Answers

1	0
2	2
3	-6
4	(3.5, 8)
5	x = 8
6	(2,5)

7	е
8	a
9	b
10	С
11	d
12	T
13	Т
14	Т
15	Т
16	F

Part I: Use the picture

The graph of a function f is sketched below. Define an "Area function" A by

$$A(x) = \int_{2}^{x} f(t)dt$$

Use the picture and the definition of A to answer these questions:

1. What is A(2)?

Answer. $A(2) = \int_2^2 f(t) dt = 0$

2. What is A(4)?

Answer. $A(4) = \int_2^4 f(t) dt = 2$

3. What is A(0)?

Answer. $A(0) = \int_{2}^{0} f(t) dt = -6$

4. Where is A decreasing?

Answer. A is decreasing where A'(x) = f(x) < 0 which is the interval (3.5, 8).

5. Where is the minimum of A?

Answer. A has one critical point at x = 8 which is a global minimum.

6. Where is A concave down?

Answer. A is concave down where A' = f is decreasing, that's on the interval (2, 5). The interval (0, 7) is also acceptable.

Part II: Matching

Match the expression on the left with the appropriate choice on the right. Put the letter of the choice on the answer sheet.

7.
$$\int_0^8 |2x-6| dx = 34$$

(a)
$$-\frac{2}{3}$$

8.
$$\int_0^2 2x^2 - 3 dx = -\frac{2}{3}$$

(b)
$$\frac{\pi + 2}{4}$$

$$9. \int_0^1 x + \sqrt{1 - x^2} \, dx = \frac{\pi + 2}{4}$$

(c)
$$1 - \frac{1}{\sqrt{2}}$$

10.
$$\int_0^{\frac{\sqrt{\pi}}{2}} 2x \sin(x^2) \, dx = 1 - \frac{1}{\sqrt{2}}$$

(d)
$$\frac{1}{3}$$

11.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^2 \left(\frac{1}{n}\right) = \frac{1}{3}$$

Hints:

- For 7, either sketch the graph and think in terms of area, or, use $|2x-6| = \begin{cases} 2x-6 & x>3\\ -2x+6 & x<3 \end{cases}$ and break the interval [0,8] into $[0,3] \cup [3,8]$ and
- For 8, find an antiderivative and use FTC.
- For 9, break into a sum and think of area since the curve $y = \sqrt{1-x^2}$ is part of a circle.
- For 10, use u-substitution.
- For 11, either recognize the sum as $\int_0^1 x^2$ or compute directly using $\sum_{i=1}^n i^2 = \frac{(n)(n-1)(2n+1)}{6}$.

Part III: True or False

12. The function g defined by $g(x) = \int_0^x \sin(t^2) dt$ has an absolute maximum at $x = \sqrt{\pi}$.

Answer. True. g has critical points where $g'(x) = \sin(x^2) = 0$, namely $x = 0, \pm \sqrt{\pi}, \pm \sqrt{2\pi}, \dots$

You can see $\sqrt{\pi}$ is a local max since g'(x) > 0 to the left of $\sqrt{\pi}$ and g'(x) < 0 to the right. To see that it's a global max, look at the graph of $\sin(t^2)$ and think in terms of area. This problem is closely related to example 4 on page 236 of the text.

$$\mathbf{13.} \ \frac{d}{dx} \left(\int_1^3 \sin(t^2) \, dt \right) = 0.$$

Answer. True. $\int_1^3 \sin(t^2) dt$ is a number, hence it's derivative with respect to x is zero.

14. If f' is continuous, then $\int_{1}^{3} f'(v) dv = f(3) - f(1)$.

Answer. True. This follows from the evaluation theorem part of the FTC.

15. If f and g are integrable on the interval [a,b] then

$$\int_{a}^{b} [5f(x) + g(x)] dx = 5 \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

Answer. True. This follows from the linearity of the integral.

16. If f and g are integrable on the interval [a, b] then

$$\int_{a}^{b} f(x)g(x) dx = \left(\int_{a}^{b} f(x) dx\right) \left(\int_{a}^{b} g(x) dx.\right).$$

 ${\bf Answer.}$ False. For example,

$$\int_0^1 (x)(x) \, dx = \frac{1}{3} \text{ and } \left(\int_0^1 x \, dx \right) \left(\int_0^1 x \, dx . \right) = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{4}.$$