Answers

1	-6
2	0
3	2
4	(0, 3.5) and $(8, 10)$
5	x = 8
6	(7, 10)

7	a
8	b
9	С
10	d
11	е
12	F
13	Т
14	Т
15	F
16	Т

Part I: Use the picture

The graph of a function f is sketched below. Define an "Area function" A by

Use the picture and the definition of A to answer these questions:

- 1. What is A(0)? Answer. $A(0) = \int_{2}^{0} f(t)dt = -6$
- **2.** What is A(2)? **Answer.** $A(2) = \int_{2}^{2} f(t) dt = 0$
- **3.** What is A(4)? **Answer.** $A(4) = \int_{2}^{4} f(t) dt = 2$
- **4.** Where is A increasing?

Answer. A is increasing where A'(x) = f(x) > 0 which is the interval (0, 3.5) and (8, 10).

5. Where is the minimum of *A*?

Answer. A has one critical point at x = 8 which is a global minimum.

6. Where is A concave up?

Answer. A is concave up where A'(x) = g(x) is increasing, which is on the interval (7, 10) (the interval (5, 10) is also acceptable.)

Part II: Matching

Match the expression on the left with the appropriate choice on the right. Put the letter of the choice on the answer sheet.

7.
$$\int_{0}^{8} |2x - 6| \, dx = 34$$
 (a) 34
8. $\int_{0}^{2} 2x^{2} - 3 \, dx = -\frac{2}{3}$ (b) $-\frac{2}{3}$

9.
$$\int_0^1 x + \sqrt{1 - x^2} \, dx = \frac{\pi + 2}{4}$$
 (c) $\frac{\pi + 2}{4}$

10.
$$\int_{0}^{\frac{\sqrt{\pi}}{2}} 2x \sin(x^2) \, dx = 1 - \frac{1}{\sqrt{2}}$$
 (d) $1 - \frac{1}{\sqrt{2}}$

11.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^2 \left(\frac{1}{n}\right) = \frac{1}{3}$$
 (e) $\frac{1}{3}$

Hints:

- For 7, either sketch the graph and think in terms of area, or, use $|2x-6| = \begin{cases} 2x-6 & x>3\\ -2x+6 & x<3 \end{cases}$ and break the interval [0,8] into $[0,3] \cup [3,8]$ and
- For 8, find an antiderivative and use FTC.
- For 9, break into a sum and think of area since the curve $y = \sqrt{1 x^2}$ is part of a circle.
- For 10, use *u*-substitution.
- For 11, either recognize the sum as $\int_0^1 x^2$ or compute directly using $\sum_{i=1}^n i^2 = \frac{(n)(n-1)(2n+1)}{6}$.

Part III: True or False

12. The function g defined by $g(x) = \int_0^x \sin(t^2) dt$ has an absolute maximum at $x = \sqrt{2\pi}$. Answer. False. g has critical points where $g'(x) = \sin(x^2) = 0$, namely $x = 0, \pm \sqrt{\pi}, \pm \sqrt{2\pi}, \dots$

You can see $\sqrt{2\pi}$ is a local min since g'(x) < 0 to the left of $\sqrt{\pi}$ and g'(x) > 0 to the right. This problem is closely related to example 4 on page 236 of the text.

13. $\frac{d}{dx}\left(\int_{1}^{3}\sin(t^{2})\,dt\right) = 0.$

Answer. True. $\int_{1}^{3} \sin(t^2) dt$ is a number, hence it's derivative with respect to x is zero.

14. If f' is continuous, then $\int_{1}^{3} f'(v) dv = f(3) - f(1)$.

Answer. True. This follows from the evaluation theorem part of the FTC. 15. If f and g are integrable on the interval [a, b] then

$$\int_{a}^{b} f(x)g(x) \, dx = \left(\int_{a}^{b} f(x) \, dx\right) \left(\int_{a}^{b} g(x) \, dx\right).$$

Answer. False. For example,

$$\int_0^1 (x)(x) \, dx = \frac{1}{3} \text{ and } \left(\int_0^1 x \, dx\right) \left(\int_0^1 x \, dx\right) = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{1}{4}$$

16. If f and g are integrable on the interval [a, b] then

$$\int_{a}^{b} [5f(x) + g(x)] \, dx = 5 \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

Answer. True. This follows from the linearity of the integral.