1	0
2	2
3	-6
4	$(3.5,8)$
5	$x=8$
6	$(2,5)$

7	e
8	a
9	b
10	c
11	d
12	T
13	T
14	T
15	T
16	F

Part I: Use the picture

The graph of a function f is sketched below. Define an "Area function" A by

$$
A(x)=\int_{2}^{x} f(t) d t
$$

Use the picture and the definition of A to answer these questions:

1. What is $A(2)$?

Answer. $A(2)=\int_{2}^{2} f(t) d t=0$
2. What is $A(4)$?

Answer. $A(4)=\int_{2}^{4} f(t) d t=2$
3. What is $A(0)$?

Answer. $A(0)=\int_{2}^{0} f(t) d t=-6$
4. Where is A decreasing?

Answer. A is decreasing where $A^{\prime}(x)=f(x)<0$ which is the interval $(3.5,8)$.
5. Where is the minimum of A ?

Answer. A has one critical point at $x=8$ which is a global minimum.
6. Where is A concave down?

Answer. A is concave down where $A^{\prime}=f$ is decreasing, that's on the interval $(2,5)$. The interval $(0,7)$ is also acceptable.

Part II: Matching

Match the expression on the left with the appropriate choice on the right. Put the letter of the choice on the answer sheet.
7. $\int_{0}^{8}|2 x-6| d x=34$
(a) $-\frac{2}{3}$
8. $\int_{0}^{2} 2 x^{2}-3 d x=-\frac{2}{3}$
(b) $\frac{\pi+2}{4}$
9. $\int_{0}^{1} x+\sqrt{1-x^{2}} d x=\frac{\pi+2}{4}$
(c) $1-\frac{1}{\sqrt{2}}$
10. $\int_{0}^{\frac{\sqrt{\pi}}{2}} 2 x \sin \left(x^{2}\right) d x=1-\frac{1}{\sqrt{2}}$
(d) $\frac{1}{3}$
11. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2}\left(\frac{1}{n}\right)=\frac{1}{3}$
(e) 34

Hints:

- For 7, either sketch the graph and think in terms of area, or, use $|2 x-6|= \begin{cases}2 x-6 & x>3 \\ -2 x+6 & x<3\end{cases}$ and break the interval $[0,8]$ into $[0,3] \cup[3,8]$ and
- For 8 , find an antiderivative and use FTC.
- For 9 , break into a sum and think of area since the curve $y=\sqrt{1-x^{2}}$ is part of a circle.
- For 10 , use u-substitution.
- For 11 , either recognize the sum as $\int_{0}^{1} x^{2}$ or compute directly using $\sum_{i=1}^{n} i^{2}=\frac{(n)(n-1)(2 n+1)}{6}$.

Part III: True or False

12. The function g defined by $g(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$ has an absolute maximum at $x=\sqrt{\pi}$.

Answer. True. g has critical points where $g^{\prime}(x)=\sin \left(x^{2}\right)=0$, namely $x=0, \pm \sqrt{\pi}, \pm \sqrt{2 \pi}, \ldots$

You can see $\sqrt{\pi}$ is a local max since $g^{\prime}(x)>0$ to the left of $\sqrt{\pi}$ and $g^{\prime}(x)<0$ to the right. To see that it's a global max, look at the graph of $\sin \left(t^{2}\right)$ and think in terms of area. This problem is closely related to example 4 on page 236 of the text.
13. $\frac{d}{d x}\left(\int_{1}^{3} \sin \left(t^{2}\right) d t\right)=0$.

Answer. True. $\int_{1}^{3} \sin \left(t^{2}\right) d t$ is a number, hence it's derivative with respect to x is zero.
14. If f^{\prime} is continuous, then $\int_{1}^{3} f^{\prime}(v) d v=f(3)-f(1)$.

Answer. True. This follows from the evaluation theorem part of the FTC.
15. If f and g are integrable on the interval $[a, b]$ then

$$
\int_{a}^{b}[5 f(x)+g(x)] d x=5 \int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Answer. True. This follows from the linearity of the integral.
16. If f and g are integrable on the interval $[a, b]$ then

$$
\int_{a}^{b} f(x) g(x) d x=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(x) d x .\right)
$$

Answer. False. For example,

$$
\int_{0}^{1}(x)(x) d x=\frac{1}{3} \text { and }\left(\int_{0}^{1} x d x\right)\left(\int_{0}^{1} x d x .\right)=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}
$$

