Name

1	
2	
3	
4	
5	
6	

7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

Part I: Use the picture

The graph of a function f is sketched below. Define an "Area function" A by

$$
A(x)=\int_{2}^{x} f(t) d t
$$

Use the picture and the definition of A to answer these questions:

1. What is $A(0)$?
2. What is $A(2)$?
3. What is $A(4)$?
4. Where is A increasing?
5. Where is the minimum of A ?
6. Where is A concave up?

Part II: Matching

Match the expression on the left with the appropriate choice on the right. Put the letter of the choice on the answer sheet.
7. $\int_{0}^{8}|2 x-6| d x$
(a) 34
8. $\int_{0}^{2} 2 x^{2}-3 d x$
(b) $-\frac{2}{3}$
9. $\int_{0}^{1} x+\sqrt{1-x^{2}} d x$
(c) $\frac{\pi+2}{4}$
10. $\int_{0}^{\frac{\sqrt{\pi}}{2}} 2 x \sin \left(x^{2}\right) d x$
(d) $1-\frac{1}{\sqrt{2}}$
11. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2}\left(\frac{1}{n}\right)$
(e) $\frac{1}{3}$

Part III: True or False

12. The function g defined by $g(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$ has an absolute maximum at $x=\sqrt{2 \pi}$.
13. $\frac{d}{d x}\left(\int_{1}^{3} \sin \left(t^{2}\right) d t\right)=0$.
14. If f^{\prime} is continuous, then $\int_{1}^{3} f^{\prime}(v) d v=f(3)-f(1)$.
15. If f and g are integrable on the interval $[a, b]$ then

$$
\int_{a}^{b} f(x) g(x) d x=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(x) d x .\right) .
$$

16. If f and g are integrable on the interval $[a, b]$ then

$$
\int_{a}^{b}[5 f(x)+g(x)] d x=5 \int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x .
$$

