y}} = f^{-1}(\mathbf{y})$) such that the following diagram is commutative.

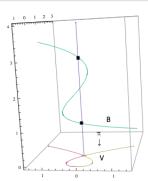


```
Theorem (Hardt (1980))
```

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a semi-algebraic map. Then, there is a finite partition $\{\mathbf{Y}_i\}_{i \in I}$ of \mathbf{Y} into locally closed semi-algebraic subsets \mathbf{Y}_i , such that for each $i \in I$, $f|_{f^{-1}(\mathbf{Y}_i)}: f^{-1}(\mathbf{Y}_i) \to \mathbf{Y}_i$ is semi-algebraically trivial.

Theorem (Hardt (1980))

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a semi-algebraic map. Then, there is a finite partition $\{\mathbf{Y}_i\}_{i \in I}$ of \mathbf{Y} into locally closed semi-algebraic subsets \mathbf{Y}_i , such that for each $i \in I$, $f|_{f^{-1}(\mathbf{Y}_i)}: f^{-1}(\mathbf{Y}_i) \to \mathbf{Y}_i$ is semi-algebraically trivial.



Theorem (Hardt (1980))

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a semi-algebraic map. Then, there is a finite partition $\{\mathbf{Y}_i\}_{i \in I}$ of \mathbf{Y} into locally closed semi-algebraic subsets \mathbf{Y}_i , such that for each $i \in I$, $f|_{f^{-1}(\mathbf{Y}_i)}: f^{-1}(\mathbf{Y}_i) \to \mathbf{Y}_i$ is semi-algebraically trivial.

Generalization of Tarski-Seidenberg, since the image $f(\mathbf{X})$ is a (disjoint) union of a sub-collection of the \mathbf{Y}_i 's (and so in particular semi-algebraic). But some drawbacks ...

```
Theorem (Hardt (1980))
```

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a semi-algebraic map. Then, there is a finite partition $\{\mathbf{Y}_i\}_{i \in I}$ of \mathbf{Y} into locally closed semi-algebraic subsets \mathbf{Y}_i , such that for each $i \in I$, $f|_{f^{-1}(\mathbf{Y}_i)}: f^{-1}(\mathbf{Y}_i) \to \mathbf{Y}_i$ is semi-algebraically trivial.

Generalization of Tarski-Seidenberg, since the image $f(\mathbf{X})$ is a (disjoint) union of a sub-collection of the \mathbf{Y}_i 's (and so in particular semi-algebraic). But some drawbacks ...

Homeomorphism type is difficult to quantify, undecidable to check, and the best complexity upper bound known for the induced partition is *doubly exponential*.

```
Theorem (Hardt (1980))
```

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a semi-algebraic map. Then, there is a finite partition $\{\mathbf{Y}_i\}_{i \in I}$ of \mathbf{Y} into locally closed semi-algebraic subsets \mathbf{Y}_i , such that for each $i \in I$, $f|_{f^{-1}(\mathbf{Y}_i)}: f^{-1}(\mathbf{Y}_i) \to \mathbf{Y}_i$ is semi-algebraically trivial.

Generalization of Tarski-Seidenberg, since the image $f(\mathbf{X})$ is a (disjoint) union of a sub-collection of the \mathbf{Y}_i 's (and so in particular semi-algebraic). But some drawbacks ...

Homeomorphism type is difficult to quantify, undecidable to check, and the best complexity upper bound known for the induced partition is *doubly exponential*.

The formalism of "constructible sheaves" seems to be just the right compromise.

Little detour – Pre-sheaves of A-modules

Let A be a fixed commutative ring. For simplicity we take $A = \mathbb{Q}$.

Definition (Pre-sheaf of A-modules)

A $\mathit{pre-sheaf}\,\mathcal{F}$ of A-modules over a topological space X associates to eacl open subset $U\subset X$ an A-module $\mathcal{F}(U)$, such that that for all pairs of open subsets U,V of X, with $V\subset U$, there exists a $\mathit{restriction}$ homomorphism $r_{U,V}:\mathcal{F}(U)\to\mathcal{F}(V)$ satisfying:

(For open subsets $\mathbf{U}, \mathbf{V} \subset \mathbf{X}, \mathbf{V} \subset \mathbf{U}$, and $s \in \mathcal{F}(\mathbf{U})$, we will sometimes denote the element $r_{\mathbf{U},\mathbf{V}}(s) \in \mathcal{F}(\mathbf{V})$ simply by $s|_{\mathbf{V}}$.)

Let A be a fixed commutative ring. For simplicity we take $A = \mathbb{Q}$.

Definition (Pre-sheaf of A-modules)

A pre-sheaf $\mathcal F$ of A-modules over a topological space $\mathbf X$ associates to each open subset $U\subset \mathbf X$ an A-module $\mathcal F(\mathbf U)$, such that that for all pairs of open subsets $\mathbf U,\mathbf V$ of $\mathbf X$, with $\mathbf V\subset \mathbf U$, there exists a restriction homomorphism $r_{\mathbf U,\mathbf V}:\mathcal F(\mathbf U)\to\mathcal F(\mathbf V)$ satisfying:

 $\mathbf{0} \quad \mathbf{7}_{\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}} = \mathbf{Id}_{\mathcal{F}(\mathbf{1})}$

 \bigcirc for U, V, W open subsets of X, with $W \subset V \subset U$,

Let A be a fixed commutative ring. For simplicity we take $A = \mathbb{Q}$.

Definition (Pre-sheaf of A-modules)

A pre-sheaf $\mathcal F$ of A-modules over a topological space $\mathbf X$ associates to each open subset $U\subset \mathbf X$ an A-module $\mathcal F(\mathbf U)$, such that that for all pairs of open subsets $\mathbf U,\mathbf V$ of $\mathbf X$, with $\mathbf V\subset \mathbf U$, there exists a restriction homomorphism $r_{\mathbf U,\mathbf V}:\mathcal F(\mathbf U)\to\mathcal F(\mathbf V)$ satisfying:

 $\mathbf{0} \quad \mathbf{7}_{\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}} = \mathbf{Id}_{\mathcal{F}(\mathbf{1})}$

 \bigcirc for U, V, W open subsets of X, with $W \subset V \subset U$,

Let A be a fixed commutative ring. For simplicity we take $A = \mathbb{Q}$.

Definition (Pre-sheaf of A-modules)

A pre-sheaf \mathcal{F} of A-modules over a topological space X associates to each open subset $U \subset X$ an A-module $\mathcal{F}(U)$, such that that for all pairs of open subsets U, V of X, with $V \subset U$, there exists a restriction homomorphism $r_{\mathbf{U},\mathbf{V}}: \mathcal{F}(\mathbf{U}) \to \mathcal{F}(\mathbf{V})$ satisfying:

- $\mathbf{0} r_{\mathbf{U},\mathbf{U}} = \mathrm{Id}_{\mathcal{F}(\mathbf{U})},$

(For open subsets $U, V \subset X, V \subset U$, and $s \in \mathcal{F}(U)$, we will sometimes denote the element $r_{\mathbf{U},\mathbf{V}}(s) \in \mathcal{F}(\mathbf{V})$ simply by $s|_{\mathbf{V}}$.)

Let A be a fixed commutative ring. For simplicity we take $A = \mathbb{Q}$.

Definition (Pre-sheaf of A-modules)

A pre-sheaf $\mathcal F$ of A-modules over a topological space $\mathbf X$ associates to each open subset $U\subset \mathbf X$ an A-module $\mathcal F(\mathbf U)$, such that that for all pairs of open subsets $\mathbf U,\mathbf V$ of $\mathbf X$, with $\mathbf V\subset \mathbf U$, there exists a restriction homomorphism $r_{\mathbf U,\mathbf V}:\mathcal F(\mathbf U)\to\mathcal F(\mathbf V)$ satisfying:

- 2 for U, V, W open subsets of X, with $W \subset V \subset U$,

$$r_{\mathbf{U},\mathbf{W}} = r_{\mathbf{V},\mathbf{W}} \circ r_{\mathbf{U},\mathbf{V}}.$$

Let A be a fixed commutative ring. For simplicity we take $A = \mathbb{Q}$.

Definition (Pre-sheaf of A-modules)

A pre-sheaf $\mathcal F$ of A-modules over a topological space $\mathbf X$ associates to each open subset $U\subset \mathbf X$ an A-module $\mathcal F(\mathbf U)$, such that that for all pairs of open subsets $\mathbf U,\mathbf V$ of $\mathbf X$, with $\mathbf V\subset \mathbf U$, there exists a restriction homomorphism $r_{\mathbf U,\mathbf V}:\mathcal F(\mathbf U)\to\mathcal F(\mathbf V)$ satisfying:

- 2 for U, V, W open subsets of X, with $W \subset V \subset U$,

$$r_{\mathbf{U},\mathbf{W}} = r_{\mathbf{V},\mathbf{W}} \circ r_{\mathbf{U},\mathbf{V}}.$$

Let A be a fixed commutative ring. For simplicity we take $A = \mathbb{Q}$.

Definition (Pre-sheaf of A-modules)

A *pre-sheaf* \mathcal{F} of A-modules over a topological space X associates to each open subset $U \subset X$ an A-module $\mathcal{F}(U)$, such that that for all pairs of open subsets U, V of X, with $V \subset U$, there exists a *restriction* homomorphism $r_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$ satisfying:

- 2 for U, V, W open subsets of X, with $W \subset V \subset U$,

$$r_{\mathbf{U},\mathbf{W}} = r_{\mathbf{V},\mathbf{W}} \circ r_{\mathbf{U},\mathbf{V}}.$$

Sheaves with constant coefficients

Definition (Sheaf of A-modules)

A pre-sheaf \mathcal{F} of A-modules on \mathbf{X} is said to be a *sheaf* if it satisfies the following two axioms. For any collection of open subsets $\{\mathbf{U}_i\}_{i\in I}$ of \mathbf{X} with $\mathbf{U} = \bigcup_{i\in I} \mathbf{U}_i$;

- ① if $s \in \mathcal{F}(\mathbf{U})$ and $s|_{\mathbf{U}_i} = 0$ for all $i \in I$, then s = 0;
- ② if for all $i \in I$ there exists $s_i \in \mathcal{F}(\mathbf{U}_i)$ such that

$$|s_i|_{\mathbf{U}_i\cap\mathbf{U}_j}=s_j|_{\mathbf{U}_i\cap\mathbf{U}_j}$$

for all $i, j \in I$, then there exists $s \in \mathcal{F}(\mathbf{U})$ such that $s|_{\mathbf{U}_i} = s_i$ for each $i \in I$.

Sheaves with constant coefficients

Definition (Sheaf of A-modules)

A pre-sheaf \mathcal{F} of A-modules on \mathbf{X} is said to be a *sheaf* if it satisfies the following two axioms. For any collection of open subsets $\{\mathbf{U}_i\}_{i\in I}$ of \mathbf{X} with $\mathbf{U} = \bigcup_{i\in I} \mathbf{U}_i$;

- **1** if $s \in \mathcal{F}(\mathbf{U})$ and $s|_{\mathbf{U}_i} = 0$ for all $i \in I$, then s = 0;
- ② if for all $i \in I$ there exists $s_i \in \mathcal{F}(\mathbf{U}_i)$ such that

$$|s_i|_{\mathbf{U}_i\cap\mathbf{U}_j}=s_j|_{\mathbf{U}_i\cap\mathbf{U}_j}$$

for all $i, j \in I$, then there exists $s \in \mathcal{F}(\mathbf{U})$ such that $s|_{\mathbf{U}_i} = s_i$ for each $i \in I$.

Sheaves with constant coefficients

Definition (Sheaf of A-modules)

A pre-sheaf \mathcal{F} of A-modules on \mathbf{X} is said to be a *sheaf* if it satisfies the following two axioms. For any collection of open subsets $\{\mathbf{U}_i\}_{i\in I}$ of \mathbf{X} with $\mathbf{U} = \bigcup_{i\in I} \mathbf{U}_i$;

- if $s \in \mathcal{F}(\mathbf{U})$ and $s|_{\mathbf{U}_i} = 0$ for all $i \in I$, then s = 0;
- ② if for all $i \in I$ there exists $s_i \in \mathcal{F}(\mathbf{U}_i)$ such that

$$|s_i|_{\mathbf{U}_i\cap\mathbf{U}_j}=s_j|_{\mathbf{U}_i\cap\mathbf{U}_j}$$

for all $i, j \in I$, then there exists $s \in \mathcal{F}(\mathbf{U})$ such that $s|_{\mathbf{U}_i} = s_i$ for each $i \in I$.

Stalks of a sheaf

Definition (Stalk of a sheaf at a point)

Let $\mathcal F$ be a (pre)-sheaf of A-modules on $\mathbf X$ and $\mathbf x\in X$. The stalk $\mathcal F_{\mathbf x}$ of $\mathcal F$ at $\mathbf x$ is defined as the inductive limit

$$\mathcal{F}_{\mathbf{x}} = \varinjlim_{\mathbf{U} \ni \mathbf{x}} \mathcal{F}(\mathbf{U}).$$

- One first considers the category whose objects are complexes of sheaves on X, and whose morphisms are homotopy classes of morphisms of complexes of sheaves.
- One then localizes with respect to a class of arrows to obtain the derived category D(X) (resp. $D^b(X)$).
- This is no longer an abelian category but a *triangulated category*. Exact sequences replaced by distinguished triangles and so on...
- For our purposes it is "ok" to think of an object in D(X) as a "complex of sheaves".
- If $X = \{pt\}$, then an object in $D^b(X)$ is represented by a bounded complex C^{\bullet} of A-modules, and C^{\bullet} is isomorphic in the derived category to the complex $H^*(C^{\bullet})$ (with all differentials = 0).
- In other words, $C^{\bullet} \cong \bigoplus_{n \in \mathbb{Z}} H^n(C^{\bullet})[-n]$. But this is *not true* in general (i.e. if X is not a point).

- One first considers the category whose objects are complexes of sheaves on X, and whose morphisms are homotopy classes of morphisms of complexes of sheaves.
- One then localizes with respect to a class of arrows to obtain the derived category D(X) (resp. $D^b(X)$).
- This is no longer an abelian category but a *triangulated category*. Exact sequences replaced by distinguished triangles and so on...
- For our purposes it is "ok" to think of an object in D(X) as a "complex of sheaves".
- If $X = \{pt\}$, then an object in $D^b(X)$ is represented by a bounded complex C^{\bullet} of A-modules, and C^{\bullet} is isomorphic in the derived category to the complex $H^*(C^{\bullet})$ (with all differentials = 0).
- In other words, $C^{\bullet} \cong \bigoplus_{n \in \mathbb{Z}} H^n(C^{\bullet})[-n]$. But this is *not true* in general (i.e. if X is not a point).

- One first considers the category whose objects are complexes of sheaves on X, and whose morphisms are homotopy classes of morphisms of complexes of sheaves.
- One then localizes with respect to a class of arrows to obtain the derived category D(X) (resp. $D^b(X)$).
- This is no longer an abelian category but a triangulated category.
 Exact sequences replaced by distinguished triangles and so on...
- For our purposes it is "ok" to think of an object in D(X) as a "complex of sheaves".
- If $X = \{pt\}$, then an object in $D^b(X)$ is represented by a bounded complex C^{\bullet} of A-modules, and C^{\bullet} is isomorphic in the derived category to the complex $H^*(C^{\bullet})$ (with all differentials = 0).
- In other words, $C^{\bullet} \cong \bigoplus_{n \in \mathbb{Z}} H^n(C^{\bullet})[-n]$. But this is *not true* in general (i.e. if X is not a point).

- One first considers the category whose objects are complexes of sheaves on X, and whose morphisms are homotopy classes of morphisms of complexes of sheaves.
- One then localizes with respect to a class of arrows to obtain the derived category D(X) (resp. $D^b(X)$).
- This is no longer an abelian category but a *triangulated category*. Exact sequences replaced by distinguished triangles and so on...
- For our purposes it is "ok" to think of an object in D(X) as a "complex of sheaves".
- If $X = \{pt\}$, then an object in $D^b(X)$ is represented by a bounded complex C^{\bullet} of A-modules, and C^{\bullet} is isomorphic in the derived category to the complex $H^*(C^{\bullet})$ (with all differentials = 0).
- In other words, $C^{\bullet} \cong \bigoplus_{n \in \mathbb{Z}} H^n(C^{\bullet})[-n]$. But this is *not true* in general (i.e. if X is not a point).

- One first considers the category whose objects are complexes of sheaves on X, and whose morphisms are homotopy classes of morphisms of complexes of sheaves.
- One then localizes with respect to a class of arrows to obtain the derived category D(X) (resp. $D^b(X)$).
- This is no longer an abelian category but a *triangulated category*. Exact sequences replaced by distinguished triangles and so on...
- For our purposes it is "ok" to think of an object in D(X) as a "complex of sheaves".
- If $X = \{pt\}$, then an object in $D^b(X)$ is represented by a bounded complex C^{\bullet} of A-modules, and C^{\bullet} is isomorphic in the derived category to the complex $H^*(C^{\bullet})$ (with all differentials = 0).
- In other words, $C^{\bullet} \cong \bigoplus_{n \in \mathbb{Z}} H^{n}(C^{\bullet})[-n]$. But this is *not true* in general (i.e. if X is not a point).

- One first considers the category whose objects are complexes of sheaves on X, and whose morphisms are homotopy classes of morphisms of complexes of sheaves.
- One then localizes with respect to a class of arrows to obtain the derived category D(X) (resp. $D^b(X)$).
- This is no longer an abelian category but a *triangulated category*. Exact sequences replaced by distinguished triangles and so on...
- For our purposes it is "ok" to think of an object in $\mathbb{D}(X)$ as a "complex of sheaves".
- If $X = \{pt\}$, then an object in $D^b(X)$ is represented by a bounded complex C^{\bullet} of A-modules, and C^{\bullet} is isomorphic in the derived category to the complex $H^*(C^{\bullet})$ (with all differentials = 0).
- In other words, $C^{\bullet} \cong \bigoplus_{n \in \mathbb{Z}} H^n(C^{\bullet})[-n]$. But this is *not true* in general (i.e. if X is not a point).

Let \mathcal{F} be a sheaf on \mathbf{X} , and \mathcal{G} a sheaf on \mathbf{Y} , and $f: \mathbf{X} \to \mathbf{Y}$ a continuous map. Then, there exists naturally defined sheaves:

- $f^{-1}(\mathcal{G})$ a sheaf on \mathbf{X} (pull back). (f^{-1} is an exact functor.)
- The derived direct image denoted $Rf_*(\mathcal{F})$ is an object in D(Y) (and thus should be thought of as a complex of sheaves on Y).
- We denote for $i \in \mathbb{Z}$, $R^i f_*(\mathcal{F})$ the sheaf $\mathcal{H}^i(Rf_*(\mathcal{F}))$ but these separately don't determine $Rf_*(\mathcal{F})$.
- In the special case when $\mathcal{F}=A_{\mathbf{X}}$ (the constant sheaf on \mathbf{X}), $Rf_*(\mathcal{F})$ is obtained by associating to each open $\mathbf{U}\subset\mathbf{Y}$, a complex of A-modules obtained by taking sections of a flabby resolution of the sheaf $A_{f^{-1}(U)}$.
- In this case, for $\mathbf{y} \in \mathbf{Y}$, the stalk $Rf_*(\mathcal{F})_{\mathbf{y}}$ is an object of the *derived* category of A-modules and is isomorphic (in the derived category) to $\bigoplus_n H^*(f^{-1}(\mathbf{y}), A)[-n]$.

□ ト ◆ □ ト ◆ 直 ト ◆ 直 ・ り へ ()

- $f^{-1}(\mathcal{G})$ a sheaf on **X** (pull back). (f^{-1} is an exact functor.)
- The derived direct image denoted $Rf_*(\mathcal{F})$ is an object in D(Y) (and thus should be thought of as a complex of sheaves on Y).
- We denote for $i \in \mathbb{Z}$, $R^i f_*(\mathcal{F})$ the sheaf $\mathcal{H}^i(Rf_*(\mathcal{F}))$ but these separately don't determine $Rf_*(\mathcal{F})$.
- In the special case when $\mathcal{F}=A_{\mathbf{X}}$ (the constant sheaf on \mathbf{X}), $Rf_*(\mathcal{F})$ is obtained by associating to each open $\mathbf{U}\subset\mathbf{Y}$, a complex of A-modules obtained by taking sections of a flabby resolution of the sheaf $A_{f^{-1}(U)}$.
- In this case, for $\mathbf{y} \in \mathbf{Y}$, the stalk $Rf_*(\mathcal{F})_{\mathbf{y}}$ is an object of the *derived* category of A-modules and is isomorphic (in the derived category) to $\bigoplus_n H^*(f^{-1}(\mathbf{y}), A)[-n]$.

- $f^{-1}(\mathcal{G})$ a sheaf on X (pull back). (f^{-1} is an exact functor.)
- The derived direct image denoted $Rf_*(\mathcal{F})$ is an object in D(Y) (and thus should be thought of as a complex of sheaves on Y).
- We denote for $i \in \mathbb{Z}$, $R^i f_*(\mathcal{F})$ the sheaf $\mathcal{H}^i(Rf_*(\mathcal{F}))$ but these separately don't determine $Rf_*(\mathcal{F})$.
- In the special case when $\mathcal{F}=A_{\mathbf{X}}$ (the constant sheaf on \mathbf{X}), $Rf_*(\mathcal{F})$ is obtained by associating to each open $\mathbf{U}\subset\mathbf{Y}$, a complex of A-modules obtained by taking sections of a flabby resolution of the sheaf $A_{f^{-1}(U)}$.
- In this case, for $\mathbf{y} \in \mathbf{Y}$, the stalk $Rf_*(\mathcal{F})_{\mathbf{y}}$ is an object of the *derived* category of A-modules and is isomorphic (in the derived category) to $\bigoplus_n \mathrm{H}^*(f^{-1}(\mathbf{y}), A)[-n]$.

- $f^{-1}(\mathcal{G})$ a sheaf on **X** (pull back). (f^{-1} is an exact functor.)
- The derived direct image denoted $Rf_*(\mathcal{F})$ is an object in D(Y) (and thus should be thought of as a complex of sheaves on Y).
- We denote for $i \in \mathbb{Z}$, $R^i f_*(\mathcal{F})$ the sheaf $\mathcal{H}^i(Rf_*(\mathcal{F}))$ but these separately don't determine $Rf_*(\mathcal{F})$.
- In the special case when $\mathcal{F}=A_{\mathbf{X}}$ (the constant sheaf on \mathbf{X}), $Rf_*(\mathcal{F})$ is obtained by associating to each open $\mathbf{U}\subset\mathbf{Y}$, a complex of A-modules obtained by taking sections of a flabby resolution of the sheaf $A_{f^{-1}(U)}$.
- In this case, for $\mathbf{y} \in \mathbf{Y}$, the stalk $Rf_*(\mathcal{F})_{\mathbf{y}}$ is an object of the *derived* category of A-modules and is isomorphic (in the derived category) to $\bigoplus_n \mathrm{H}^*(f^{-1}(\mathbf{y}), A)[-n]$.

- $f^{-1}(\mathcal{G})$ a sheaf on **X** (pull back). (f^{-1} is an exact functor.)
- The derived direct image denoted $Rf_*(\mathcal{F})$ is an object in D(Y) (and thus should be thought of as a complex of sheaves on Y).
- We denote for $i \in \mathbb{Z}$, $R^i f_*(\mathcal{F})$ the sheaf $\mathcal{H}^i(Rf_*(\mathcal{F}))$ but these separately don't determine $Rf_*(\mathcal{F})$.
- In the special case when $\mathcal{F}=A_{\mathbf{X}}$ (the constant sheaf on \mathbf{X}), $Rf_*(\mathcal{F})$ is obtained by associating to each open $\mathbf{U}\subset\mathbf{Y}$, a complex of A-modules obtained by taking sections of a flabby resolution of the sheaf $A_{f^{-1}(U)}$.
- In this case, for $\mathbf{y} \in \mathbf{Y}$, the stalk $Rf_*(\mathcal{F})_{\mathbf{y}}$ is an object of the *derived* category of A-modules and is isomorphic (in the derived category) to $\bigoplus_n H^*(f^{-1}(\mathbf{y}), A)[-n]$.

Logical formulation

$$(\exists X)X^2 + 2BX + C = 0$$

$$\updownarrow$$

$$B^2 - C > 0$$

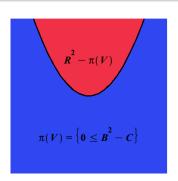
Geometric formulation

Defining $V \subset \mathbb{R}^3$ (with coordinates X, B, C) defined by

$$X^2+2BX+C=0$$
 and $\pi:\mathbb{R}^3 o \mathbb{R}^2, (x,b,c) \mapsto (b,c),$

Geometric formulation

Defining $V \subset \mathbb{R}^3$ (with coordinates X, B, C) defined by $X^2 + 2BX + C = 0$ and $\pi : \mathbb{R}^3 \to \mathbb{R}^2$, $(x, b, c) \mapsto (b, c)$,



Sheaf theoretic formulation

Denoting $j: V \hookrightarrow \mathbb{R}^3$, consider the sheaf $j_*(\mathbb{Q}_V) \cong \mathbb{Q}_{\mathbb{R}^3}|_V$, and its (derived) direct image $R\pi_*(j_*(\mathbb{Q}_V))$.

Sheaf theoretic formulation

Denoting $j: V \hookrightarrow \mathbb{R}^3$, consider the sheaf $j_*(\mathbb{Q}_V) \cong \mathbb{Q}_{\mathbb{R}^3}|_V$, and its (derived) direct image $R\pi_*(j_*(\mathbb{Q}_V))$.

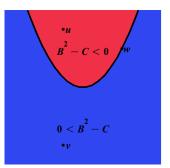
The stalks of $R\pi_*(j_*(\mathbb{Q}_V))$ induce a finer partition:



Sheaf theoretic formulation

Denoting $j: V \hookrightarrow \mathbb{R}^3$, consider the sheaf $j_*(\mathbb{Q}_V) \cong \mathbb{Q}_{\mathbb{R}^3}|_V$, and its (derived) direct image $R\pi_*(j_*(\mathbb{Q}_V))$.

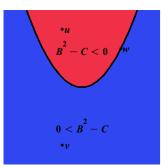
The stalks of $R\pi_*(j_*(\mathbb{Q}_V))$ induce a finer partition:



Sheaf theoretic formulation

Denoting $j: V \hookrightarrow \mathbb{R}^3$, consider the sheaf $j_*(\mathbb{Q}_V) \cong \mathbb{Q}_{\mathbb{R}^3}|_V$, and its (derived) direct image $R\pi_*(j_*(\mathbb{Q}_V))$.

The stalks of $R\pi_*(j_*(\mathbb{Q}_V))$ induce a finer partition:

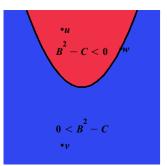


 $(R\pi_*(j_*\mathbb{Q}_V))_u\cong \mathsf{0}, \quad (R\pi_*(j_*\mathbb{Q}_V))_v\cong \mathbb{Q}\oplus \mathbb{Q},$ as a fixed by the square of $(R\pi_*(j_*\mathbb{Q}_V))_v\cong \mathsf{0}$

Sheaf theoretic formulation

Denoting $j: V \hookrightarrow \mathbb{R}^3$, consider the sheaf $j_*(\mathbb{Q}_V) \cong \mathbb{Q}_{\mathbb{R}^3}|_V$, and its (derived) direct image $R\pi_*(j_*(\mathbb{Q}_V))$.

The stalks of $R\pi_*(j_*(\mathbb{Q}_V))$ induce a finer partition:



 $(R\pi_*(j_*\mathbb{Q}_V))_u\cong \mathsf{0}, \quad (R\pi_*(j_*\mathbb{Q}_V))_v\cong \mathbb{Q}\oplus \mathbb{Q}, \quad (R\pi_*(j_*\mathbb{Q}_V))_w\cong \mathbb{Q}.$

Definition (Constructible Sheaves)

Let X be a locally closed semi-algebraic set. Following [Kashiwara-Schapira], an object $\mathcal{F} \in \mathsf{Ob}(\mathbf{D}^b(X))$ is said to be *constructible* if it satisfies the following two conditions:

- (a) There exists a finite partition $\mathbf{X} = \coprod_{i \in I} C_i$ of \mathbf{X} by locally closed semi-algebraic subsets such that for $j \in \mathbb{Z}$ and $i \in I$, the $\mathrm{H}^j(\mathcal{F})|_{C_i}$ are locally constant. We will call such a partition subordinate to \mathcal{F} .
- (b) For each $\mathbf{x} \in \mathbf{X}$, the stalk $\mathcal{F}_{\mathbf{x}}$ has the following properties
- (i) for each $j\in\mathbb{Z}$, the cohomology groups $\mathrm{H}^j(\mathcal{F}_{\mathbf{x}})$ are finitely generated
 - (ii) there exists N such that $\mathrm{H}^j(\mathcal{F}_\mathbf{x})=0$ for all $\mathbf{x}\in\mathbf{X}$ and |j|>N.

$$\mathcal{CS}(X) := \mathsf{Ob}(\mathbf{D}^b_{\mathsf{sa}}(\mathbf{X}))$$

Definition (Constructible Sheaves)

Let X be a locally closed semi-algebraic set. Following [Kashiwara-Schapira], an object $\mathcal{F} \in \mathsf{Ob}(\mathbf{D}^b(X))$ is said to be *constructible* if it satisfies the following two conditions:

- (a) There exists a finite partition $\mathbf{X} = \coprod_{i \in I} C_i$ of \mathbf{X} by locally closed semi-algebraic subsets such that for $j \in \mathbb{Z}$ and $i \in I$, the $\mathrm{H}^j(\mathcal{F})|_{C_i}$ are locally constant. We will call such a partition *subordinate* to \mathcal{F} .
- (b) For each $\mathbf{x} \in \mathbf{X}$, the stalk $\mathcal{F}_{\mathbf{x}}$ has the following properties
- (i) for each $j\in\mathbb{Z}$, the cohomology groups $\mathrm{H}^{j}(\mathcal{F}_{\mathbf{x}})$ are finitely generated and
 - (ii) there exists N such that $\mathrm{H}^j(\mathcal{F}_{\mathbf{x}})=0$ for all $\mathbf{x}\in\mathbf{X}$ and |j|>N.

$$\mathcal{CS}(X) := \mathsf{Ob}(\mathbf{D}^b_{\mathsf{sa}}(\mathbf{X}))$$

Definition (Constructible Sheaves)

Let X be a locally closed semi-algebraic set. Following [Kashiwara-Schapira], an object $\mathcal{F} \in \mathsf{Ob}(\mathbf{D}^b(X))$ is said to be *constructible* if it satisfies the following two conditions:

- (a) There exists a finite partition $\mathbf{X} = \coprod_{i \in I} C_i$ of \mathbf{X} by locally closed semi-algebraic subsets such that for $j \in \mathbb{Z}$ and $i \in I$, the $\mathrm{H}^j(\mathcal{F})|_{C_i}$ are locally constant. We will call such a partition *subordinate* to \mathcal{F} .
- (b) For each $x \in X$, the stalk \mathcal{F}_x has the following properties:
 - (i) for each $j \in \mathbb{Z}$, the cohomology groups $\mathrm{H}^j(\mathcal{F}_{\mathbf{x}})$ are finitely generated, and
 - ii) there exists N such that $\operatorname{H}^j(\mathcal{F}_{\mathbf{x}})=0$ for all $\mathbf{x}\in\mathbf{X}$ and |j|>N.

$$\mathcal{CS}(X) := \mathsf{Ob}(\mathbf{D}^b_{\mathsf{sa}}(\mathbf{X}))$$

Definition (Constructible Sheaves)

Let X be a locally closed semi-algebraic set. Following [Kashiwara-Schapira], an object $\mathcal{F} \in \mathsf{Ob}(\mathbf{D}^b(X))$ is said to be *constructible* if it satisfies the following two conditions:

- (a) There exists a finite partition $\mathbf{X} = \coprod_{i \in I} C_i$ of \mathbf{X} by locally closed semi-algebraic subsets such that for $j \in \mathbb{Z}$ and $i \in I$, the $\mathrm{H}^j(\mathcal{F})|_{C_i}$ are locally constant. We will call such a partition *subordinate* to \mathcal{F} .
- (b) For each $x \in X$, the stalk \mathcal{F}_x has the following properties:
 - (i) for each $j \in \mathbb{Z}$, the cohomology groups $\mathrm{H}^j(\mathcal{F}_\mathbf{x})$ are finitely generated, and
 - (ii) there exists N such that $\operatorname{H}^j(\mathcal{F}_{\mathbf{x}})=0$ for all $\mathbf{x}\in \mathbf{X}$ and |j|>N.

$$\mathcal{CS}(X) := \mathsf{Ob}(\mathbf{D}^b_{\mathsf{sa}}(\mathbf{X}))$$

Definition (Constructible Sheaves)

Let X be a locally closed semi-algebraic set. Following [Kashiwara-Schapira], an object $\mathcal{F} \in \mathsf{Ob}(\mathbf{D}^b(X))$ is said to be *constructible* if it satisfies the following two conditions:

- (a) There exists a finite partition $\mathbf{X} = \coprod_{i \in I} C_i$ of \mathbf{X} by locally closed semi-algebraic subsets such that for $j \in \mathbb{Z}$ and $i \in I$, the $\mathrm{H}^j(\mathcal{F})|_{C_i}$ are locally constant. We will call such a partition *subordinate* to \mathcal{F} .
- (b) For each $x \in X$, the stalk \mathcal{F}_x has the following properties:
 - (i) for each $j \in \mathbb{Z}$, the cohomology groups $\mathrm{H}^j(\mathcal{F}_\mathbf{x})$ are finitely generated, and
 - (ii) there exists N such that $\mathrm{H}^j(\mathcal{F}_{\mathbf{x}})=0$ for all $\mathbf{x}\in\mathbf{X}$ and |j|>N.

$$\mathcal{CS}(X) := \mathsf{Ob}(\mathbf{D}^b_{\mathsf{sa}}(\mathbf{X}))$$

Definition (Constructible Sheaves)

Let X be a locally closed semi-algebraic set. Following [Kashiwara-Schapira], an object $\mathcal{F} \in \mathsf{Ob}(\mathbf{D}^b(X))$ is said to be *constructible* if it satisfies the following two conditions:

- (a) There exists a finite partition $\mathbf{X} = \coprod_{i \in I} C_i$ of \mathbf{X} by locally closed semi-algebraic subsets such that for $j \in \mathbb{Z}$ and $i \in I$, the $\mathrm{H}^j(\mathcal{F})|_{C_i}$ are locally constant. We will call such a partition *subordinate* to \mathcal{F} .
- (b) For each $x \in X$, the stalk \mathcal{F}_x has the following properties:
 - (i) for each $j \in \mathbb{Z}$, the cohomology groups $\mathrm{H}^j(\mathcal{F}_\mathbf{x})$ are finitely generated, and
 - (ii) there exists N such that $\mathrm{H}^j(\mathcal{F}_{\mathbf{x}})=0$ for all $\mathbf{x}\in\mathbf{X}$ and |j|>N.

$$\mathcal{CS}(X) := \mathsf{Ob}(\mathbf{D}^b_{\mathsf{sa}}(\mathbf{X}))$$

Definition (Constructible Sheaves)

Let X be a locally closed semi-algebraic set. Following [Kashiwara-Schapira], an object $\mathcal{F} \in \mathsf{Ob}(\mathbf{D}^b(X))$ is said to be *constructible* if it satisfies the following two conditions:

- (a) There exists a finite partition $\mathbf{X} = \coprod_{i \in I} C_i$ of \mathbf{X} by locally closed semi-algebraic subsets such that for $j \in \mathbb{Z}$ and $i \in I$, the $\mathrm{H}^j(\mathcal{F})|_{C_i}$ are locally constant. We will call such a partition *subordinate* to \mathcal{F} .
- (b) For each $x \in X$, the stalk \mathcal{F}_x has the following properties:
 - (i) for each $j \in \mathbb{Z}$, the cohomology groups $\mathrm{H}^j(\mathcal{F}_\mathbf{x})$ are finitely generated, and
 - (ii) there exists N such that $\mathrm{H}^j(\mathcal{F}_{\mathbf{x}})=0$ for all $\mathbf{x}\in\mathbf{X}$ and |j|>N.

$$CS(X) := Ob(\mathbf{D}_{sa}^b(\mathbf{X})).$$

Theorem (Kashiwara (1975), Kashiwara-Schapira (1979))

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a continuous semi-algebraic map. Then for $\mathcal{F} \in \mathcal{CS}(\mathbf{X})$ and $\mathcal{G} \in \mathcal{CS}(\mathbf{Y})$, then

$$f^{-1}(\mathcal{G}) \in \mathcal{CS}(\mathbf{X})$$

and

$$Rf_*(\mathcal{F}) \in \mathcal{CS}(\mathbf{Y}).$$

More generally, the category of constructible sheaves is closed under the six operations of Grothendieck – namely, Rf_* , $Rf_!$, f^{-1} , $f^!$, \otimes , RHom – where f is a continuous semi-algebraic map.

End of "Qualitative background". Next, "Quantitative" ...

Theorem (Kashiwara (1975), Kashiwara-Schapira (1979))

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a continuous semi-algebraic map. Then for $\mathcal{F} \in \mathcal{CS}(\mathbf{X})$ and $\mathcal{G} \in \mathcal{CS}(\mathbf{Y})$, then

$$f^{-1}(\mathcal{G}) \in \mathcal{CS}(\mathbf{X})$$

and

$$Rf_*(\mathcal{F}) \in \mathcal{CS}(\mathbf{Y}).$$

More generally, the category of constructible sheaves is closed under the six operations of Grothendieck – namely, Rf_* , $Rf_!$, f^{-1} , $f^!$, \otimes , RHom – where f is a continuous semi-algebraic map.

End of "Qualitative background". Next, "Quantitative" ...

Theorem (Kashiwara (1975), Kashiwara-Schapira (1979))

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a continuous semi-algebraic map. Then for $\mathcal{F} \in \mathcal{CS}(\mathbf{X})$ and $\mathcal{G} \in \mathcal{CS}(\mathbf{Y})$, then

$$f^{-1}(\mathcal{G}) \in \mathcal{CS}(\mathbf{X})$$

and

$$Rf_*(\mathcal{F}) \in \mathcal{CS}(\mathbf{Y}).$$

More generally, the category of constructible sheaves is closed under the six operations of Grothendieck – namely, Rf_* , $Rf_!$, f^{-1} , $f^!$, \otimes , $R\mathcal{H}om$ – where f is a continuous semi-algebraic map.

End of "Qualitative background". Next, "Quantitative"

Theorem (Kashiwara (1975), Kashiwara-Schapira (1979))

Let $\mathbf{X} \xrightarrow{f} \mathbf{Y}$ be a continuous semi-algebraic map. Then for $\mathcal{F} \in \mathcal{CS}(\mathbf{X})$ and $\mathcal{G} \in \mathcal{CS}(\mathbf{Y})$, then

$$f^{-1}(\mathcal{G}) \in \mathcal{CS}(\mathbf{X})$$

and

$$Rf_*(\mathcal{F}) \in \mathcal{CS}(\mathbf{Y}).$$

More generally, the category of constructible sheaves is closed under the six operations of Grothendieck – namely, Rf_* , $Rf_!$, f^{-1} , $f^!$, \otimes , $R\mathcal{H}om$ – where f is a continuous semi-algebraic map.

End of "Qualitative background". Next, "Quantitative"

- Long history, starting with non-elementary-recursive bound of Tarski's original algorithm, doubly exponential algorithm due to Collins (1975) (and also Wuthrich (1976)) using Cylindrical Algebraic Decomposition.
- For each $n \geq 0$, let $\pi_n : \mathbb{R}^n \to \mathbb{R}^{\lfloor n/2 \rfloor}$ denote the projection map forgetting the last $n \lfloor n/2 \rfloor$ coordinates.
- A new ingredient the critical point method gives:

- Long history, starting with non-elementary-recursive bound of Tarski's original algorithm, doubly exponential algorithm due to Collins (1975) (and also Wuthrich (1976)) using Cylindrical Algebraic Decomposition.
- For each $n \geq 0$, let $\pi_n : \mathbb{R}^n \to \mathbb{R}^{[n/2]}$ denote the projection map forgetting the last n [n/2] coordinates.
- A new ingredient the critical point method gives:

- Long history, starting with non-elementary-recursive bound of Tarski's original algorithm, doubly exponential algorithm due to Collins (1975) (and also Wuthrich (1976)) using Cylindrical Algebraic Decomposition.
- For each $n \geq 0$, let $\pi_n : \mathbb{R}^n \to \mathbb{R}^{[n/2]}$ denote the projection map forgetting the last n [n/2] coordinates.
- A new ingredient the critical point method gives:

```
Theorem (Grigoriev-Vorobjov (1988), Renegar (19
```

he complexity (both quantitative and algorithmic) of the functors

```
\pi_n^{\scriptscriptstyle \exists},\pi_n^{\scriptscriptstyle ee}:\mathcal{S}(\mathbb{R}^n)	o\mathcal{S}(\mathbb{R}^{\lfloor n/2
floor})
```

is bounded singly exponentially..

- Long history, starting with non-elementary-recursive bound of Tarski's original algorithm, doubly exponential algorithm due to Collins (1975) (and also Wuthrich (1976)) using Cylindrical Algebraic Decomposition.
- For each $n \geq 0$, let $\pi_n : \mathbb{R}^n \to \mathbb{R}^{[n/2]}$ denote the projection map forgetting the last n [n/2] coordinates.
- A new ingredient the critical point method gives:

```
Theorem (Grigoriev-Vorobjov (1988), Renegar (19
```

he complexity (both quantitative and algorithmic) of the functors

```
\pi_n^{\scriptscriptstyle \exists},\pi_n^{\scriptscriptstyle ee}:\mathcal{S}(\mathbb{R}^n)	o\mathcal{S}(\mathbb{R}^{\lfloor n/2
floor})
```

is bounded singly exponentially..

- Long history, starting with non-elementary-recursive bound of Tarski's original algorithm, doubly exponential algorithm due to Collins (1975) (and also Wuthrich (1976)) using Cylindrical Algebraic Decomposition.
- For each $n \geq 0$, let $\pi_n : \mathbb{R}^n \to \mathbb{R}^{[n/2]}$ denote the projection map forgetting the last n [n/2] coordinates.
- A new ingredient the critical point method gives:

Theorem (Grigoriev-Vorobjov (1988), Renegar (1992))

The complexity (both quantitative and algorithmic) of the functors

$$\pi_n^\exists, \pi_n^orall: \mathcal{S}(\mathbb{R}^n) o \mathcal{S}(\mathbb{R}^{[n/2]})$$

is bounded singly exponentially.

- Long history, starting with non-elementary-recursive bound of Tarski's original algorithm, doubly exponential algorithm due to Collins (1975) (and also Wuthrich (1976)) using Cylindrical Algebraic Decomposition.
- For each $n \geq 0$, let $\pi_n : \mathbb{R}^n \to \mathbb{R}^{[n/2]}$ denote the projection map forgetting the last n [n/2] coordinates.
- A new ingredient the critical point method gives:

Theorem (Grigoriev-Vorobjov (1988), Renegar (1992))

The complexity (both quantitative and algorithmic) of the functors

$$\pi_n^\exists, \pi_n^orall: \mathcal{S}(\mathbb{R}^n) o \mathcal{S}(\mathbb{R}^{[n/2]})$$

is bounded singly exponentially.

- Long history, starting with non-elementary-recursive bound of Tarski's original algorithm, doubly exponential algorithm due to Collins (1975) (and also Wuthrich (1976)) using Cylindrical Algebraic Decomposition.
- For each $n \geq 0$, let $\pi_n : \mathbb{R}^n \to \mathbb{R}^{[n/2]}$ denote the projection map forgetting the last n [n/2] coordinates.
- A new ingredient the critical point method gives:

Theorem (Grigoriev-Vorobjov (1988), Renegar (1992))

The complexity (both quantitative and algorithmic) of the functors

$$\pi_n^\exists, \pi_n^orall: \mathcal{S}(\mathbb{R}^n) o \mathcal{S}(\mathbb{R}^{[n/2]})$$

is bounded singly exponentially.

```
Theorem (B. 2014)
```

The complexity (both quantitative and algorithmic) of the (direct image) functor $R\pi_{n,*}:\mathcal{CS}(\mathbb{R}^n) o\mathcal{CS}(\mathbb{R}^{[n/2]})$ is bounded singly exponentially.

More precisely:

- (a) there exists a semi-algebraic partition of $\mathbb{R}^{\lfloor n/2 \rfloor}$ subordinate to $R\pi_*(F)$ having complexity $(sd)^{n^{\mathcal{O}(1)}}$;
- (b) and moreover there exists an algorithm to obtain this partition from the given partition with the same complexity;
- (c) if $\dim_{\mathbb{Q}} H^*(F_{\mathbf{x}}) \leq N$ for all $\mathbf{x} \in \mathbb{R}^n$, then $\dim_{\mathbb{Q}} H^*((R\pi_{n,*}(F))_{\mathbf{y}}) \leq N(sd)^{n^{O(1)}}$ for all $\mathbf{y} \in \mathbb{R}^{(n/2)}$.

Theorem (B. 2014)

The complexity (both quantitative and algorithmic) of the (direct image) functor $R\pi_{n,*}: \mathcal{CS}(\mathbb{R}^n) \to \mathcal{CS}(\mathbb{R}^{[n/2]})$ is bounded singly exponentially.

More precisely:

- (a) there exists a semi-algebraic partition of $\mathbb{R}^{\lfloor n/2 \rfloor}$ subordinate to $R\pi_*(F)$ having complexity $(sd)^{n^{\mathcal{O}(1)}}$;
- (b) and moreover there exists an algorithm to obtain this partition from the given partition with the same complexity;
- (c) if $\dim_{\mathbb{Q}} \mathrm{H}^*(F_{\mathbf{x}}) \leq N$ for all $\mathbf{x} \in \mathbb{R}^n$, then

Theorem (B. 2014)

The complexity (both quantitative and algorithmic) of the (direct image) functor $R\pi_{n,*}: \mathcal{CS}(\mathbb{R}^n) \to \mathcal{CS}(\mathbb{R}^{[n/2]})$ is bounded singly exponentially.

More precisely:

- (a) there exists a semi-algebraic partition of $\mathbb{R}^{\lfloor n/2 \rfloor}$ subordinate to $R\pi_*(F)$ having complexity $(sd)^{n^{\mathcal{O}(1)}}$;
- (b) and moreover there exists an algorithm to obtain this partition from the given partition with the same complexity;
- (c) if $\dim_{\mathbb{Q}} \mathrm{H}^*(F_{\mathbf{x}}) \leq N$ for all $\mathbf{x} \in \mathbb{R}^n$, then

Theorem (B. 2014)

The complexity (both quantitative and algorithmic) of the (direct image) functor $R\pi_{n,*}: \mathcal{CS}(\mathbb{R}^n) \to \mathcal{CS}(\mathbb{R}^{[n/2]})$ is bounded singly exponentially.

More precisely:

- (a) there exists a semi-algebraic partition of $\mathbb{R}^{\lfloor n/2 \rfloor}$ subordinate to $R\pi_*(F)$ having complexity $(sd)^{n^{\mathcal{O}(1)}}$;
- (b) and moreover there exists an algorithm to obtain this partition from the given partition with the same complexity;
- (c) if $\dim_{\mathbb{Q}} H^*(F_{\mathbf{x}}) \leq N$ for all $\mathbf{x} \in \mathbb{R}^n$, then

Theorem (B. 2014)

The complexity (both quantitative and algorithmic) of the (direct image) functor $R\pi_{n,*}: \mathcal{CS}(\mathbb{R}^n) \to \mathcal{CS}(\mathbb{R}^{[n/2]})$ is bounded singly exponentially.

More precisely:

- (a) there exists a semi-algebraic partition of $\mathbb{R}^{[n/2]}$ subordinate to $R\pi_*(F)$ having complexity $(sd)^{n^{O(1)}}$;
- (b) and moreover there exists an algorithm to obtain this partition from the given partition with the same complexity;
- (c) if $\dim_{\mathbb{Q}} H^*(F_{\mathbf{x}}) \leq N$ for all $\mathbf{x} \in \mathbb{R}^n$, then $\dim_{\mathbb{Q}} H^*((R\pi_{n,*}(F))_{\mathbf{y}}) \leq N(sd)^{n^{\mathcal{O}(1)}}$ for all $\mathbf{y} \in \mathbb{R}^{[n/2]}$.

Theorem (B. 2014)

The complexity (both quantitative and algorithmic) of the (direct image) functor $R\pi_{n,*}: \mathcal{CS}(\mathbb{R}^n) \to \mathcal{CS}(\mathbb{R}^{[n/2]})$ is bounded singly exponentially.

More precisely:

- (a) there exists a semi-algebraic partition of $\mathbb{R}^{[n/2]}$ subordinate to $R\pi_*(F)$ having complexity $(sd)^{n^{O(1)}}$;
- (b) and moreover there exists an algorithm to obtain this partition from the given partition with the same complexity;
- (c) if $\dim_{\mathbb{Q}} H^*(F_{\mathbf{x}}) \leq N$ for all $\mathbf{x} \in \mathbb{R}^n$, then $\dim_{\mathbb{Q}} H^*((R\pi_{n,*}(F))_{\mathbf{y}}) \leq N(sd)^{n^{\mathcal{O}(1)}}$ for all $\mathbf{y} \in \mathbb{R}^{[n/2]}$.

Theorem (B. 2014)

The complexity (both quantitative and algorithmic) of the (direct image) functor $R\pi_{n,*}: \mathcal{CS}(\mathbb{R}^n) \to \mathcal{CS}(\mathbb{R}^{[n/2]})$ is bounded singly exponentially.

More precisely:

- (a) there exists a semi-algebraic partition of $\mathbb{R}^{[n/2]}$ subordinate to $R\pi_*(F)$ having complexity $(sd)^{n^{O(1)}}$;
- (b) and moreover there exists an algorithm to obtain this partition from the given partition with the same complexity;
- (c) if $\dim_{\mathbb{Q}} \mathrm{H}^*(F_{\mathbf{x}}) \leq N$ for all $\mathbf{x} \in \mathbb{R}^n$, then $\dim_{\mathbb{Q}} \mathrm{H}^*((R\pi_{n,*}(F))_{\mathbf{y}}) \leq N(sd)^{n^{\mathcal{O}(1)}}$ for all $\mathbf{y} \in \mathbb{R}^{[n/2]}$.

- Several ingredients recently developed for studying algorithmic and quantitative questions in semi-algebraic geometry.
- Ideas used to prove singly exponential bounds on the number of homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
- Singly exponential sized covering by contractibles (B.-Pollack-Roy (2008)).
- Delicate infinitesimal thickening and shrinking arguments.
- Certain arguments using spectral sequences Leray and Mayer-Vietoris.
- Proper base change theorem for constructible sheaves.

- Several ingredients recently developed for studying algorithmic and quantitative questions in semi-algebraic geometry.
- Ideas used to prove singly exponential bounds on the number of homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
- Singly exponential sized covering by contractibles (B.-Pollack-Roy (2008)).
- Delicate infinitesimal thickening and shrinking arguments.
- Certain arguments using spectral sequences Leray and Mayer-Vietoris.
- Proper base change theorem for constructible sheaves.

- Several ingredients recently developed for studying algorithmic and quantitative questions in semi-algebraic geometry.
- Ideas used to prove singly exponential bounds on the number of homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
- Singly exponential sized covering by contractibles (B.-Pollack-Roy (2008)).
- Delicate infinitesimal thickening and shrinking arguments.
- Certain arguments using spectral sequences Leray and Mayer-Vietoris.
- Proper base change theorem for constructible sheaves.

- Several ingredients recently developed for studying algorithmic and quantitative questions in semi-algebraic geometry.
- Ideas used to prove singly exponential bounds on the number of homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
- Singly exponential sized covering by contractibles (B.-Pollack-Roy (2008)).
- Delicate infinitesimal thickening and shrinking arguments.
- Certain arguments using spectral sequences Leray and Mayer-Vietoris.
- Proper base change theorem for constructible sheaves.

- Several ingredients recently developed for studying algorithmic and quantitative questions in semi-algebraic geometry.
- Ideas used to prove singly exponential bounds on the number of homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
- Singly exponential sized covering by contractibles (B.-Pollack-Roy (2008)).
- Delicate infinitesimal thickening and shrinking arguments.
- Certain arguments using spectral sequences Leray and Mayer-Vietoris.
- Proper base change theorem for constructible sheaves.

- Several ingredients recently developed for studying algorithmic and quantitative questions in semi-algebraic geometry.
- Ideas used to prove singly exponential bounds on the number of homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
- Singly exponential sized covering by contractibles (B.-Pollack-Roy (2008)).
- Delicate infinitesimal thickening and shrinking arguments.
- Certain arguments using spectral sequences Leray and Mayer-Vietoris.
- Proper base change theorem for constructible sheaves.

- Several ingredients recently developed for studying algorithmic and quantitative questions in semi-algebraic geometry.
- Ideas used to prove singly exponential bounds on the number of homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
- Singly exponential sized covering by contractibles (B.-Pollack-Roy (2008)).
- Delicate infinitesimal thickening and shrinking arguments.
- Certain arguments using spectral sequences Leray and Mayer-Vietoris.
- Proper base change theorem for constructible sheaves.

- Several ingredients recently developed for studying algorithmic and quantitative questions in semi-algebraic geometry.
- Ideas used to prove singly exponential bounds on the number of homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
- Singly exponential sized covering by contractibles (B.-Pollack-Roy (2008)).
- Delicate infinitesimal thickening and shrinking arguments.
- Certain arguments using spectral sequences Leray and Mayer-Vietoris.
- Proper base change theorem for constructible sheaves.

- Let S denote the (poset) category of sequences $(S_n \in S(\mathbb{R}^{m(n)}))_{n>0}$ where each m(n) is a non-negative integer valued function.
- We say that $L \in \mathcal{S}$ is in $\mathbf{P}_{\mathbb{R}}$, iff there exists a B-S-S machine recognizing L in polynomial time.
- Recall that we also have sequences of maps:

$$\left(\mathcal{S}(\mathbb{R}^m) \stackrel{\pi_{m,\exists}}{\overset{\pi_m^*}{\underset{m,\forall}{\longleftarrow}}} \mathcal{S}(\mathbb{R}^{[m/2]})
ight)_{m>0}$$

- Let S denote the (poset) category of sequences $(S_n \in S(\mathbb{R}^{m(n)}))_{n>0}$ where each m(n) is a non-negative integer valued function.
- We say that $L \in S$ is in $P_{\mathbb{R}}$, iff there exists a B-S-S machine recognizing L in polynomial time.
- Recall that we also have sequences of maps:

$$\left(\mathcal{S}(\mathbb{R}^m) \xrightarrow[\stackrel{\pi_m}{\underset{m_{,\forall}}{\longleftarrow}}]{\stackrel{\pi_m}{\xrightarrow{}}} \mathcal{S}(\mathbb{R}^{[m/2]})\right)_{m>0}.$$

- Let S denote the (poset) category of sequences $(S_n \in S(\mathbb{R}^{m(n)}))_{n>0}$ where each m(n) is a non-negative integer valued function.
- We say that $L \in \mathcal{S}$ is in $\mathbf{P}_{\mathbb{R}}$, iff there exists a B-S-S machine recognizing L in polynomial time.
- Recall that we also have sequences of maps:

$$\left(\mathcal{S}(\mathbb{R}^m) \stackrel{\pi_{m,\exists}}{\overset{\pi_m}{\underset{\pi_{m,\forall}}{\longleftarrow}}} \mathcal{S}(\mathbb{R}^{[m/2]})
ight)_{m>0}.$$

- Let S denote the (poset) category of sequences $(S_n \in S(\mathbb{R}^{m(n)}))_{n>0}$ where each m(n) is a non-negative integer valued function.
- We say that $L \in \mathcal{S}$ is in $\mathbf{P}_{\mathbb{R}}$, iff there exists a B-S-S machine recognizing L in polynomial time.
- Recall that we also have sequences of maps:

$$\left(\mathcal{S}(\mathbb{R}^m) \stackrel{\pi_{m,\exists}}{\overset{\pi_m}{\underset{\pi_{m,\forall}}{\overset{\pi_m}{\longrightarrow}}}} \mathcal{S}(\mathbb{R}^{[m/2]})
ight)_{m>0}.$$

 $\pi_m^*, \pi_{m,\exists}, \pi_{m,\forall}$ induce in a natural way the following endo-functors

$$\mathcal{S} \stackrel{\stackrel{\pi_{\exists}}{\longrightarrow}}{\stackrel{\pi^*}{\longleftarrow}} \mathcal{S}$$

 $\pi_m^*, \pi_{m,\exists}, \pi_{m,\forall}$ induce in a natural way the following endo-functors

$$\mathcal{S} \stackrel{\stackrel{\pi_{\exists}}{\longleftarrow}}{\stackrel{\pi^*}{\longleftarrow}} \mathcal{S}.$$

(Aside) As mentioned before the pairs $(\pi_{\exists}, \pi^*), (\pi^*, \pi_{\forall})$ are not quite pairs of inverse functors, but they form an adjoint triple:

$$\pi_{\exists} \dashv \pi^* \dashv \pi_{\forall}$$
.

 $\pi_m^*, \pi_{m,\exists}, \pi_{m,\forall}$ induce in a natural way the following endo-functors

$$\mathcal{S} \stackrel{\stackrel{\pi_{\exists}}{\longleftarrow}}{\stackrel{\pi^*}{\longleftarrow}} \mathcal{S}.$$

We have the following obvious inclusions:

$$\mathbf{P}_{\mathbb{R}}\supset \boldsymbol{\pi}^{*}(\mathbf{P}_{\mathbb{R}}),$$

$$\mathbf{P}_{\mathbb{R}}\subset \pi_{\exists}(\mathbf{P}_{\mathbb{R}}),$$

$$\mathbf{P}_{\mathbb{R}}\subset \pi_{orall}(\mathbf{P}_{\mathbb{R}}).$$

 $\pi_m^*, \pi_{m,\exists}, \pi_{m,\forall}$ induce in a natural way the following endo-functors

$$\mathcal{S} \stackrel{\stackrel{\pi_{\exists}}{\longleftarrow}}{\stackrel{\pi^*}{\longleftarrow}} \mathcal{S}.$$

For historical reasons it is traditional to denote

$$\mathsf{NP}_\mathbb{R} := \pi_\exists (\mathbf{P}_\mathbb{R}).$$

 $\pi_{m_1}^*, \pi_{m_1}, \pi_{m_2}$ induce in a natural way the following endo-functors

$$\mathcal{S} \stackrel{\stackrel{\pi_{\exists}}{\longleftarrow}}{\stackrel{\pi^*}{\longleftarrow}} \mathcal{S}.$$

For historical reasons it is traditional to denote

$$\mathsf{NP}_\mathbb{R} := \pi_\exists(\mathbf{P}_\mathbb{R}).$$

And similarly ...

$$\mathsf{co} ext{-}\mathsf{NP}_\mathbb{R} := \pi_orall (\mathbf{P}_\mathbb{R}).$$

 $\pi_m^*, \pi_{m,\exists}, \pi_{m,\forall}$ induce in a natural way the following endo-functors

$$\mathcal{S} \stackrel{\pi_{\exists}}{\stackrel{\pi^{*}}{\longleftarrow}} \mathcal{S}$$

For historical reasons it is traditional to denote

$$\mathsf{NP}_\mathbb{R} := \pmb{\pi}_\exists (\mathbf{P}_\mathbb{R}).$$

And similarly ...

$$\mathsf{co} extsf{-}\mathsf{NP}_\mathbb{R} := \pi_orall (\mathbf{P}_\mathbb{R}).$$

Definition of PHR

$$\mathsf{PH}_\mathbb{R} := \mathbf{P}_\mathbb{R} \cup oldsymbol{\pi}_\exists (\mathbf{P}_\mathbb{R}) \cup oldsymbol{\pi}_orall (\mathbf{P}_\mathbb{R}) \cup oldsymbol{\pi}_\exists \forall (\mathbf{P}_\mathbb{R}) \cup oldsymbol{\pi}_orall (\mathbf{P}_\mathbb{R}) \cup oldsymbol{\pi}_oldsymbol{\pi}$$

where the endo-functor $\pi_{\exists \forall}$ is induced by $(\pi_{[m/2],\exists} \circ \pi_{m,\forall})_{m>0}$ and so on ...

$NP_{\mathbb{R}}$, co- $NP_{\mathbb{R}}$, $PH_{\mathbb{R}}$ and all that ...

 $\pi_m^*, \pi_{m,\exists}, \pi_{m,\forall}$ induce in a natural way the following endo-functors

$$\mathcal{S} \stackrel{\stackrel{\pi_{\exists}}{\longleftarrow}}{\stackrel{\pi^{*}}{\longleftarrow}} \mathcal{S}$$

For historical reasons it is traditional to denote

$$\mathsf{NP}_\mathbb{R} := \pi_\exists(\mathbf{P}_\mathbb{R}).$$

And similarly ...

$$\mathsf{co} ext{-}\mathsf{NP}_\mathbb{R} := \pi_orall (\mathbf{P}_\mathbb{R}).$$

Definition of PHR

$$\mathsf{PH}_\mathbb{R} := \mathbf{P}_\mathbb{R} \cup oldsymbol{\pi}_\exists (\mathbf{P}_\mathbb{R}) \cup oldsymbol{\pi}_orall (\mathbf{P}_\mathbb{R}) \cup oldsymbol{\pi}_\exists \forall (\mathbf{P}_\mathbb{R}) \cup oldsymbol{\pi}_orall (\mathbf{P}_\mathbb{R}) \cup \cdots$$

where the endo-functor $\pi_{\exists \forall}$ is induced by $(\pi_{[m/2],\exists} \circ \pi_{m,\forall})_{m>0}$ and so on ...

Definition (Informal definition of the class $\mathcal{P}_{\mathbb{R}}$)
Informally we define the class $\mathcal{P}_{\mathbb{R}}$ as the set of sequences $\left(F_n \in \mathcal{CS}(\mathbb{R}^{m(n)})\right)_{n>0}$ such that

- (a) there exists a corresponding sequence of semi-algebraic partitions of $\mathbb{R}^{m(n)}$, subordinate to F_n , in which point location can be performed efficiently;
- (b) The Poincaré polynomial of the stalks $(F_n)_{\mathbf{x}}, \mathbf{x} \in \mathbb{R}^{m(n)}$ (i.e. the polynomial $P_{(F_n)_{\mathbf{x}}}(T) = \sum_i \dim_i \mathrm{H}^i((F_n)_{\mathbf{x}}) T^i$) can be computed efficiently.

Definition (Informal definition of the class $\mathcal{P}_{\mathbb{R}}$)

Informally we define the class $\mathcal{P}_{\mathbb{R}}$ as the set of sequences $\left(F_n\in\mathcal{CS}(\mathbb{R}^{m(n)})\right)_{n>0}$ such that

- (a) there exists a corresponding sequence of semi-algebraic partitions of $\mathbb{R}^{m(n)}$, subordinate to F_n , in which point location can be performed efficiently;
- (b) The Poincaré polynomial of the stalks $(F_n)_{\mathbf{x}}, \mathbf{x} \in \mathbb{R}^{m(n)}$ (i.e. the polynomial $P_{(F_n)_{\mathbf{x}}}(T) = \sum_i \dim_i \mathrm{H}^i((F_n)_{\mathbf{x}}) T^i$) can be computed efficiently.

Definition (Informal definition of the class $\mathcal{P}_{\mathbb{R}}$)

Informally we define the class $\mathcal{P}_{\mathbb{R}}$ as the set of sequences

$$\left(F_n \in \mathcal{CS}(\mathbb{R}^{m(n)})
ight)_{n>0}$$
 such that

- (a) there exists a corresponding sequence of semi-algebraic partitions of $\mathbb{R}^{m(n)}$, subordinate to F_n , in which point location can be performed efficiently;
- (b) The Poincaré polynomial of the stalks $(F_n)_x$, $\mathbf{x} \in \mathbb{R}^{m(n)}$ (i.e. the polynomial $P_{(F_n)_x}(T) = \sum_i \dim_i \mathrm{H}^i((F_n)_x)T^i$) can be computed efficiently.

Definition of $\mathcal{P}_{\mathbb{R}}$ [B. 2014]

- (a) Each F_n has compact support
- (b) For each n>0, there is an index set I_n of cardinality $2^{m_1(n)}$, and a semi-algebraic partition, $(S_{n,i})_{i\in I_n}$, of $\mathbb{R}^{m(n)}$ into locally closed semi-algebraic subsets $S_{n,i}$ indexed by I_n , which is subordinate to F_n
- (c) For each n > 0 and each x ∈ R^{m(n)},
 (i) The dimensions dim₀ H^j((F_n)_x) are bounded by 2^{m₁(n)};
 (ii) H^j((F_n)_x) = 0 for all j with |j| > m₁(n)

Definition of $\mathcal{P}_{\mathbb{R}}$ [B. 2014]

- (a) Each F_n has compact support.
- (b) For each n>0, there is an index set I_n of cardinality $2^{m_1(n)}$, and a semi-algebraic partition, $(S_{n,i})_{i\in I_n}$, of $\mathbb{R}^{m(n)}$ into locally closed semi-algebraic subsets $S_{n,i}$ indexed by I_n , which is subordinate to F_n
- (c) For each n > 0 and each x ∈ R^{m(n)},
 (i) The dimensions dim₀ H^j((F_n)_x) are bounded by 2^{m₁(n)};
 (ii) H^j((F_n)_x) = 0 for all j with |j| > m_n(n)

Definition of $\mathcal{P}_{\mathbb{R}}$ [B. 2014]

- (a) Each F_n has compact support.
- (b) For each n>0, there is an index set I_n of cardinality $2^{m_1(n)}$, and a semi-algebraic partition, $(S_{n,i})_{i\in I_n}$, of $\mathbb{R}^{m(n)}$ into locally closed semi-algebraic subsets $S_{n,i}$ indexed by I_n , which is subordinate to F_n .
- (c) For each n > 0 and each $\mathbf{x} \in \mathbb{R}^{m(n)}$, (i) The dimensions $\dim_{\mathbb{R}} H^{i}((F_{n})_{\mathbf{x}})$ are bounded by $2^{m_{i}(n)}$; (ii) $H^{i}((F_{n})_{\mathbf{x}}) = 0$ for all i with $|i| > m_{i}(n)$.

Definition of $\mathcal{P}_{\mathbb{R}}$ [B. 2014]

- (a) Each F_n has compact support.
- (b) For each n>0, there is an index set I_n of cardinality $2^{m_1(n)}$, and a semi-algebraic partition, $(S_{n,i})_{i\in I_n}$, of $\mathbb{R}^{m(n)}$ into locally closed semi-algebraic subsets $S_{n,i}$ indexed by I_n , which is subordinate to F_n .
- (c) For each n > 0 and each $\mathbf{x} \in \mathbb{R}^{m(n)}$,
 - (i) The dimensions $\dim_{\mathbb{Q}} H^{j}((F_{n})_{x})$ are bounded by $2^{m_{1}(n)}$;
 - (ii) $H^j((F_n)_x) = 0$ for all j with $|j| > m_1(n)$

Definition of $\mathcal{P}_{\mathbb{R}}$ [B. 2014]

- (a) Each F_n has compact support.
- (b) For each n>0, there is an index set I_n of cardinality $2^{m_1(n)}$, and a semi-algebraic partition, $(S_{n,i})_{i\in I_n}$, of $\mathbb{R}^{m(n)}$ into locally closed semi-algebraic subsets $S_{n,i}$ indexed by I_n , which is subordinate to F_n .
- (c) For each n > 0 and each $\mathbf{x} \in \mathbb{R}^{m(n)}$,
 - (i) The dimensions $\dim_{\mathbb{Q}} H^{j}((F_{n})_{\mathbf{x}})$ are bounded by $2^{m_{1}(n)}$;
 - (ii) $H^j((F_n)_x) = 0$ for all j with $|j| > m_1(n)$

Definition of $\mathcal{P}_{\mathbb{R}}$ [B. 2014]

- (a) Each F_n has compact support.
- (b) For each n>0, there is an index set I_n of cardinality $2^{m_1(n)}$, and a semi-algebraic partition, $(S_{n,i})_{i\in I_n}$, of $\mathbb{R}^{m(n)}$ into locally closed semi-algebraic subsets $S_{n,i}$ indexed by I_n , which is subordinate to F_n .
- (c) For each n > 0 and each $\mathbf{x} \in \mathbb{R}^{m(n)}$,
 - (i) The dimensions $\dim_{\mathbb{Q}} H^{j}((F_{n})_{\mathbf{x}})$ are bounded by $2^{m_{1}(n)}$;
 - (ii) $H^j((F_n)_{\mathbf{x}}) = 0$ for all j with $|j| > m_1(n)$.

The class $\mathcal{P}_{\mathbb{R}}$ (cont).

Definition of $\mathcal{P}_{\mathbb{R}}$ (cont).

The two sequences of functions $(i_n : \mathbb{R}^{m(n)} \to I_n)_{n>0}$, and $(p_n : \mathbb{R}^{m(n)} \to \mathbb{Z}[T, T^{-1}])$ defined by

$$i_n(\mathbf{x}) = i \in I_n$$
, such that, $\mathbf{x} \in S_{n,i}$
 $p_n(\mathbf{x}) = P_{(F_n)_{\mathbf{x}}}$

are computable by B-S-S machines with complexity polynomial in n.

Notice that the number of bits needed to represent elements of I_n , and the coefficients of $P_{(F_n)_n}$ are bounded polynomially in n.

The class $\mathcal{P}_{\mathbb{R}}$ (cont).

Definition of $\mathcal{P}_{\mathbb{R}}$ (cont).

The two sequences of functions $(i_n : \mathbb{R}^{m(n)} \to I_n)_{n>0}$, and $(p_n : \mathbb{R}^{m(n)} \to \mathbb{Z}[T, T^{-1}])$ defined by

$$i_n(\mathbf{x}) = i \in I_n$$
, such that, $\mathbf{x} \in S_{n,i}$
 $p_n(\mathbf{x}) = P_{(F_n)_{\mathbf{x}}}$

are computable by B-S-S machines with complexity polynomial in n.

Notice that the number of bits needed to represent elements of I_n , and the coefficients of $P_{(F_n)_n}$ are bounded polynomially in n.

The class $\mathcal{P}_{\mathbb{R}}$ (cont).

Definition of $\mathcal{P}_{\mathbb{R}}$ (cont).

The two sequences of functions $(i_n : \mathbb{R}^{m(n)} \to I_n)_{n>0}$, and $(p_n : \mathbb{R}^{m(n)} \to \mathbb{Z}[T, T^{-1}])$ defined by

$$i_n(\mathbf{x}) = i \in I_n$$
, such that, $\mathbf{x} \in S_{n,i}$
 $p_n(\mathbf{x}) = P_{(F_n)_n}$

are computable by B-S-S machines with complexity polynomial in n.

Notice that the number of bits needed to represent elements of I_n , and the coefficients of $P_{(F_n)_x}$ are bounded polynomially in n.

Example 0

Constant sheaf on compact sequences in $\mathbf{P}_{\mathbb{R}}$

Let $(S_n \in \mathcal{S}(\mathbb{R}^{m(n)}))_{n>0} \in \mathbf{P}_{\mathbb{R}}^c$. Let $j_n : S_n \hookrightarrow \mathbb{R}^n$ be the inclusion map. Then,

$$(j_{n,*}\mathbb{Q}_{S_n})_{n>0}\in \mathcal{P}_{\mathbb{R}}.$$

Reminiscent of the classical B-S-S complexity class $P_{\mathbb{R}}$...

- The class P_R is stable under various sheaf operations direct sums tensor products, truncation functors.
- ullet The class ${\cal P}_{\mathbb R}$ is also stable under the induced functor ${m \pi}^{-1}$

Reminiscent of the classical B-S-S complexity class $P_{\mathbb{R}}$...

- The class $\mathcal{P}_{\mathbb{R}}$ is stable under various sheaf operations direct sums, tensor products, truncation functors.
- The class $\mathcal{P}_{\mathbb{R}}$ is also stable under the induced functor π^{-1} .

Reminiscent of the classical B-S-S complexity class $P_{\mathbb{R}}$...

- The class $\mathcal{P}_{\mathbb{R}}$ is stable under various sheaf operations direct sums, tensor products, truncation functors.
- The class $\mathcal{P}_{\mathbb{R}}$ is also stable under the induced functor π^{-1} .

Reminiscent of the classical B-S-S complexity class $P_{\mathbb{R}}$...

- The class $\mathcal{P}_{\mathbb{R}}$ is stable under various sheaf operations direct sums, tensor products, truncation functors.
- The class $\mathcal{P}_{\mathbb{R}}$ is also stable under the induced functor π^{-1} .

Reminiscent of the classical B-S-S complexity class $P_{\mathbb{R}}$...

- The class $\mathcal{P}_{\mathbb{R}}$ is stable under various sheaf operations direct sums, tensor products, truncation functors.
- The class $\mathcal{P}_{\mathbb{R}}$ is also stable under the induced functor π^{-1} .

• The functors π_m^{-1} , $R\pi_{m,*}$ induce in a natural way endo-functors

$$CS \xrightarrow{\frac{\pi^{-1}}{R\pi_*}} CS.$$

where \mathcal{CS} is the category of sequences $(F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0}$.

- We have the adjunction: $\pi^{-1} \dashv R\pi_*$.
- Similar to the set-theoretic case, the following inclusions can be

$$oldsymbol{\mathcal{P}}_{\mathbb{R}}\supsetoldsymbol{\pi}^{-1}(oldsymbol{\mathcal{P}}_{\mathbb{R}}), \ oldsymbol{\mathcal{P}}_{\mathbb{R}}\subset oldsymbol{R}oldsymbol{\pi}_*(oldsymbol{\mathcal{P}}_{\mathbb{R}}).$$

• We define: $\Lambda_{\mathbb{R}}$ as the closure of the class $R\pi_*(\mathcal{P}_{\mathbb{R}})$ under the "easy"

• The functors π_m^{-1} , $R\pi_{m,*}$ induce in a natural way endo-functors

$$CS \xrightarrow{\frac{\pi^{-1}}{R\pi_*}} CS.$$

where \mathcal{CS} is the category of sequences $(F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0}$.

- We have the adjunction: $\pi^{-1} \dashv R\pi_{\star}$.
- Similar to the set-theoretic case, the following inclusions can be

$$oldsymbol{\mathcal{P}}_{\mathbb{R}}\supsetoldsymbol{\pi}^{-1}(oldsymbol{\mathcal{P}}_{\mathbb{R}}), \ oldsymbol{\mathcal{P}}_{\mathbb{R}}\subsetoldsymbol{R}oldsymbol{\pi}_*(oldsymbol{\mathcal{P}}_{\mathbb{R}}).$$

• We define: $\Lambda_{\mathbb{R}}$ as the closure of the class $R\pi_*(\mathcal{P}_{\mathbb{R}})$ under the "easy"

• The functors π_m^{-1} , $R\pi_{m,*}$ induce in a natural way endo-functors

$$CS \xrightarrow{\frac{\pi^{-1}}{R\pi_*}} CS.$$

where \mathcal{CS} is the category of sequences $(F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0}$.

- We have the adjunction: $\pi^{-1} \dashv R\pi_*$.
- Similar to the set-theoretic case, the following inclusions can be checked easily.

$$oldsymbol{\mathcal{P}}_{\mathbb{R}}\supsetoldsymbol{\pi}^{-1}(oldsymbol{\mathcal{P}}_{\mathbb{R}}), \ oldsymbol{\mathcal{P}}_{\mathbb{R}}\subset oldsymbol{R}oldsymbol{\pi}_*(oldsymbol{\mathcal{P}}_{\mathbb{R}}).$$

• We define: $\Lambda_{\mathbb{R}}$ as the closure of the class $R\pi_*(\mathcal{P}_{\mathbb{R}})$ under the "easy" sheaf operations (namely, truncations, tensor products, direct sums and pull-backs), and define $\mathcal{PH}_{\mathbb{R}}$ by iteration as before.

• The functors π_m^{-1} , $R\pi_{m,*}$ induce in a natural way endo-functors

$$CS \xrightarrow{\frac{\pi^{-1}}{R\pi_*}} CS.$$

where \mathcal{CS} is the category of sequences $(F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0}$.

- We have the adjunction: $\pi^{-1} \dashv R\pi_{\star}$.
- Similar to the set-theoretic case, the following inclusions can be checked easily.

$$oldsymbol{\mathcal{P}}_{\mathbb{R}}\supsetoldsymbol{\pi}^{-1}(oldsymbol{\mathcal{P}}_{\mathbb{R}}), \ oldsymbol{\mathcal{P}}_{\mathbb{R}}\subset oldsymbol{R}oldsymbol{\pi}_*(oldsymbol{\mathcal{P}}_{\mathbb{R}}).$$

• We define: $\Lambda_{\mathbb{R}}$ as the closure of the class $R\pi_*(\mathcal{P}_{\mathbb{R}})$ under the "easy" sheaf operations (namely, truncations, tensor products, direct sums and pull-backs), and define $\mathcal{PH}_{\mathbb{R}}$ by iteration as before.

• The functors π_m^{-1} , $R\pi_{m,*}$ induce in a natural way endo-functors

$$CS \xrightarrow{\frac{\pi^{-1}}{R\pi_*}} CS.$$

where \mathcal{CS} is the category of sequences $(F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0}$.

- We have the adjunction: $\pi^{-1} \dashv R\pi_{\star}$.
- Similar to the set-theoretic case, the following inclusions can be checked easily.

$$oldsymbol{\mathcal{P}}_{\mathbb{R}}\supsetoldsymbol{\pi}^{-1}(oldsymbol{\mathcal{P}}_{\mathbb{R}}), \ oldsymbol{\mathcal{P}}_{\mathbb{R}}\subset oldsymbol{R}oldsymbol{\pi}_*(oldsymbol{\mathcal{P}}_{\mathbb{R}}).$$

• We define: $\Lambda_{\mathbb{R}}$ as the closure of the class $R\pi_*(\mathcal{P}_{\mathbb{R}})$ under the "easy" sheaf operations (namely, truncations, tensor products, direct sums and pull-backs), and define $\mathcal{PH}_{\mathbb{R}}$ by iteration as before.

• The functors π_m^{-1} , $R\pi_{m,*}$ induce in a natural way endo-functors

$$CS \xrightarrow{\frac{\pi^{-1}}{R\pi_*}} CS.$$

where \mathcal{CS} is the category of sequences $(F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0}$.

- We have the adjunction: $\pi^{-1} \dashv R\pi_*$.
- Similar to the set-theoretic case, the following inclusions can be checked easily.

$$oldsymbol{\mathcal{P}}_{\mathbb{R}}\supsetoldsymbol{\pi}^{-1}(oldsymbol{\mathcal{P}}_{\mathbb{R}}), \ oldsymbol{\mathcal{P}}_{\mathbb{R}}\subset oldsymbol{R}oldsymbol{\pi}_*(oldsymbol{\mathcal{P}}_{\mathbb{R}}).$$

• We define: $\Lambda_{\mathbb{R}}$ as the closure of the class $R\pi_*(\mathcal{P}_{\mathbb{R}})$ under the "easy" sheaf operations (namely, truncations, tensor products, direct sums and pull-backs), and define $\mathcal{PH}_{\mathbb{R}}$ by iteration as before.

Examples of sequences in $\Lambda_{\mathbb{R}}$

Suppose that $\left(j_n: S_n \hookrightarrow \mathbb{R}^{m(n)}\right)_{n>0}$ belong to $\mathbf{NP}^c_{\mathbb{R}}$ or to $\mathbf{co}\text{-}\mathbf{NP}^c_{\mathbb{R}}$.

Proposition

Then,

$$\left(j_{n,st}\mathbb{Q}_{S_n}\in\mathcal{CS}(\mathbb{R}^{m(n)})
ight)_{n>0}\inoldsymbol{\Lambda}_\mathbb{R}.$$

Conjecture and relation with the classical questions

Conjecture

$$\mathcal{P}_{\mathbb{R}}
eq \mathbf{\Lambda}_{\mathbb{R}}$$
.

Theorem (B., 2014)

 $\mathbf{P}_{\mathbb{R}}^c
eq\mathbf{N}\mathbf{P}_{\mathbb{R}}^c\Rightarrow\mathcal{P}_{\mathbb{R}}
eq\Lambda_{\mathbb{R}}.$

Conjecture and relation with the classical questions

Conjecture

$$\mathcal{P}_{\mathbb{R}}
eq \mathbf{\Lambda}_{\mathbb{R}}$$
.

Theorem (B., 2014)

 $\mathbf{P}_{\mathbb{R}}^c
eq\mathbf{N}\mathbf{P}_{\mathbb{R}}^c\Rightarrow\mathcal{P}_{\mathbb{R}}
eq\Lambda_{\mathbb{R}}.$

Conjecture and relation with the classical questions

Conjecture

$$\mathcal{P}_{\mathbb{R}} \neq \mathbf{\Lambda}_{\mathbb{R}}$$
.

Theorem (B., 2014)

$$\mathbf{P}_{\mathbb{R}}^c \neq \mathbf{N}\mathbf{P}_{\mathbb{R}}^c \Rightarrow \boldsymbol{\mathcal{P}}_{\mathbb{R}} \neq \boldsymbol{\Lambda}_{\mathbb{R}}.$$

The topological complexity of a semi-algebraic set S is often measured by the sum of the Betti numbers of S with coefficients in \mathbb{Q} , which we denote by b(S).

The topological complexity of a semi-algebraic set S is often measured by the sum of the Betti numbers of S with coefficients in \mathbb{Q} , which we denote by b(S).

It is thus natural to extend this measure to sequences.

The topological complexity of a semi-algebraic set S is often measured by the sum of the Betti numbers of S with coefficients in \mathbb{Q} , which we denote by b(S).

It is thus natural to extend this measure to sequences. It follows from bounds of Oleĭnik and Petrovskiĭ (1949), Thom, Milnor, B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...

The topological complexity of a semi-algebraic set S is often measured by the sum of the Betti numbers of S with coefficients in \mathbb{Q} , which we denote by b(S).

It is thus natural to extend this measure to sequences.

It follows from bounds of Oleĭnik and Petrovskiĭ (1949), Thom, Milnor, B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...

Theorem

Let $\mathbf{L} = (S_n \in \mathcal{S}(\mathbb{R}^{m(n)}))_{n>0} \in \mathbf{P}_{\mathbb{R}}$. Then, there exists a constant $c_{\mathbf{L}}$, such that

$$b(S_n) \leq 2^{n^{c_{\mathbf{L}}}}$$

for all n > 0.

The topological complexity of a semi-algebraic set S is often measured by the sum of the Betti numbers of S with coefficients in \mathbb{Q} , which we denote by b(S).

It is thus natural to extend this measure to sequences.

It follows from bounds of Oleĭnik and Petrovskiĭ (1949), Thom, Milnor, B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...

Theorem

Let $\mathbf{L} = (S_n \in \mathcal{S}(\mathbb{R}^{m(n)}))_{n>0} \in \mathbf{P}_{\mathbb{R}}$. Then, there exists a constant $c_{\mathbf{L}}$, such that

$$b(S_n) \leq 2^{n^{c_{\mathbf{L}}}}$$

for all n > 0.

One could naively hope to use such a result to distinguish $\mathbf{P}_{\mathbb{R}}$ from $\mathbf{NP}_{\mathbb{R}}$, $\mathbf{co-NP}_{\mathbb{R}}$ etc., but in fact

The topological complexity of a semi-algebraic set S is often measured by the sum of the Betti numbers of S with coefficients in \mathbb{Q} , which we denote by b(S).

It is thus natural to extend this measure to sequences.

It follows from bounds of Oleĭnik and Petrovskiĭ (1949), Thom, Milnor, B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...

One could naively hope to use such a result to distinguish $\mathbf{P}_{\mathbb{R}}$ from $\mathbf{NP}_{\mathbb{R}}$, $\mathbf{co-NP}_{\mathbb{R}}$ etc., but in fact

Theorem

Let $\mathbf{L} = (S_n \in \mathcal{S}(\mathbb{R}^{m(n)}))_{n>0} \in \mathbf{PH}_{\mathbb{R}}$. Then, there exists a constant c_L , such that

$$b(S_n) \leq 2^{n^{c_L}}$$

for all n > 0.

The topological complexity of a semi-algebraic set S is often measured by the sum of the Betti numbers of S with coefficients in \mathbb{Q} , which we denote by b(S).

It is thus natural to extend this measure to sequences.

It follows from bounds of Oleĭnik and Petrovskiĭ (1949), Thom, Milnor, B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...

Theorem

Let $\mathbf{L} = (S_n \in \mathcal{S}(\mathbb{R}^{m(n)}))_{n>0} \in \mathbf{PH}_{\mathbb{R}}$. Then, there exists a constant c_L , such that

$$b(S_n) \leq 2^{n^{c_{\mathbf{L}}}}$$

for all n > 0.

... But there might be other finer topological/geometric invariants – perhaps, related to complexity of stratification or desingularization

In analogy with the set-theoretic case, it is natural to measure the topological complexity of a constructible sheaf $F \in \mathcal{CS}(\mathbf{X})$ by

$$b(F) = \sum_i \dim_{\mathbb{Q}} \mathbb{H}^i(\mathbf{X}, F).$$

In analogy with the set-theoretic case, it is natural to measure the topological complexity of a constructible sheaf $F \in \mathcal{CS}(\mathbf{X})$ by

$$b(F) = \sum_i \dim_{\mathbb{Q}} \mathbb{H}^i(\mathbf{X}, F).$$

Theorem (B., 2014)

Let $\mathbf{F} = (F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0} \in \mathbf{P}_{\mathbb{R}}$. Then, there exists a constant $c_{\mathbf{F}}$, such that

$$b(F_n) \leq 2^{n^{c_{\mathbf{F}}}}$$

for all n > 0.

In analogy with the set-theoretic case, it is natural to measure the topological complexity of a constructible sheaf $F \in \mathcal{CS}(\mathbf{X})$ by

$$b(F) = \sum_i \dim_{\mathbb{Q}} \mathbb{H}^i(\mathbf{X}, F).$$

Theorem (B., 2014)

Let $\mathbf{F} = (F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0} \in \mathcal{P}_{\mathbb{R}}$. Then, there exists a constant $c_{\mathbf{F}}$, such that

$$b(F_n) \leq 2^{n^{c_{\mathbf{F}}}}$$

for all n > 0.

One could naively hope to use (as before) such a result to distinguish $\mathcal{P}_{\mathbb{R}}$ from $\Lambda_{\mathbb{R}}$, but in fact

In analogy with the set-theoretic case, it is natural to measure the topological complexity of a constructible sheaf $F \in \mathcal{CS}(\mathbf{X})$ by

$$b(F) = \sum_i \dim_{\mathbb{Q}} \mathbb{H}^i(\mathbf{X}, F).$$

Theorem (B., 2014)

Let $\mathbf{F} = (F_n \in \mathcal{CS}(\mathbb{R}^{m(n)}))_{n>0} \in \mathcal{PH}_{\mathbb{R}}$. Then, there exists a constant $c_{\mathbf{F}}$, such that

$$b(F_n) \leq 2^{n^{c_{\mathbf{F}}}}$$

for all n > 0.

Let X, Y be compact semi-algebraic sets, and $f : X \to Y$ a semi-algebraic continuous map. Then, we have the following commutative diagram:

$$\mathcal{CS}(\mathbf{X}) \xrightarrow{Rf_*} \mathcal{CS}(\mathbf{Y})$$

$$\downarrow^{\operatorname{Eu}} \xrightarrow{\int \cdot \mathbf{d} \ \chi} \downarrow^{\operatorname{Eu}}$$
 $\operatorname{CF}(\mathbf{X}) \xrightarrow{f^{-1}} \operatorname{CF}(\mathbf{Y}),$

where we denote by $\mathrm{CF}(\mathbf{X})$ the set of constructible functions $f:\mathbf{X} o\mathbb{R}$ on a semi-algebraic set \mathbf{X} .

Let X, Y be compact semi-algebraic sets, and $f : X \to Y$ a semi-algebraic continuous map. Then, we have the following commutative diagram:

$$\mathcal{CS}(\mathbf{X}) \xrightarrow{Rf_*} \mathcal{CS}(\mathbf{Y})$$

$$\downarrow^{\operatorname{Eu}} \xrightarrow{\int \cdot \mathbf{d} \ \chi} \downarrow^{\operatorname{Eu}} \subset F(\mathbf{X}) \xrightarrow{f^{-1}} \operatorname{CF}(\mathbf{Y}),$$

where we denote by CF(X) the set of constructible functions $f: X \to \mathbb{R}$ on a semi-algebraic set X.

Let X, Y be compact semi-algebraic sets, and $f : X \to Y$ a semi-algebraic continuous map. Then, we have the following commutative diagram:

$$\mathcal{CS}(\mathbf{X}) \xrightarrow{Rf_*} \mathcal{CS}(\mathbf{Y})$$

$$\downarrow^{\operatorname{Eu}} \xrightarrow{\int \cdot \mathbf{d} \, \chi} \downarrow^{\operatorname{Eu}}$$
 $\operatorname{CF}(\mathbf{X}) \xrightarrow{f^{-1}} \operatorname{CF}(\mathbf{Y}),$

where we denote by CF(X) the set of constructible functions $f: X \to \mathbb{R}$ on a semi-algebraic set X.

Let X, Y be compact semi-algebraic sets, and $f: X \to Y$ a semi-algebraic continuous map. Then, we have the following commutative diagram:

$$\mathcal{CS}(\mathbf{X}) \xrightarrow{Rf_*} \mathcal{CS}(\mathbf{Y})$$

$$\downarrow^{\operatorname{Eu}} \xrightarrow{\int \cdot \mathbf{d} \ \chi} \downarrow^{\operatorname{Eu}}$$
 $\operatorname{CF}(\mathbf{X}) \xrightarrow{f^{-1}} \operatorname{CF}(\mathbf{Y}),$

where we denote by CF(X) the set of constructible functions $f: X \to \mathbb{R}$ on a semi-algebraic set X.

- Study more precisely the complexity of sheaf operations.
- Get rid of the compactness/properness restrictions or understand better their significance.
- Role of adjointness ? For example, other pairs of adjoint functors such as the pair $(F \overset{L}{\otimes} \cdot \dashv R\mathcal{H}om(\cdot, F))$? More input from abstract category theory ?
- Applications of algorithmic/quantitative sheaf theory in other areas such as *D*-modules, algebraic theory of PDE's, computational geometry/topology.
- Study the (simpler) complexity theory of constructible functions instead of sheaves (B-S-S analog of Valiant). This has been developed somewhat including a theory of reduction and complete problems (B. (2014).
- Study complexity of the singular support of a constructible sheaf.

- Study more precisely the complexity of sheaf operations.
- Get rid of the compactness/properness restrictions or understand better their significance.
- Role of adjointness? For example, other pairs of adjoint functors such
- Applications of algorithmic/quantitative sheaf theory in other areas –
- Study the (simpler) complexity theory of constructible functions
- Study complexity of the singular support of a constructible sheaf.

- Study more precisely the complexity of sheaf operations.
- Get rid of the compactness/properness restrictions or understand better their significance.
- Role of adjointness ? For example, other pairs of adjoint functors such as the pair $(F \overset{L}{\otimes} \cdot \dashv R\mathcal{H}om(\cdot, F))$? More input from abstract category theory ?
- Applications of algorithmic/quantitative sheaf theory in other areas such as *D*-modules, algebraic theory of PDE's, computational geometry/topology.
- Study the (simpler) complexity theory of constructible functions instead of sheaves (B-S-S analog of Valiant). This has been developed somewhat including a theory of reduction and complete problems (B. (2014).
- Study complexity of the singular support of a constructible sheaf.

- Study more precisely the complexity of sheaf operations.
- Get rid of the compactness/properness restrictions or understand better their significance.
- Role of adjointness ? For example, other pairs of adjoint functors such as the pair $(F \overset{L}{\otimes} \cdot \dashv R\mathcal{H}om(\cdot, F))$? More input from abstract category theory ?
- Applications of algorithmic/quantitative sheaf theory in other areas such as *D*-modules, algebraic theory of PDE's, computational geometry/topology.
- Study the (simpler) complexity theory of constructible functions instead of sheaves (B-S-S analog of Valiant). This has been developed somewhat including a theory of reduction and complete problems (B. (2014).
- Study complexity of the singular support of a constructible sheaf.

- Study more precisely the complexity of sheaf operations.
- Get rid of the compactness/properness restrictions or understand better their significance.
- Role of adjointness? For example, other pairs of adjoint functors such as the pair $(F \overset{L}{\otimes} \cdot \dashv R\mathcal{H}om(\cdot,F))$? More input from abstract category theory?
- Applications of algorithmic/quantitative sheaf theory in other areas such as D-modules, algebraic theory of PDE's, computational geometry/topology.
- Study the (simpler) complexity theory of constructible functions instead of sheaves (B-S-S analog of Valiant). This has been developed somewhat including a theory of reduction and complete problems (B. (2014).
- Study complexity of the singular support of a constructible sheaf.

- Study more precisely the complexity of sheaf operations.
- Get rid of the compactness/properness restrictions or understand better their significance.
- Role of adjointness ? For example, other pairs of adjoint functors such as the pair $(F \overset{L}{\otimes} \cdot \dashv R\mathcal{H}om(\cdot, F))$? More input from abstract category theory ?
- Applications of algorithmic/quantitative sheaf theory in other areas such as *D*-modules, algebraic theory of PDE's, computational geometry/topology.
- Study the (simpler) complexity theory of constructible functions instead of sheaves (B-S-S analog of Valiant). This has been developed somewhat including a theory of reduction and complete problems (B. (2014).
- Study complexity of the singular support of a constructible sheaf.

Reference

"A Complexity Theory of Constructible Functions and Sheaves" Saugata Basu, *Foundations of Computational Mathematics*, February 2015, Volume 15, Issue 1, pp 199-279.