Name

1. Define $\ln(x)$.

Answer. For any
$$x > 0$$
, $\ln(x) := \int_1^x \frac{1}{t} dt$.

2. Define the number e.

Answer. *e* is the unique number satisfying $\ln(e) = 1$.

3	b
4	с
5	a
6	С
7	a
8	a
9	d
10	d

3. The curve $y = e^{-2x^2 + 10x}$ has two inflection points. One is at x = 3 and the other is at x =

(a) 0 (b) 2 (c) 2.5 (d) $\sqrt{5}$ (e) 5

Answer. (b). $y' = (-4x+10)e^{-2x^2+10x}$ and $y'' = (-4x)e^{-2x^2+10x} + (-4x+10)^2e^{-2x^2+10x}$ which simplifies to $y'' = 16(x-2)(x-3)e^{-2x^2+10x}$. The inflection points are x = 2 and x = 3.

4. The domain of
$$g(x) = \frac{e^x}{\ln(x+1) - 1}$$
 is

- (a) all real numbers x > 0
- (b) all real numbers x except e 1
- (c) all real numbers x > -1 except e 1
- (d) -1 < x < e 1
- (e) all real numbers x except x = -1

Answer. (c). The domain consists of all real numbers x except for those that would have you taking the log of a negative, or dividing by zero. So, $x + 1 > 0 \Leftrightarrow x > -1$ and $\ln(x+1) - 1 \neq 0 \Leftrightarrow x + 1 \neq e$.

5.
$$\int_{0}^{2} xe^{x^{2}} dx =$$

(a) $\frac{e^{4}-1}{2}$ (b) 2 (c) $e^{2}-1$ (d) $\frac{1}{2}e^{4}$

Answer. (a). A *u*-substitution of $u = x^2$ will give you $\int_0^2 x e^{x^2} dx = \frac{1}{2} e^{x^2} \Big|_0^2 = \frac{e^4 - 1}{2}$.

6. The function f defined by $f(x) = \int_{1}^{x} \sqrt{3+t^4} dt$ is invertible and $(f^{-1})'(0) =$

(a)
$$-\frac{1}{\sqrt{3}}$$
 (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{1}{2}$ (d) $\sqrt{3}$ (e) 2

Answer. (c). Note f(1) = 0, so $(f^{-1})'(0) = \frac{1}{f'(1)} = \frac{1}{\sqrt{1+1^4}} = \frac{1}{2}$.

7. $\lim_{x \to 0^{-}} \exp\left(\frac{1}{x}\right) =$ (a) 0 (b) 1 (c) e (d) ∞ (e) $-\infty$

Answer. (a). As $x \to 0^-$, $\frac{1}{x} \to -\infty$ and $\exp(x) \to 0$ as $x \to -\infty$

8. $\int \ln(x) dx =$ (a) $x \ln(x) - x + C$ (b) $\frac{1}{x} + C$ (c) $\frac{(\ln(x))^2}{2} + C$ (d) $e^x + C$ (e) $x \ln(x) + C$

Answer. (a). Which can be checked by differentiating $x \ln(x) - x$:

$$(1)(\ln(x)) + (x)\left(\frac{1}{x}\right) - 1 = \ln(x)$$

9. The absolute minimum value of $h(x) = x^2 \ln(x)$ is

(a)
$$-\frac{1}{\sqrt{e}}$$
 (b) \sqrt{e} (c) $\frac{2}{e}$ (d) $-\frac{1}{2e}$ (e) $-2e$

Answer. (d). Differentiating $h'(x) = 2x \ln(x) + x^2 \frac{1}{x} = 2x \ln(x) + x = x(2 \ln(x) + 1)$ and we see h'(x) = 0 when $2 \ln(x) + 1 = 0 \Rightarrow \ln(x) = -\frac{1}{2} \Rightarrow x = e^{-1}2$. This critical point is a minimum since h'(x) is negative for smaller values of x and h'(x) is positive for greater values of x. Substituting the critical point into h(x) yields the minimum value of $-\frac{1}{2e}$

10.
$$\int \tan(x) \, dx =$$

- (a) $\cot(x) + C$
- (b) $\sec(x) + C$
- (c) $\sec^2(x) + C$
- (d) $-\ln(\cos(x)) + C$

Answer. (d). Write $\tan(x) = \frac{\cos(x)}{\sin(x)}$ and let $u = \sin(x)$...