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ABSTRACT
ROOT NUMBERS OF ABELIAN VARIETIES AND REPRESENTATIONS OF

THE WEIL-DELIGNE GROUP

Maria Sabitova

Ted Chinburg

We generalize a theorem of D. Rohrlich concerning root numbers of elliptic curves
over the field of rational numbers. Our result applies to abelian varieties over number
fields. Namely, under certain conditions which naturally extend the conditions used by
D. Rohrlich, we show that the root number W (A, 7) associated to an abelian variety A
over a number field F' and a complex finite-dimensional irreducible representation 7 of
Gal(F'/F) with real-valued character is equal to 1. In the case where the ground field
is Q, we show that our result is consistent with a refined version of the conjecture
of Birch and Swinnerton-Dyer. We also give a description of unitary, orthogonal,

and symplectic admissible representations of the Weil-Deligne group of a local non-

Archimedean field.
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Chapter 1

Introduction

One of the main objects of study in this thesis is the root number W (A, ) associ-
ated to an abelian variety A of dimension g over a number field F' and a continuous
irreducible complex finite-dimensional representation 7 of Gal(F/F) with real-valued
character. The root number W (A, 7) is a complex number of absolute value 1. As-
sume for simplicity that F' = Q. Then W (A, 1) appears in the following conjectural

functional equation:

AA, 7,8) =W(A,T) - A(A, 75,2 — 5), (1.0.1)
where s € C, 7* is the contragredient of 7, and

AA, 7,8) = C*-T(s)99m7 . (A 7, 5)

for some positive constant C' and the twisted L-function L(A, 7, s) which is a mero-
morphic function of s defined in a right half-plane. This function is conjectured to
have an analytic continuation to the entire complex plane. Since 7 has real-valued
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character, 7 = 7%, Assuming (1.0.1) and considering the power series expansion of

L(A,T,s) about s = 1, we get:
W (A, 1) = (—1) =t AT, (1.0.2)

In this thesis we generalize a result by D. Rohrlich for elliptic curves ([Ro2], p.

313, Prop. E) to abelian varieties. We prove the following theorem:

Theorem 1.0.1. Let F' be a number field, L a finite Galois extension of F, and
T an irreducible complex finite-dimensional representation of Gal(L/F) with real-
valued character. Let g be a fixed positive integer and assume that the decomposition
subgroups of Gal(L/F) at all the places of F' lying over all the primes less or equal to
29 + 1 are abelian. If the Schur index mq(T) is 2 then W(A, 1) =1 for every abelian

variety A of dimension g over F.

If F= Q then Theorem 1.0.1 is predicted by the conjectures of Birch-Swinnerton-
Dyer and Deligne-Gross. Namely, the conjectures of Birch-Swinnerton-Dyer and
Deligne-Gross imply

ordse1 L(A, 7,5) = (04, T), (1.0.3)
where o4 is the natural representation of Gal(Q/Q) on C ®z A(Q) and (o4, 7) is the
multiplicity of 7 in o4 ([Ro3], p. 127, Prop. 2). Thus, we get from (1.0.2) and (1.0.3):

W(A,7) = (—1)am),

Since o4 is realizable over Q and 7 is irreducible, mg(7) divides (o4, 7). Thus, if
mgo(T) = 2 then W (A, 1) = 1 for every abelian variety A over Q if (1.0.3) is true (cf.
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[Ro2], p. 313).

To prove Theorem 1.0.1 we use the following formula:

WA ) = [[W(4,m),

where v runs through all the places of F', A, = AxgF,, F, denotes the completion of F'
with respect to v, and 7, is the restriction of 7 to Gal(F,/F,) < Gal(F/F). To define
W (A,,1,) for every place v let o] denote the representation of the Weil-Deligne group
W'(F,/F,) associated to the first cohomology of A,. Then W (A,,7,) = W(o, ®7,),

where 7, is viewed as a representation of W/(F,/F,). We will in fact show the

following stronger result:

Theorem 1.0.2 (Theorem A). W(A,,7,) = 1 for all v under the hypotheses of

Theorem 1.0.1.

First, we describe W(A,,7,) when 7, is a complex finite-dimensional continuous
representation of Gal(F,/F,) with real-valued character. If v is an infinite place then
o’ is associated to the components of H'(A,(C),C) in the Hodge decomposition. We

show in Lemma 3.1.1 that
W(AvaTv) = (_1>gdim‘rv' (104)

If v is a finite place, then

e(oy, @ Ty, Yo, dzy)

/ —
W(JU®TU) - |€(0’;}®Tv7wv7dxv)|7

where 1), is a nontrivial additive character of F, and dz, is a Haar measure on F,.
Here o/, is isomorphic to the representation of W/(F,/F,) afforded by H}'(A,), where
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[ is a rational prime different from the residual characteristic of F;,. It is known that
H}A,) = Vi(A,)* as Gal(F,/F,)-modules over Q;, where Vi(A,) = T;(4,) ®z Q,
Ti(A,) is the l-adic Tate module of A,, and V;(A,)* denotes the contragredient of
Vi(A,). Thus, we can assume that ¢’, is the representation of W'(F,/F,) associated to
Vi(Ay)*. Clearly, W(o! ®T,) does not depend on the choice of dz,, and it turns out that
W (ol ® 7,) does not depend on the choice of 1, either. Moreover, W (o, ® 7,) = £1
(see Section 2.1).

We consider two cases: A, is an abelian variety with potential good reduction
and the general case. If A, has potential good reduction, it follows from Néron-Ogg-
Shafarevic criterion that o/ is actually a representation of the Weil group W(F,/F,).
If the characteristic of the residue class field k, of F, is greater than 2g+ 1, we use the
theory of Serre-Tate together with methods of the representation theory to describe

/2 gnl

the class of 0/, @wy’” in the Grothendieck group of virtual representations of W(F,/F,)

(Corollary 2.2.7, Formula (2.2.4)). Here w, is the one-dimensional representation of
W(F,/F,) given by

W’U|Iu = 1? wv(q)v> = q1717

where [, is the inertia subgroup of Gal(?v /F,), ®, is an inverse Frobenius element
of Gal(F,/F,), and ¢, = card(k,). Since the root number of representations of
W(F,/F,) is multiplicative in short exact sequences, this result enables us to prove

the following formula for W (o] ® 7,) when char(k,) > 2¢g + 1 (cf. Proposition 2.2.9):

W(o, @7,) =detr,(—1) . gimm . ylz . (_1)0wme) (1.0.5)



where [y € Z, 3 = +1, v = %1, Iy = (1,7,) + (N, Tw), My is the unramified quadratic
character of FX, and v, is a representation of Gal(F,/F,) realizable over Q (cf. [Ro2],
p. 318, Thm. 1).

In the general case we use the theory of uniformization of abelian varieties. Ac-
cording to this theory there exists a semi-abelian variety G, over F, and a discrete
subgroup Y, of G, such that, in terms of rigid geometry, A, is isomorphic to the

quotient G,/Y,. The semi-abelian variety G, fits into an exact sequence
0—1T,— G, LR B, — 0, (1.0.6)

where B, is an abelian variety over F), with potential good reduction, T, is a torus
over F, of dimension r; Y, is an étale sheaf of free abelian groups over Spec(F,) of
rank r. To describe o) in this case we use a formula of M. Raynaud ([Ra], p. 314)
which gives the action of the inertia group I, on the ["-torsion points of an abelian
variety over a non-Archimedean local field in the case when the uniformization data

splits. We need this formula to show that in this case
LRy ® (X @w, ! @5p(2)), (1.0.7)

where , is the representation of W'(F,/F,) associated to the natural l-adic repre-

sentation of Gal(F,/F,) on Vi(B,)*,
Xo : Gal(F,/F,) — GL,.(7Z)

is the representation of Gal(F,/F,) corresponding to the Galois module Y, (F,), and
sp(2) is given by (2.1.1) (see Proposition 2.3.1). Since the root number of a direct
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sum of representations of W/(F,/F,) equals the product of the root numbers of the

summands, we get from (1.0.7)
W(o,@7,) =Wk, ®7,)  W(xs ®w, ' @7, @sp(2)). (1.0.8)
If char(k,) > 2¢g + 1 then (1.0.5) can be applied to k,, i.e.,
W(ky ® 1) = det 7, (—1)1 - glimm . Ale (1) eme) (1.0.9)

where [y, 3, 7, l2, and v, are as in (1.0.5) when o/, is replaced by .

The rest of the proof of Theorem 1.0.2 is analogous to one of Proposition E ([Ro2],
p. 347). Namely, it follows from Lemma on p. 339 and Lemma on p. 347 in [Ro2] that
dim 7 is even. Hence we get from (1.0.4) that W (A,,7,) = 1 for infinite places. If v
is a finite place then the assumption mg(7) = 2 implies W(x, @w, ! @7, ®sp(2)) = 1

([Ro2], p. 327, Prop. 6), hence we have from (1.0.8)
W(ol, @7,) =W(k, ® Tp). (1.0.10)

If v is a finite place such that char(k,) > 2¢g+1 then (1.0.9) holds which, together
with the assumption mg(7) = 2, implies W(k, ® 7,) = 1, hence W (o, ® 7,) = 1.

If v is a finite place such that char(k,) < 2¢ + 1 then the conditions on bad
primes in Theorem 1.0.1 imply that 7, is symplectic ([Ro2], Lemma on p. 347). Also,

/2

Ko @ wy'” is symplectic, because k, comes from an abelian variety (see Section 2.1).

Since real powers of w, do not change the root number,

Wk ®7) =Wk, @w?@71,) =1 (1.0.11)



as the root number of the tensor product of two symplectic representations of W(F,/F,)
([Ro2], p. 319, Prop. 2 and the remark after it). Thus, in this case we also have
W(o! ®7,) =1 by (1.0.10) and (1.0.11).

If U is a complex finite-dimensional vector space and A : D — GL(U) is a
representation of a group D on U, then by A : D — GL(U ) we denote the represen-
tation of D on U, where U is a C[D]-module with the underlying D-module U* and

multiplication by constants defined as follows:
a-¢p=ap, acC,peU"

We say that U is unitary if U admits a nondegenerate invariant hermitian form
(not necessarily positive definite). In this thesis we also study unitary, orthogonal,
and symplectic representations of the Weil-Deligne group W'(K /K) of a local non-

Archimedean field K. Namely, we prove the following theorem:

Theorem 1.0.3 (Theorem B). Let o’ be a minimal unitary, orthogonal, or symplec-
tic admissible representation of W' (K /K) (i.e., a unitary, orthogonal, or symplectic
representation respectively that cannot be written as an orthogonal sum of nonzero
invariant subrepresentations). Let U be a representation space of o' and (-,-) a non-
degenerate invariant form on U. Then either o' is indecomposable or U =V &V,
where V' is an indecomposable submodule of U, V=V if (+,) is bilinear, and V=V
if (-,-) is sesquilinear. Moreover, if \ is the isomorphism of V &V onto U and (- -’

is the form on V &V given by

(@,y)' = M2),\w), zyeVaV,
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then (-,-)|v and (-,-Y'|¢ are degenerate, (-, : V x V. — C is the standard form
given by

(u, f' = f(u), weV,feV.

This thesis is organized in the following way. In Chapter 2 we study the root num-
ber W (o' ® 7), where T is a complex finite-dimensional representation of Gal(K /K)
with real-valued character, K is a local non-Archimedean field of characteristic zero,
and o’ is the representation of W (K /K) associated to the natural [-adic represen-
tation of Gal(K/K) on V;(A)*, where A is an abelian variety over K. Section 2.1
contains general facts and notation. In Section 2.2 we study the case of an abelian
variety with potential good reduction. Section 2.3 deals with the general case. In
Chapter 3 we give the proof of Theorem 1.0.2 (Theorem A) and discuss two special
cases of the theorem when local calculations are especially easy. Chapter 4 is devoted
to Theorem 1.0.3 (Theorem B). In Section 4.1 we give a proof of the theorem and
in Section 4.2 we use it instead of Raynaud’s result mentioned above to give an ele-
mentary proof of (1.0.7) in a special case when in (1.0.6) the image of Y, under f, is
finite.

We put proofs of the results of Section 2.2 in Appendix A. Appendix B contains
a lemma needed for the proof of the main result of Section 2.3 (Proposition 2.3.1).
Appendix C contains an example of an orthogonal complex finite-dimensional irre-
ducible representation of a finite group with Schur index 2 over the rationals. In

Appendix D we give a description of the representation of W (K /K) associated to



the natural l-adic representation of Gal(K/K) on V;(A)* in the case when A is the
quotient of a torus by a discrete subgroup. This result will be used in Section 4.2.
Unless stated otherwise, we assume that all the representations under considera-

tion are complex and finite-dimensional.



Chapter 2

Root numbers of abelian varieties
over local non-Archimedean fields

of characteristic zero

2.1 General facts and notation

Let K be a non-Archimedean local field of characteristic zero with residue class field
k and a uniformizer w. Let K be a fixed algebraic closure of K and let K" be
the maximal unramified extension of K contained in K. Let I = Gal(K/K"") be
the inertia subgroup of Gal(K/K) and let ® be an inverse Frobenius element of
Gal(K/K), i.e., ® is a preimage of the inverse of the Frobenius automorphism under

the decomposition map
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7 Gal(K/K) — Gal(k/k).

By a representation o of the Weil group W(K /K) we mean a continuous homo-
morphism

o :W(K/K) — GL(U),

where U is a finite-dimensional complex vector space (for the definition of W(K /K)
see [Rol], §1). Let w : W(K/K) — C* be the one-dimensional representation of
W(K/K) given by

w|f =1, W(CD) = q—I,

where ¢ = card(k). For a finite extension F' of K contained in K, we identify by local
class field theory the one-dimensional representations of W(K /F) with characters of
F* (i.e., continuous homomorphisms from F* into C*). Also, if ¢ is a representation
of W(K /F), the representation of W(K /K) induced by ¢ will be denoted by Ind%-¢.
Analogously, if 1 is a representation of W(K /K), then the restriction of 1) to W(K /F)
will be denoted by Reskap.

By a representation o’ of the Weil-Deligne group W (K /K) we mean a continuous

homomorphism

o W(K/K) — GL(U),

where U is a finite-dimensional complex vector space and the restriction of ¢’ to the
subgroup C of W/(K/K) is complex analytic (for the definition of W'(K/K) see

[Ro1], §3). It is known that there is a bijection between representations of W' (K /K)

11



and pairs (o, N), where o : W(K /K) — GL(U) is a representation of W(K/K) and

N is a nilpotent endomorphism on U such that
o(g)No(g) ™' =w(g)N, ge W(K/K).

In what follows we identify ¢’ with the corresponding pair (o, N) and write ¢’ =
(o, N). Also, a representation o of W(K/K) is identified with the representation
(0,0) of W/(K/K) ([Rol], §§1-3).

For a positive integer n let sp(n) = (o, N) denote the special representation of

dimension n, i.e., the representation of W/(K/K) on C" (with the standard basis

€0, -+, €n_1) given by the following formulas:
olgles = w(g)e,, 0<i<n-—1,g9geWK/K), (2.1.1)
Nej = eji, 0<j<n-—2
Ne,_1 = 0.

We say that a representation o’ = (o, N) of W/(K/K) is admissible if o is semisimple
([Rol], p. 132, §5).

Let A be an abelian variety over K. For a rational prime [ different from p =
char(k) let T;(A) be the l-adic Tate module of A. Tt is a free Z;-module of rank 2g,

where g = dim A. Put Vj(A) = T)(A) ®z Q; and let
01 : Gal(K/K) — GL(V;(A)*)

denote the contragredient of the natural l-adic representation of Gal(K /K) on Vi(A).
We are interested in the representation o’ = (o, N) of W/(K/K) associated to o; by
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the standard procedure ( see e.g., [Rol], §4). Let 2 : @Q; — C be a field embedding.
Then o : W(K/K) — GL(Vj(A)* ®, C) is a representation of W(K/K) (which is
not necessarily obtained from the restriction of o; to W(K /K) by extending scalars
via1:@Q; — C) and N € End(V;(A)* ®, C) is a nilpotent endomorphism (see [Rol],
p. 130, §4 for more detail). A priori, ¢’ depends on the choice of [ and ¢, but by
abuse of notation we write ¢’ instead of o7,. We will prove later that in our context
o’ does not depend on the choice of [ and 1. Let 7 be a representation of Gal(K /K)
with real-valued character. Our goal in this chapter is to compute the root number
Wi(o' @ ).

Note that there is a nondegenerate, skew-symmetric, Gal(K /K )-equivariant pair-
ing

(= =) Vi(A) x Vi(4) — Q@ w,

where w; is the [-adic cyclotomic character of Gal(K/K). Indeed, let A be the dual

abelian variety to A and let
e E(A) X E(AV) — Zl X wy

be the Weil pairing, which is nondegenerate and Gal(K /K )-equivariant ([M], p. 131,
§16). Let .Z be an ample invertible sheaf on A ([M], p. 114, Cor. 7.2). Then

vy A— AV is an isogeny ([M], p. 119, §10) and the pairing
e;(/ :TI(A) X TI(A) — Z; @ wy

defined for a,a’ € Ty(A) by ef (a,a') = e;(a, p.z(a’)) is skew-symmetric ([M], p. 134,

13



Prop. 16.6). Clearly, the pairing on V;(A) obtained from e by extending scalars to
Q is nondegenerate and Gal(K /K )-equivariant.

Having (—, —), it is easy to show that o’ ® w'/? is symplectic (cf. [Rol], p. 150,
§16). Then ¢’ ® w'/? ® 7 is self-contragredient and of trivial determinant, hence
W (o' @ w'? ® 1) does not depend on the choice of a nontrivial additive character of
K and W(o' @ w'/?® 1) = £1 ([Ro2], p. 315). Since W (o' @ 7) = W(o' @ w'/? @ 1),
the same conclusion holds for W (o' ® 7).

One of the main theories we are using to find a formula for W(o’ ® 1) is the
theory of uniformization of abelian varieties. According to this theory there exists a
semi-abelian variety G over K and a discrete subgroup Y of G such that, in terms
of rigid geometry, A is isomorphic to the quotient G/Y. The semi-abelian variety G

fits into an exact sequence

0—T—G-LB—0, (2.1.2)

where B is an abelian variety over K with potential good reduction, 7" is a torus over

K of dimension r; Y is an étale sheaf of free abelian groups over Spec(K) of rank r.
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2.2 Case of an abelian variety with potential good

reduction.

We keep the notation of Section 2.1. Let B be an abelian variety over K with potential

good reduction and let
ki : Gal(K/K) — GL(Vi(B)*)

denote the natural l-adic representation of Gal(K/K) on Vi(B)*. First, note that the
representation ' = (k,S) of W/(K/K) associated to k; is actually a representation
of W(K/K), ie., S =0. Indeed, ' is a representation of W(K /K) if and only if &,

is trivial on an open subgroup of I ([Rol], p. 131, Prop.(i)). Let
Yy : Gal(K /K) — Aut(Ty(B))

denote the representation corresponding to the Gal(K/K)-module T;(B). Since B
has potential good reduction, the image by ¢, of I is finite ([S-T], p. 496, Thm.

2(i)), which implies that the image by x; of I is finite, hence &; is trivial on an open

subgroup of I (cf. [Rol], p. 148).

Lemma 2.2.1. A complez finite-dimensional representation of a group is semisimple

if and only if its restriction to a subgroup of finite index is semisimple.

Proof. 1t is known that a complex finite-dimensional representation A of a group
is semisimple if and only if its restriction to a normal subgroup of finite index is
semisimple ([Che], p. 82, Prop. 1 and [Rol], p. 148). Moreover, since every subgroup

15



of finite index contains a normal subgroup of finite index, this implies that A is

semisimple if and only if its restriction to a subgroup of finite index is semisimple. [
Lemma 2.2.2. k is semuisimple.

Proof. Since the image by x of [ is finite, by Lemma 2.2.1 it is enough to show
that x(®) is diagonalizable. Also, if L C K is a finite extension of K over which B
acquires good reduction then again by Lemma 2.2.1, k is semisimple if and only if its
restriction to W(K /L) is semisimple. Thus, we can assume that B has good reduction
(cf. [Rol], p. 148). Let By be the Néron minimal model of B and B = By X k
the special fiber of By. Since B has good reduction, the reduction map defines a
Gal(K / K)-equivariant isomorphism of Tj(B) onto Tj(B), where Gal(K/K) acts on

T,(B) via the decomposition map 7 ([S-T], p. 495, Lem. 2). Thus,
Vi(B) = Vi(B) 2.2.1)

as Gal(K/K)-modules.

Lemma 2.2.3. Let D be a group and let U be a finite-dimensional representation of
D over a field ¢. Then U is semisimple if the subalgebra of End,(U) generated by the

immage of D is semisimple.

Proof. Obvious. O

Since the subalgebra of Endg,(V;(B)) generated by the automorphisms of V;(B)
defined by elements of Gal(k/k) is semisimple ([T1], p. 138), the natural l-adic
representation (; of Gal(k/k) on V;(B) is semisimple by Lemma 2.2.3. Since Gal(k/k)

16



is abelian, [3; is a direct sum of one-dimensional representations, hence §;(7w(®)) is
diagonalizable, consequently, x;(®) is diagonalizable, because «;(®) is equivalent to
BGi(m(P)) via (2.2.1). This proves that x(®P) is diagonalizable, because k(®) is just

k1 (P) considered as an element of GL(V;(B)* ®, C). O
Corollary 2.2.4. The representation k does not depend on the choice of | and 1.
Proof. [Rol], p. 148 and Lemma 2.2.2. O

Since B has potential good reduction, by the theory of Serre-Tate there exists a
minimal finite subextension L/ K" of K /K""" over which B acquires good reduction.
It is a Galois extension and it is tamely ramified if p > 2m + 1, where m = dim B.
Moreover, Gal(K /L) is contained in the kernel of the representation v ([S-T], p. 497,
Cor. 2 and p. 498, Cor. 3). Thus, x and, consequently x ® w'/?, can be considered

as representations of the group

W(L/K) =W(K/K)/Gal(K/L) = Gal(L/K""") x (®),

where (®) is the infinite cyclic group generated by ® (cf. [Ro2], p. 331). Through-
out this section we assume that p > 2m + 1. Then, under this assumption £ =
Gal(L/K""") is a finite cyclic group of order not divisible by p and x ® w'/? is a
semisimple (by Lemma 2.2.2), symplectic (see Section 2.1) representation of the semi-
direct product G = E x (®) of finite and infinite cyclic groups. Using Corollary on
p. 499 in [S-TY, it is immediate that x has Q-valued character. Since w is trivial on

I, it follows that Res%(x ® w'/?) has Q-valued character. The following results give a

17



description of such a representation, i.e., a semisimple symplectic representation A of
a semi-direct product of a finite cyclic group E and an infinite cyclic group such that
the restriction of A to E has Q-valued character. They will be used later to generalize

a formula for the root number obtained by D. Rohrlich.

Proposition 2.2.5. Let C = (¢) be an infinite cyclic group generated by an element
c and let E = {(e) be a finite cyclic group of order n generated by an element e.
Let G = E x C be a semi-direct product, where C' acts on E via ¢ 'ec = €* for
some k € (Z/nZ)*. Denote by s the order of k in (Z/nZ)*. Then every irreducible
symplectic representation \ of G factors through the group H = G/{c**) and as a

representation of H it has the following form
A = Indj 19,

where T is a subgroup of C'/{c**) generated by an element c® and ¢ is a one-dimensional

representation of E x ' satisfying the following conditions:

e o(e) =& for an n-th root of unity & of order d (d # 1,2)

x is the order of k in (Z/dZ)*
® I is even

o P(c")=—-1

e 1+k2=0(modd).

Conversely, every representation of this form is symplectic and irreducible.

18



Proof. See Appendix A. m

In the notation of Proposition 2.2.5 let A = Infl§Ind%, ¢ be a symplectic irre-

ducible representation of G and € the one-dimensional representation of £ x I' such

that 6(c”) = —1, 0(e) = 1. Let
A =InfASInd? (¢ ©6). (2.2.2)

Whereas A is symplectic, ) is realizable over R, as can be checked using Proposition
39 ([S], p- 109).

For a group D let R(D) denote the Grothendieck group of the abelian category
of finite-dimensional representations of D over C. If p is such a representation we

denote by [p] the corresponding element of R(D).

Proposition 2.2.6. Let G = E x C be a semi-direct product as in Proposition 2.2.5
and A a semisimple symplectic representation of G. If Resgx\ has Q-valued character,

then in R(G) we have

(Al =[] + [T+ 2 ([10] = [mo]) + Tpa] + -+ + [pal, (2.2.3)

where p is a representation of G, p* is the contragredient of u, po and ug, are sym-
plectic representations of G' with finite images, i1, ..., e are trreducible symplectic
subrepresentations of A with finite images, [i1,. .., fio are representations with finite

images given by (2.2.2) such that fiy & -+ - @ [i, is realizable over Q.
Proof. See Appendix A. m
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Corollary 2.2.7. Let k be the representation of W(K/K) corresponding to Vi(B)*,

m = dim B, and p > 2m + 1. Then in ROW(K/K)) we have

[k @ w2 =[] + (1] + 2 (o] — [6]) + li] + -+ + [1al, (2.2.4)

where p is a representation of W(K /K), u* is the contragredient of u, pio and jify are
symplectic representations of W(K /K) with finite images, ju1, . .., jta are irreducible

2

symplectic subrepresentations of k ® w'/? with finite images, fir, ..., [la are TEprEsen-

tations with finite images given by (2.2.2) such that fi; & --- @ i, 1s realizable over

Q.

Let 7 be a representation of Gal(K/K) with real-valued character. To compute
the root number W (x ® 7) we generalize the following result by D. Rohrlich ([Ro2],

p. 318, Thm. 1) :

Theorem 2.2.8. Let K be a local non-Archimedean field of characteristic zero. Let

T be a representation of Gal(K /K) with real-valued character. Then
WA®T)=detr(-1)- gp(uH2/K)dimT . (_1)<177>+<7777>+<5\,T>7

were \ is a two-dimensional irreducible, symplectic representation of Gal(K/K) of
the form A\ = [nd%gb, Hy is the unramified quadratic extension of K, ¢ is a tame
character of Hy' ; n is the unramified quadratic character of K*; A= [nd%@ ®0),

where 0 is the unramified quadratic character of Hy' , and p(up, k) = £1.

We prove the following generalization of Theorem 2.2.8:

20



Proposition 2.2.9. Let r be the representation of W(K /K) corresponding to Vi(B)*,
m =dim B, and p > 2m+1. Let T be a representation of Gal(K /K) with real-valued

character. In the notation of Corollary 2.2.7 we have
W(k®7)=det u(—1)4™7 . det 7(—1)1 - @37 . (—1)2,

where Iy = dim o+ 3 (dim gy + -+ +dimp,), a=+1, b =a- (1, 7) +a- (n,7) + (i &

< @ fla, T), and n is the unramified quadratic character of K*.

Proof. See Appendix A. O

2.3 General case

We keep the notation of Section 2.1. Let o/ = (o, N) be the representation of
W/(K/K) associated to the natural l-adic representation of Gal(K/K) on V;(A)*,
# the representation of W/(K /K) associated to the natural l-adic representation of

Gal(K/K) on Vi(B)*, and
x : Gal(K/K) — GL,(Z)

the representation corresponding to the Gal(K /K )-module Y (K). It is known that
there is a finite Galois extension . C K of K such that Gal(K /L) acts trivially on
Y (K), hence x has finite image. Here & is actually a representation of W(K/K) (see
Section 2.2) and we identify s with the representation (x,0) of W/ (K /K). Also, we
identify y with the representation (Ressv?gg) x,0) of W(K/K).

The main result of this section is the following proposition:
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Proposition 2.3.1.
o' = RO (X ®w @sp(2)).
To prove Proposition 2.3.1 we will need the following lemmas.
Lemma 2.3.2. Let N = (\, R) be the representation of W' (K /K) associated to the
natural I-adic representation of Gal(K/K) on Vi(T)*. Then R =0 and
A2y @w b
Proof. ;From the exact Gal(K /K )-equivariant sequence (2.1.2) we get the following
exact sequence of Gal(K /K )-modules:
0 — T(K) — G(K) — B(K) — 0.
Since T(K) is a divisible group, the last sequence induces an exact Gal(K/K)-
equivariant sequence of [-adic Tate modules:
0 — T)(T) — T(G) — Ty(B) — 0.
By tensoring the above sequence with Q; over Z; and taking duals over Q; afterwards,
we get the exact sequence of Gal(K /K )-modules:
0— Vi(B)" — VI(G)" — V(T)" — 0. (2.3.1)
Let X be the character group of . Then T(K) = Homgz (X (K), K ) as Gal(K / K)-
modules over Z, hence we have the following sequence of isomorphisms of Gal(K /K )-
modules:
Vi(T) = Ti(T) ®z Q = Homyz(X(K), T,(K ")) ®z, Q (2.3.2)
> (X(K) 92 Q)" @g Vi(K").
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It is known that there is an injective homomorphism ¢ : Y — X with finite cokernel

([F-C], p. 58), consequently
YV(K)©zQ = X(K) @z Q
as Gal(K/K)-modules over Q;. Thus, we get from (2.3.2)
Vi(T)" = (Y(K) @2 Qi) @g, Vi(K )" (2.3.3)

Let 2 : Q; — C be a field embedding and let F;, be the functor which associates to an
l-adic representation of Gal(K /K) a representation of W/(K/K). Clearly, the image
of the representation of Gal(K/K) on Y (K) ®z Q, under Fj, is x and the image of
the representation of Gal(K/K) on V}(FX)* under Fj, is w™!. Since Fj, respects
tensor products, by (2.3.3) the image X of the representation of Gal(K /K) on Vi(T)*
under Fj, is isomorphic to y ® w™'. Thus, X is a representation of W(K/K), i.e.,

R=0. [l

Lemma 2.3.3. Let o' = (p, P) be the representation of W'(K /K) associated to the

natural [-adic representation of Gal(K /K) on Vi(G)*. Then P =0 and
PERB(xOWw).
Proof. Sequence (2.3.1) induces an exact sequence of corresponding representations
of W(K/K), i.e.,
0 — Vi(B)*®, C -5 Vi(G)* ®, C % Vi(T)* ®, C — 0 (2.3.4)
is an exact sequence of W'(K /K)-modules, where ¢ : Q; — C is a field embed-
ding, (x,0) is the representation of W/(K/K) on Vi(B)* ®, C, p' = (p, P) is the

23



representation of W/(K/K) on Vi(G)* ®, C, and by Lemma 2.3.2, (x ® w™',0) is
the representation of W/(K/K) on Vi(T)* ®, C. In particular, (2.3.4) is an exact
sequence of W(K /K)-modules and it splits if p is semisimple, which implies that
P K@ (x®w ). Thus, it is enough to show that P = 0 and p is semisimple.

Let L C K be a finite Galois extension of K such that T x x L splits and B x g L
has good reduction. Since p is semisimple if and only if its restriction to a subgroup
of finite index is semisimple (Lemma 2.2.1) and Resy )0 = (Reskp, P) ([Rol],
p. 130), to prove that P = 0 and p is semisimple we can assume that 7" splits over
K and B has good reduction over K. Then it follows from Lemma 2.3.2 that yx is
trivial. Also, since the image of I under p is finite, by Lemma 2.2.1 to prove that p
is semisimple it is enough to prove that p(®) is diagonalizable.

Taking into account that x is trivial, from (2.3.4) we obtain that in a suitable

basis p(®) has the following form:

(D) = , (2.3.5)

where F,. is the r x r-identity matrix. Let
Ky Gal(K/K) — Aut(Ty(B))

be the [-adic representation corresponding to the Galois module T;(B). It is known
that the absolute values of the eigenvalues of ;(®) are equal to ¢'/2 ([S-T], Corollary
on p. 499). Then the absolute values of the eigenvalues of x(®) are equal to ¢~'/2,

since the eigenvalues of x(®) are the inverses of the eigenvalues of ;(®). It follows
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that none of the eigenvalues of k(®) is equal to ¢. Since x(®P) is diagonalizable by
Lemma 2.2.2, formula (2.3.5) shows that p(®) is diagonalizable, hence p is semisimple
and p’ is admissible.

Let us show now that P = 0. Since (2.3.4) is an exact sequence of W' (K /K)-

modules, we have

Ph(z) = 0, VxeV(B) ®,C,

g(Py) = 0, VyeVi(G)®,C,

which implies that P? = 0. On the other hand, since p’ is admissible, it has the

following form:
S
P =P ai @sp(ny),
i=1
where each q; is a representation of W(K/K), each n; is a positive integer, and we

can assume that n; # n; if i # j ([Rol], p. 133, Cor. 2). Since P? = 0, it follows

that each n; is 1 or 2, i.e., without loss of generality we can assume that
P a; & (e ®@sp(2)). (2.3.6)
We will show that ap = 0. Assume that ay # 0. jFrom (2.3.6) we have
X Do ® (ar Q@w).

On the other hand, since p is semisimple, the exact sequence (2.3.4) of W(K/K)-

modules splits, i.e.,



Thus, combining the last two isomorphisms, we get

P ay® (W) 2 r® (W), (2.3.7)

By assumption, B has good reduction, hence by Néron-Ogg-Shafarevi¢ criterion

([S-T], p. 493, Thm. 1) the inertia group I acts trivially on V;(B)*. Since by

2m
i=1

[

Lemma 2.2.2, k is semisimple it implies that k = @;", k;, where m = dim B and
K1,...,Kam are one-dimensional representations of W(K/K). Thus, it follows from
(2.3.7) that as is a sum of one-dimensional representations. Let ag be one of them.

Using the uniqueness of decomposition of a semisimple module into simple modules

we have from (2.3.7):

I

ap 2w or ag =K

for some k;, hence

RW=1 or qRuw =k, Quw.

In particular, the absolute value of a ®w(®) is 1 or ¢~3/2, because the absolute value

of #;(®) is ¢~1/? for each i (see above). This implies that oy ® w is neither w™! nor

r; for any j which contradicts (2.3.7). Thus, as = 0 and p’ is a representation of

W(K/K). O
Lemma 2.3.4. o' is admissible.

Proof. One has the following exact Gal(K /K )-equivariant sequence ([Ra], p. 312):

0 — G(K)m — AR)w — Y (R)/I"Y (K) — 0,
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where G(K);» denotes Hom(Z/I"Z,G(K)) and A(K )y denotes Hom(Z/I"Z, A(K)).
Clearly, G(K) is divisible. (It follows from the definition of a semi-abelian scheme
together with the fact that the groups of points over K of a torus or of an abelian
variety are divisible.) Since Y (K) is a free group of rank  and G(K) is divisible, we

have the following exact sequence of Gal(K /K )-modules:
0 —T)(G) —T)(A) — x®Z] — 0.

By tensoring the above sequence with Q; over Z; and taking duals over QQ; afterwards,
we get:

0— x®Q — Vi(A) — Vi(G)* — 0, (2.3.8)

because y = x* as a representation with finite image, realizable over Z.

As in the proof of Lemma 2.3.3, by Lemma 2.2.1 we can assume that B has good
reduction over K, T splits over K, and hence y is trivial. Also, by Lemma 2.2.1 to
prove that ¢’ is admissible it is enough to prove that o(®) is diagonalizable.

Sequence (2.3.8) induces an exact sequence of corresponding representations of

W(K/K),ie.,
0— (x®Q)®,C—VA4)®C—VGEG)®,C—20 (2.3.9)

is an exact sequence of W'(K/K)-modules. Moreover, x is the representation of
W/(K/K) on (x ® Q) ®, C, o/ = (0,N) is the representation of W'(K/K) on
Vi(A)* ®, C, and by Lemma 2.3.3, K @ (x ® w™!) is the representation of W(K /K)

on Vi(G)* ®, C. Taking into account that y is trivial and (2.3.9) is an exact sequence
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of W(K /K)-modules, we obtain that in a suitable basis ¢(®) has the following form:

E,. *
o(P) = 0 qE, = . (2.3.10)
0 0 w(®)

Here () is diagonalizable by Lemma 2.2.2. Since the absolute values of the eigen-
values of k(®) are equal to ¢~/ (see above), none of the eigenvalues of x(®) is equal
to 1 or q. Thus, (2.3.10) shows that o(®) is diagonalizable, hence o is semisimple,

and ¢’ is admissible. O

Proof of Proposition 2.3.1. Since ¢’ is admissible by Lemma 2.3.4 and the represen-
tations of the Weil-Deligne group W/ (K/K) on (x ® Q}) ®, C and V;(G)* ®, C are
actually representations of the Weil group W(K /K), the same argument as in the

proof of (2.3.6) in Lemma 2.3.3 applied to (2.3.9) gives that ¢’ has the following form:
o =2 y® (0 ®sp(2)), (2.3.11)
where v and 4 are representations of W(K /K). Hence
CEYBID (Qw).

On the other hand, since o is semisimple by Lemma 2.3.4, the exact sequence (2.3.9)

of W(K /K)-modules splits, i.e.,
CEXDRO (xQw).
Thus, combining the last two isomorphisms, we get

TEID(RW) EXXBRD (x®w ). (2.3.12)
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Note that x is isomorphic to a subrepresentation of v @ (6 ® w), because by (2.3.9)

X —kerN=Z~vd (@w).

Thus, ¢ is isomorphic to a subrepresentation of x @ (x ® w™!') by the uniqueness
of decomposition of a semisimple module into simple modules. We claim that ¢ is
isomorphic to a subrepresentation of y ® w™!. Indeed, suppose there is an irreducible
subrepresentation dg of & which is isomorphic to a subrepresentation of x. Since
the absolute values of the eigenvalues of x(®) are equal to ¢~'/? (see above), the
eigenvalues of d(®) are of absolute value ¢~'/2. Hence the eigenvalues of dy ® w(®)
are of absolute value ¢=*2. On the other hand, it follows from (2.3.12) that Jy ® w
is isomorphic to a subrepresentation of x, k, or Y ® w™!, which is a contradiction

because the eigenvalues of x(®), x(®), and x @ w™(®) are of absolute values 1, ¢~1/2,

1

and ¢ respectively. Thus, ¢ is isomorphic to a subrepresentation of Y ® w™". Since

dim § = 7 by Lemma B.0.8 (see Appendix B), we have § = y ® w™!, hence v & x by

(2.3.12) and 0’ ¥ k ® (xy @ w™ ! ®sp(2)) by (2.3.11). O
Corollary 2.3.5. The representation o' does not depend on the choice of | and 1.
Proof. The statement is a consequence of Corollary 2.2.4 and Proposition 2.3.1. [

Corollary 2.3.6. Let 7 be a representation of Gal(K /K) with real-valued character.

Then
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Moreover, when p > 2g + 1 we have
W(o'®7) = det u(—1)1™7 . det x(—1)3 7. det 7(—=1)" 1. qdm7. (—1)0emH2 (93 14)
where , 1y, a, and ls are as in Proposition 2.2.9.

Proof. Since the root number of a direct sum of representations of W (K /K) equals

the product of the root numbers of the summands, we get from Proposition 2.3.1
We'er)=W(ker) Wxew ®sp2)®r),
where by Proposition 6 ([Ro2], p. 327)
W(x@w ' @sp(2) @ 7) = det 7(—~1)" - det x(=1)"™7 - (~1)7,

which proves (2.3.13).

Formula (2.3.14) is a consequence of (2.3.13) together with Proposition 2.2.9. [
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Chapter 3

Root numbers of abelian varieties

over number fields (Theorem A)

3.1 Proof of Theorem A

We keep the notation of the introduction.

Lemma 3.1.1. Let A be an abelian variety of dimension g over a number field F
and 7 a representation of Gal(F /F) with real-valued character. Then at every infinite

place v of F we have

W(Aw Tv) = (_1)gdimT'

Proof. To define W (A,, 7,) let o/, denote the representation of the Weil-Deligne group
W'(F,/F,) associated to the components of H'(A,(C),C) in the Hodge decompo-

sition, then W(A,,7,) = W(o, ® 7,), where 7, is viewed as a representation of
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W!(F,/F,). If v is an infinite place such that F, = C, then the representation

o, = o, of W(C/C) =W(C/C) = C* has the following form:

oy = (P10 ® H™) & (po1 @ H),
where ¢, , : W(C/C) — C* (p,q € Z) are given by

Ppq(z) = 27277,
H'0 and H%! are the components of H'(A,(C),C) in the Hodge decomposition:
H'(A,(C),C) = HYY ¢ H*!.
Here H'Y and H%! are endowed with the trivial action of W(C/C), hence
oy = (P10 ® wo1)*. (3.1.1)

Let v be an infinite place such that F, = R. We have

W'(C/R) = W(C/R) = C* U JC*,

where J? = —1 and JzJ ! = z for 2 € C*. Here W(C/C) is identified with the
subgroup C* of W(C/R). In this case the representation o] = o, of W(C/R) has the
following form:

oy = Indg o1 @ H™,

where Indg o1 denotes the representation of W(C/R) induced from ¢q;. As in the

complex case, H%! is endowed with the trivial action of W(C/R), hence

Oy — (Ind% ()00’1)699 (312)
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([Ro1], p. 155, §20).

It follows from the proof of Theorem 2(i) ([Ro2], p. 329) that

W((p10® 1) ®1,) = (—1)dim7 if F,=2C and

W((Indg po1) @7,) = (=14 if F,=R.

Now the statement follows from these formulas together with formulas (3.1.1) and

(3.1.2). 0

Lemma 3.1.2 ([Ro2], Lemma on p. 347). Let G be a finite group, D C G an
abelian subgroup, and T an irreducible representation of G with real-valued character.

If mg(7) = 2 then Rest is symplectic.

Lemma 3.1.3. Let G be a finite group and T an irreducible representation of G with

real-valued character. If mo(T) = 2 then dim T is even and det T is trivial.

Proof. By Lemma on p. 339 in [Ro2] if 7 has odd dimension or nontrivial determinant,
then there is a cyclic subgroup D of G such that Reng is not symplectic, which

contradicts Lemma 3.1.2. O

Proof of Theorem A (Theorem 1.0.2). By Lemmas 3.1.1 and 3.1.3, W(A,,7,) = 1 at
every infinite place v of F.

Let v be a finite place of F' lying over a prime number p. Let o] be the represen-
tation of W/ (F,/F,) associated to the first cohomology of A,. Since by Lemma 3.1.3

det 7 is trivial and dim 7 is even, (2.3.13) implies

W(AvyTv) == W(/ﬁ?v (%9 TU) . <—1)<XU’TU>7 (313)
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where Y, is a representation of Gal(F,/F,) realizable over Z (see Section 2.3 for the

definition of x,). Moreover, when p > 2¢g + 1 from (2.3.14) we have
W(AU7T’U) e (_1)a‘<17717>+a<nv7TU>+</\’TU>+<XU7TU>’ (314)

where 7, is the unramified quadratic character of F, and A = [i; & --- DB fi, is a
representation of Gal(F,/F,) realizable over Q.

The rest of the proof is analogous to the argument given by D. Rohrlich in [Ro2].
Let K C F be a finite Galois extension of F such that 7 factors through the group

G = Gal(K/F) and y, factors through the decomposition subgroup H of G at v.
Then
(Xv: 7o) = (Indfxo, 7)

by Frobenius reciprocity. Since Y, is realizable over Q, Ind%y, is realizable over Q,
hence (Indy,, 7) is divisible by mg(7). By assumption mg(7) = 2, hence (x,, 7,) is
even. Analogously, (1,7,), (7., Tv), and (A, 7,,) are even, hence W(A,, 7,) = W(k,®7,)
by (3.1.3) and when p > 2g + 1 we have W(A,,7,) = 1 by (3.1.4). When p <2g+1
the decomposition subgroup of Gal(L/F') at v is abelian by assumption, hence 7, is
symplectic by Lemma 3.1.2. Also, k, ® w,"/? is symplectic, because x, comes from
an abelian variety (see Section 2.1). Since k, is a representation of W(F,/F,) (see

Section 2.2) and real powers of w, do not change the root number,
W(ky @ T,) = W(ky, ® w2 ® Tp) =1

by Proposition 2 and the remark after it on p. 319 in [Ro2]. O
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3.2 Special cases of Theorem A

We keep the notation of the introduction. In this section we discuss two special
cases of Theorem A when the local calculations of the root number under consider-
ation become especially easy. The first case is when the conductor of A is prime to
the conductor of 7 (Proposition 3.2.1) and the second case is when 7 is symplectic

(Proposition 3.2.3).

Proposition 3.2.1. Let A be an abelian variety over a number field F' of dimension
g and conductor N. Let T be a continuous complex finite-dimensional representation
of Gal(F/F) with real-valued character, of even dimension and conductor f. For
each place v of F let T, denote the restriction of T to the decomposition subgroup of
Gal(F/F) at v and let m,(A) be the exponent of N at v. Assume that f is prime to
N. Then for the local root number W (A,,T,) associated to A, = A X F, and 7, one

has the following formula:

1 if v [fN orv=o0

W(A,,1,) = det 7, ()™ if o|N

det 7,(—1)9 if o|f
\
where w, is a uniformizer of F,. (The statement of this proposition was suggested by

B. Gross.)

Proof. 1f v = 0o then W(A,,7,) =1 by Lemma 3.1.1. Suppose v < co. If v does not
divide N then A, has good reduction over F,,, hence by the criterion of Néron-Ogg-
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Shafarevic o’ is actually a representation of W(F,/F,) trivial on I,. Since o/ ® wy!?

is symplectic (see Section 2.1), this implies that

}/2%04@(1*

ol Rw
for some representation o of W(F,/F,). Thus, taking into account that real powers

of w, do not change the root number, 7, has finite image and real-valued character,

we have
W(Ay,7,) =W @uw?on)=W@er)W(a®1,)) = (3.2.1)
= det(a ® 7,)(—1) = det a(—1)M™7 . det 7, (—1)1™,
Since dim 7 is even and dima = g, (3.2.1) gives
W(A,,1,) = det 7,(—1)7.

Let v do not divide f. Then 7, is unramified. Let V be a representation space of
Ty, W a representation space of o), and o] = (0,, M), where o, is a representation
of W(F,/F,) and M is a nilpotent endomorphism on W. Denote U = W ® V and
Upior = (ker(M ® 1)), We have

d(ol, ® 1)

W(O’; & Tv) = W(O’U (24 Tv) . W,

(3.2.2)

where 6(0! @ T1,) = det(_@U|U1v/UJ{}I’ 1) (see [Rol], §11). Since 7, is an unramified
®
representation of W(F,/F,), we have U = W!» @ V and Ujy,, = Wy ® V, where

Wi = (ker M), Hence
imT im Wlv —dim W1v
§(o, @ T,) = det(_@v|W1u/W]{;)d - det(Dy |y )dm W —dm Wiy _ (3.9 3)
_ 5(0_/)dim'r . det Tv(wv)dimwlvfdimWﬁ.

v
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Also, since 7, is unramified and of finite image, for a nontrivial additive character 1,

of F, by (3.4.6) ([T2], p. 15) we have
W (o, ® 71,) = W(0,)W™™ - det 7, (co, ) (7»)F20m(%0) (3.2.4)

Putting (3.2.2), (3.2.3), and (3.2.4) together and taking into account that the deter-

minant of 7, is &1 (because 7, is of finite image and real-valued character) and
a(o)) = a(o,) + dim W — dim Wy,

we get

W(o! @ 1,) = W(o))¥™™ . det Tv(wv)a("”ﬁ).

v

Since W (ol) = W(o, ® wy! %) = +1 (as the root number of a symplectic representa-

tion), dim 7 is even, and a(o),) = m,(A), this implies
W(A,, 1) =W(o, @7,) =det Tv(wv)m“(A)
and the proposition follows. O

Remark 3.2.2. Tt might happen that the conductor of A is not coprime to the con-
ductor of 7. Indeed, there exist elliptic curves and irreducible representations 7 of
Gal(F/F) with real-valued character, of even dimension and trivial determinant such
that W(E,7) = —1 (see e.g, [Ro2], p. 312, Prop. B). It follows from Proposition

3.2.1 that the conductors of such E and 7 are not coprime.

Proposition 3.2.3. Let K be a local non-Archimedean field and let K be a fived
separable algebraic closure of K. If o' and 7" are admissible symplectic representations
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of W(K/K) then

W' 1) =1
Proof. Let I be the inertia subgroup of Gal(K/K), ® an inverse Frobenius element
of Gal(K/K), and let w be the unramified character of K* equal to the cardinality of

the residue class field of K on a uniformizer. It follows from Theorem 1.0.3 (Theorem

B) that
o' =p @ (p) ®(m @sp(n1)) @ -+ & (m @ sp(ng)),
where p' is a representation of W (K /K), each 7; is an irreducible representation of

W(K/K) and each n; is a positive integer such that m; ® sp(n;) is symplectic. Then
W @ (p)) o) =det(p @7)(-1) =1,

because 7’ is symplectic. Clearly, this argument is symmetric in ¢’ and 7/, hence it is

enough to prove Proposition 3.2.3 when ¢’ and 7/ have the following forms:

o = a®sp(n),

T = B®sp(m),

where n > m are positive integers and «, (3 are irreducible representations of W(K /K)
such that o ® sp(n) and § ® sp(m) are symplectic. Note that a ® w"3 is either

orthogonal or symplectic. In fact, since ¢’ is symplectic, we have
a@sp(n) = (@@sp(n))’ = a* @w "V @sp(n).

By the uniqueness of decomposition of an admissible reperesentation of W/(K /K) into

n—1)

indecomposables ([Rol], p. 133, Cor. 2) this implies a & a* @ w™ or equivalently
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a®@w"T ¥ (a®w T )*. Since a@w"T is an irreducible representation of W(K /K),

a®@w"T = p@w* for some irreducible representation p of W(K /K) with finite image
and s € C ([Rol], Prop. on p. 127). Thus, p®@w® = p* ® w™* and hence w® has finite
image (it can been seen e.g., by taking the determinant). Consequently, « ®w"T has

finite image and since it is self-dual, it is either orthogonal or symplectic. Also, if n

is a positive integer then
orthogonal, if n is odd,

w ) @ sp(n) =

symplectic, if n is even

([Rol], p. 136).
Since the real powers of w do not change the root number, without loss of generality
we can assume that a (as well as [3) is either orthogonal or symplectic. Thus, we have

the following four cases:
1) n and m are even, a and 3 are orthogonal;
2) n and m are odd, o and 3 are symplectic;
3) nis odd, m is even, « is symplectic, and (3 is orthogonal;
4) n is even, m is odd, « is orthogonal, and [ is symplectic.

Lemma 3.2.4. For positive integers m and n such that m < n we have

3

sp(m) ® sp(n) = . (W' @sp(n +m —2i —1)). (3.2.5)

s
Il
=)

39



Proof. Clearly, (3.2.5) is equivalent to

(w7 @ sp(m)) ®@ (w7 @ sp(n)) = (3.2.6)
m—1
(w_(n+m52l_2) ®sp(n+m —2i —1)).
=0

Xy = . X, = L X =

For a positive integer k let C* be the representation space of w5 @ sp(k) =
(v, M) with the standard basis eg, ey, ..., er_1. Define an action of s[(2,C) on CF as

follows:

X = N, (3.2.7)
Xy = jlh=flesn, 12j<h-1,

X+€[) - 0

This yields the unique irreducible representation of s[(2, C) of dimension & ([K], §18).
We claim that any s[(2, C)-submodule of (w™("2") ®@sp(m)) @ (w="=") @sp(n)) is also
a W' (K /K)-submodule. Indeed, it follows from the fact that an element of this tensor
product is an eigenvector for X, with eigenvalue p if and only if it is an eigenvector for
W(K/K) with weight w™/2; and N just acts as X_. The lemma follows easily from
the claim together with the decomposition of the tensor product of two irreducible
representations of sl into irreducibles ([K], §18). O
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By Lemma A.0.6 (see Appendix A)
aRPETOET DU D D U, (3.2.8)

where 7 is a representation of W(K /K), ji1,. .., jia are irreducible orthogonal repre-
sentations of W(K/K) in cases 1) and 2) and p, ..., i, are irreducible symplectic
representations of W(K/K) in cases 3) and 4).

Let o' ® 7/ = (A, N). Then
We'e7t)=WW\)- A’ @7,

where W(A) =1 (by Prop. 2 and the remark after it in [Ro2], p. 319) and

! oy
Alo' @ 1") = %.
Thus, it is enough to show that A(c’®7') = 1. Note that A((m®7*)@w"®sp(k)) = 1
for any positive integer k, r € R, and any representation 7 of W(K/K). It follows
from the fact the real powers of w do not change A (see (3.2.3)) together with Lemma

(ii) ([Rol], p. 144). Lemma 3.2.4 together with (3.2.8) imply

m—1 a

Ao’ @) =[] [T A0 ®sp(n+m—2i - 1)). (3.2.9)

i=0 j=1

Let j be fixed and let V; denote a representation space of p;. It follows from the

definition that for each 7 we have

det(q)h/! )n+m—2i—2

Al 2% 1)) = (—1 (n+m)-dim V{ .
(,UJ (%9 Sp(n +m [/ )) ( ) ’ ’ det(q)|vl)’n+m72272
J

(3.2.10)

Since yu; is self-dual, det pi; = £1. Moreover, V/' is either {0} or V;. Hence (3.2.10)
gives
A(p; @ sp(n +m — 2i — 1)) = (—=1)Fdm Vi qeg (|, ). (3.2.11)
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In cases 1) and 2), n+m is even, hence (3.2.9) and (3.2.11) imply A(o’®@7') = 1. In
cases 3) and 4), det(®[ys) = 1 and dim V;/ is even (because p; is symplectic), hence

(3.2.9) and (3.2.11) imply A(¢’ ® 7') = 1. O

Remark 3.2.5. If 7 is symplectic then mg(7) = 2 but not vice versa: there are
examples of irreducible orthogonal complex representations of finite groups with the

Schur index over the rationals equal to 2 (see Appendix C).
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Chapter 4

Representations of the

Weil-Deligne group (Theorem B)

4.1 Theorem B

We keep the notation of Section 2.1 except that K does not have to be of characteristic
zero and K denotes a separable algebraic closure of K. If U is a complex finite-
dimensional vector space and A : D — GL(U) is a representation of a group D on
U, then by X\ : D — GL(U) we denote the representation of D on U, where U is
a C[D]-module with the underlying D-module U* and multiplication by constants

defined as follows:

a-¢p=ap, acC,peU"

43



We say that U is unitary if U admits a nondegenerate invariant hermitian form (not

necessarily positive definite).

Proposition 4.1.1. Let ¢’ be an admissible representation of W'(K/K). Then it

can be written in the following form:

k
o =~ @m ® sp(n;),
i=1

where each ; is a representation of W(K /K), n; is a positive integer, and n; # n;
whenever i # j ([Rol], p. 133, Cor. 2). If o’ is unitary, orthogonal, or symplectic with
respect to a corresponding invariant nondegenerate form (-,-) then each m; @ sp(n;) is

unitary, orthogonal, or symplectic respectively with respect to the restriction of (-, -).

Proof. Let U be a representation space of ¢’ and U; a representation space of m; ®
sp(n;), 1 <i <k, sothat U= @F  U,. Let (-,-) be a nondegenerate invariant form
on U and let U be a W/(K /K )-module over C such that U = U* if (-,-) is bilinear
and U = U if (-,-) is sesquilinear. Let ¢ : U — U be the isomorphism of W'(K /K )-
modules induced by (-,-), and let ¢ : U = (@F_, U;))” — U, @ --- @ Uy, denote the
usual isomorphism. It is easy to show that for any n we have sp(n)~ = w~= ™Y ®sp(n),
hence UZ = V;, where V; denotes a representation space of 7@®w—(”i_1)®sp(ni). Denote
by A: U'l G- b Uk — V1@ - - @V} the corresponding isomorphism. For each 7 let

pi : Ug — V; be defined by the following diagram:

oo
iﬁvl@...@vk

)
—Vi

S——c
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where 7; is the projection onto i-th factor. To prove that (-,-)|y, is nondegenerate
for each ¢ is equivalent to proving that p; is an isomorphism for each ¢, which follows

from Lemma 4.1.2 below. O]

Lemma 4.1.2. Let o = (o, N) and ' = (5, M) be two isomorphic admissible rep-

resentations of W'(K /K). Then they can be written in the following forms:

where each o; and B; is a representation of W(K/K), n; # n; whenever i # j. Let
U (resp. V) be a representation space of o (resp. (') and for each i let U; (resp.
Vi) be a representation space of o; @ sp(n;) (resp. i @ sp(n;)). Let ¢ : U — V be
an isomorphism of W' (K /K)-modules and 1p; : Uy — Vi, 1 < i < k, defined by the

following diagram:

where m; is the projection onto i-th factor. Then each ; is an isomorphism of

W' (K K)-modules.
Proof. We will prove the lemma by induction on k. Clearly, it holds when k£ = 1.
Let k be arbitrary and let e, ..., e, 1 be the standard basis of C"*. Without loss of
generality we can assume that n; > n; for any . Let U, be a representation space of
ag, so Uy = @75 (U ® ¢;). Then
U = ker N"* '@ (U ®e) and
NU = Ni(kee N* )& (U ®e;), 0<j<n;—1 (4.1.1)
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Since ¢ is an isomorphism of W (K /K )-modules, we have from (4.1.1):

MV = M (ket M™ ") @ ¢(Ug ®e¢;), 0<j<ng— 1. (4.1.2)
On the other hand, (4.1.1) holds in V, i.e.,

MV = M (ket M @ (VP ®e;), 0<j<m—1, (4.1.3)
where V;? denotes a representation space of 3;. We have the following filtration of V:

V Dker M™ ' D MV O M(ker M™ 1) D -+

DM = (U @ 1) = Vi @ ey (4.1.4)

Since V is a semisimple W(K /K )-module, taking into account (4.1.2), we get from

(4.1.4):

ne—2

V= (D 4)) @ e(th), (4.1.5)

J=0

where each A; is a complement of M/T'V in M7 (ker M™~1). Analogously, taking

into account (4.1.3), we get from (4.1.4):

ng—2
V=(4) o (4.1.6)

5=0
Combining (4.1.5) and (4.1.6), we see that 7 o ¢(Uy) = Vi, hence 1y is an isomor-
phism. To be able to apply the inductive step, note that A;’s can be chosen in such

a way that

3
>
|
[N}
-
|
—_

<
Il
=)
-
Il
=)
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Indeed, this follows from the following formulas:

ng—1
ker M™~1 = MV @ (QB(VZO ®ep)) and
i=0
ne—1
M (ker M™Y) = MV e (@ Ve ®e)), 0<j<m—1,
i=0

where each V,° is a representation space of ;. Thus, by (4.1.5)

=0 7

T
—
ko
—

Il
=)

which implies that the projection of gb(@i:ol U;) onto @f:ol V; is an isomorphism,

hence by induction 1, ..., 1,1 are isomorphisms. O]

~

Proof of Theorem B. Since ¢’ is minimal, it follows from Proposition 4.1.1, that o’
a ® sp(n), where « is a representation of W(K/K). Since o’ is admissible, « is
semisimple, hence o = @le «;, where each «; is an irreducible subrepresentation of
«. For each i let U; be a representation space of o;; @ sp(n), so that U = Uy @ - - - @ U.
Let ¢ : U — U, @ --- @ Uy be the composition of the isomorphism induced by (-,-)
with the usual isomorphism of (U; & --- @ Uy)™ onto Uy @ ®Uy. For each i and j

let ¢;; : Uy — Uj be defined by the following diagram:

where 7; is the projection onto j-th factor. We claim that for any ¢ there exists j = j(7)
such that ¢;; is an isomorphism. Indeed, let U be a representation space of a; so
that U; = U ® C", where C" is the representation space of sp(n). Let W = C be the
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representation space of w™ "~V and ¢ : U — EBL(UZ-O ® W ® C") the composition
of ¢ with the usual isomorphism induced by o; ®sp(n)” = & ® w™ "V ® sp(n),
1 < i < k. For each i and j let ¢ : Uf ® C" — U? @ W @ C" be defined by the

following diagram:

PeWeCYe oUW eC)

\j\]
® /‘Z}ij

U @W®Cn

Let e, ..., e,—1 be the standard basis of C". If for each i there exists j = j(i) such
that the projection of ¥(U; ® eg) onto U]O ® W ® eg is nonzero, then U7 = U;’ @ W
(because each Uy is irreducible), hence U; = Uj and ¢;; # 0. Then it follows from
Schur’s lemma for indecomposable representations of W/ (K /K) ([Rol], p. 133, Cor.
1) that ¢;; is an isomorphism.

Assume now that there exists ¢ such that the projection of ¥(U ® eg) onto U T ®
W ® eq is zero for any j. Let N (resp. M) be the nilpotent endomorphism of U
(resp. of (UP@W @C") @ - @ (U2 ® W @ C")). Then (U ® ey) C X, where
X = @@1;5(0; QW ®e;) and X C ker M"'. Since U ® ey € ker N"7! we get a
contradiction with 1 being an isomorphism.

Thus, in particular, there exists some j such that ¢,; is an isomorphism. If j =1
then (-, )|y, is nondegenerate, hence U; and its orthogonal complement are invariant
subspaces of U. Since U is minimal, it implies that U = U; and U is indecomposable.
If j # 1 then without loss of generality we can assume that j = 2, (-,-)|y, and
(-, )|, are degenerate. Let us show that (-, -)|y,eu, 1S nondegenerate. Suppose it is
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degenerate, i.e., K = ker({-, )|t ou,) is nonzero. Let Ry (resp. Ry) be the nilpotent
endomorphism of U; (resp. Uy). Then R = Ry & Ry is the nilpotent endomorphism
of Uy @ Uy. We claim that K (ker R # 0. Indeed, let z € K and = # 0. Then there

exists 7 (0 <7 <mn —1) such that Rz € ker R and R'x # 0. Also,
(R'z,y) = (=1)"- (x, R'y) =0 for any y € U; @ Uy,

hence Riz € K. Let x € K(\ker R and x # 0, i.e., ¥ = x; + Ty, where z; € ker R,
1 = 1,2. Without loss of generality we can assume that x; # 0. Since ¢2 is an
isomorphism, there exists yo € Us such that (z1,y2) # 0. By assumption, (-,-)|v,
is degenerate, hence Ky = ker((-,-)|y,) is nonzero. Then by the same argument as
above Kj(\ker Ry # 0. Since ker Ry = US ® e,_1, it is irreducible, consequently

ker Ry C K,. In particular, (z3,y2) = 0. Hence

(x1 + 22, y2) = (T1,Y2).

Since (z1,y2) # 0 by the choice of y2, we get a contradiction with z; +x2 € K. Thus,
(-, Vv e, s nondegenerate. Since U is minimal the same argument as above implies

thatU:U1®UQgUQ®U2. ]

4.2 An application of Theorem B

We keep the notation of Section 2.3.
In this section we apply Theorem B to prove a special case of Proposition 2.3.1
when the image of Y < G under f in (2.1.2) is finite (see Proposition 4.2.4 below).
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We give an elementary proof of this case which, as far as the uniformization theory
is concerned, uses only exact sequence (2.1.2), the fact that Y < G is a free discrete
subgroup, and that there is a Gal(K / K)-equivariant isomorphism T;(G(K)/Y (K)) &
Ti(A).

Let o' = (p,S) be the representation of W/(K/K) associated to the natural I-
adic representation of Gal(K/K) on Vi(T(K)/A)*, where A = T(K) (Y (K) is a free
discrete subgroup of T(K) of rank s (s < r). Let L C K be a finite Galois extension
of K such that Gal(K /L) acts trivially on Y (K). Thus, Y (K) can be considered as

a Gal(L/K)-module. Let
x : Gal(L/K) — GL,(Z)

denote the corresponding representation. Thus, from (2.1.2) we have the following

exact sequence of Gal(L/K)-modules:

0 —A®;,C—YK)®;,C— C®;,C—0,

where C = f(Y(K)). Let x; : Gal(L/K) — GL,(Z) denote the representation
of Gal(L/K) on A and x» : Gal(L/K) — GL,_4(Z) denote the representation of

Gal(L/K) on C ®z C. Then
X = X1 D Xe
Proposition 4.2.1.
PFEee)e(new @sp2).

Proof. See Appendix D. n
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Corollary 4.2.2. If the image F of Y — G under f : G — B in (2.1.2) is an étale

sheaf of finite abelian groups over Spec(K), then
prEx@w ! @sp(2).

Proposition 4.2.3. If the image F of Y — G under f : G — B in (2.1.2) is an
étale sheaf of finite abelian groups over Spec(K), then one has an exact sequence of

Gal(K /K)-modules:
0 — V(B)" — Vi(A)* — Vi(T(K)/\)* — 0, (4.2.1)
where Vi(T(K)/\) = TI(T(K)/A) @z, Q.

Proof. {From the exact Gal(K /K )-equivariant sequence (2.1.2) we get the following

exact sequence of Gal(K /K)-modules:
0— T(K)/A — G(K)/Y(K) — B(K)/F(K) — 0.

Since T(K) is a divisible group, the last sequence induces an exact Gal(K/K)-

equivariant sequence of [-adic Tate modules:
0 — T(T(K)/A) — T(G/Y) — T(B/F) — 0,

where T;(G/Y) denotes T;(G(K)/Y (K)) and T;(B/F) denotes T;(B(K)/F(K)). We
claim that there is a Gal(K/K)-equivariant isomorphism G(K)/Y (K) = A(K). In-
deed, for any finite Galois extension L C K of K such that the degeneration data for

A splits over L we have a natural isomorphism

A(L) = G(L)/Y (L) (4.2.2)
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([Chal], p. 720, Prop. 3.1). Since A(K) (resp. G(K), resp. Y(K)) is naturally
isomorphic to the direct limit of A(L) (resp. G(L), resp. Y (L)) when L runs over
finite extensions of K contained in K, the claim follows from (4.2.2) together with the
fact that the direct limit is an exact functor. Hence T}(G/Y) = Tj(A) as Gal(K /K )-

modules and we have

0 — TT(K)/A) — T;(A) — T(B/F) — 0. (4.2.3)

By tensoring the above sequence with Q; over Z;, we get an exact sequence of

Gal(K /K)-modules:

0 — VI(T(K)/A) — Vi(A) — Vi(B/F) — 0, (4.2.4)

where Vi(B/F) denotes T;(B/F) ®z, Q. Thus, it suffices to show that V;(B/F) =
Vi(B) as Gal(K/K)-modules. Applying Hom(Z/I"Z, —) to the exact sequence 0 —
F(K) — B(K) — B(K)/F(K) — 0 and taking into account that B(K) is a

divisible group, we get an exact sequence

0 — Fjn — Bp — (B/F);n — ExtY(Z/I"Z, F(K)) — 0,

where (B/F);n denotes (B(K)/F(K))m. Here Ext'(Z/I"Z, F(K)) = F(K)/I"F(K),
as can be seen by applying the functor Hom(—, F(K)) to the standard projective

resolution of Z/1"Z. Thus, we get

0 — Fpn — B — (B/F);n - F(K)/I"F(K) — 0.
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This sequence is equivalent to the following two short exact sequences

0— Fjn — Bjn — kera,, — 0 and
0 — kera,, — (B/F)pn — F(K)/I"F(K) — 0.
Applying the left exact functor {gﬂ(—) to these sequences and denoting {iin(ker an)
by X and liin(F(F) JI"F(K)) by Z, we get
0 — T)(F) —T)(B) — X and

0— X —T(B/F)— Z.

Since F'(K) is finite, T;(F') and Z are torsion groups, hence 17)(F) ®z, Q; = Z®7,Q, =

0. Thus, it follows that the sequences
0 — Vi(B) — X ®z, Q and
0— X ®zQ— VI(B/F) —0
are exact, consequently, V;(B) < V;(B/F). On the other hand, from (4.2.4)
dimg, Vi(B/F) = dimg, Vi(4) — dimg, VI(T(K)/A),

where dimg, V;(A4) = 2-dim A and dimg, Vi(T(K)/A) = 2-dim T. (The last assertion

follows from (D.0.6), since s = r.) Hence
dimg, Vi(B/F) =2 (dimA —dimT) = 2 - dim B.

Since dimg, V;(B) = 2-dim B, we have dimg, V;(B/F) = dimg, V(B). Thus, V}(B/F) =
Vi(B). Clearly, they are isomorphic as Gal(/K /K)-modules and the proposition fol-
lows. O
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Proposition 4.2.4. If the image F of Y — G under f : G — B in (2.1.2) is an

étale sheaf of finite abelian groups over Spec(K), then
o2 r® (xQw ! ®@sp(2)). (4.2.5)

Proof. Except for the slight variations we proceed as in the proof of Lemma 2.3.3. Se-
quence (4.2.1) induces an exact sequence of corresponding representations of W/(K /K),

ie.,
0— Vi(B)*®,C — Vj(4)*®,C— V(T(K)/A)*®,C— 0 (4.2.6)

is an exact sequence of W (K /K)-modules, where 2 : Q; < C is a field embedding,
(k,0) is the representation of W/(K/K) on V)(B)* ®, C, ¢’ = (0, N) is the represen-
tation of W/(K/K) on Vi(A)* ®, C, and by Corollary 4.2.2, x ® w™' ® sp(2) is the
representation of W/(K/K) on Vi(T(K)/A)* ®, C.

The same argument as in the proof of (2.3.6) in Lemma 2.3.3 applied to (4.2.6)

proves that ¢’ has the following form:
o' =2 a® (B®sp(2) @ (y®sp(3)), (4.2.7)

where a, 3, and 7 are some representations of W(K/K). First, we will prove that

v = 0. Assume vy # 0. ;From (4.2.7) we have
c2a®fdBOW)BYTD (YW B (YW

On the other hand, since o is semisimple, the exact sequence (4.2.6) of W(K /K )-
modules splits, i.e.,
cERO(xRw ) OX
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Thus, combining the last two isomorphisms, we get
KO (X®wNEXZad 0 (0w @y (y0w)® (YR w?). (4.2.8)

Moreover, since k is isomorphic to a subrepresentation of ker N and ker N = a® (f®
w)® (y®w?), K is isomorphic to a subrepresentation of a® (f®w)® (y®@w?). Thus, by
the uniqueness of decomposition of a semisimple module into simple modules we get
from (4.2.8) that ~ is isomorphic to a subrepresentation of (y @ w™') & x. Since x has
finite image, this implies that for any irreducible component vy of v either vy or yo®w
has finite image. In particular, the absolute value of each eigenvalue of v, (®) equals
either 1 or ¢. Since o’ ® w'/? is symplectic, Theorem B together with the uniqueness
of decomposition of an admissible representation of W/(K/K) into indecomposable
representations imply that for any irreducible component 7, of v the representation
(Y0 ® w'/? ® sp(3))* is an irreducible component of v ® w'/? ® sp(3). In particular,
this implies that v; ® w2 is an irreducible component of . Thus, either v ® w™ or
76 @w™? has finite image, hence the absolute value of each eigenvalue of ~v;(®) equals
either ¢~2 or ¢=2 and we get a contradiction with the previous statement about the
absolute values of eigenvalues of vo(®). Thus, v =0 and ¢’ = a @ (5 ® sp(2)).

The same argument can be used to show that 3 = y ® w™!. Namely, taking into
account that x is isomorphic to a subrepresentation of a @ (8 ® w), it follows from

(4.2.8) that (3 is isomorphic to a subrepresentation of y & (y ® w™'). Hence

BEp@(Bew!) (4.2.9)

2

for some subrepresentations 1, B> of x. Since ¢’ ® w'/? is symplectic, Theorem
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B together with the uniqueness of decomposition of an admissible representation
of W/(K/K) into indecomposable representations imply that 38 ® w'/? ® sp(2) is

symplectic. In particular, 8 = 3* @ w™2 which together with (4.2.9) gives
Ao (Bow )2 (Eow?)e (B ow).
By taking the determinant of both sides of this congruence, we get
det 3; - det By - w2 = det B} - det B - w272, (4.2.10)

where n; = dim (; and ny = dim (5. Since 3; and (3, have finite images as subrepre-
sentations of y and w does not have a finite image, (4.2.10) gives ny = 0. Thus, [ is iso-
morphic to a subrepresentation of Y ®w™!. Tt follows from (4.2.6) that dim 3 > dim ¥,
because dim 3 = rank N and dimy = rank S, hence 8 = y @ w™!. Then x = «a by
(4.2.8) with v = 0 and the uniqueness of decomposition of a semisimple representation

into simple subrepresentations. O
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Appendix A

Lemma A.0.5. Let C' = (c) be an infinite cyclic group generated by an element
c and let E = (e) be a finite cyclic group of order n generated by an element e.

lec = €* for

Let G = E x C be a semi-direct product, where C' acts on E via ¢~
some k € (Z/nZ)*. Denote by s the order of k in (Z/nZ)*. Then every irreducible

representation \ of G has the following form:
A= )\0 X ¢7

where Ay is an irreducible representation of G trivial on the subgroup of C generated

by ¢® and ¢ is a one-dimensional representation of G.

Proof. Since ¢* is contained in the center of G and A is an irreducible complex rep-
resentation, by Schur’s lemma A(c®) is equal to a scalar a € C*. Define a one-
dimensional representation ¢ of G as follows: ¢(e) = 1 and ¢(c) equals an s-th root

of a. Then \g = A ® ¢! is trivial on (c¢*) and A = X\ ® ¢. O

Proof of Proposition 2.2.5. Let A be an irreducible symplectic representation of G.
Then by Lemma A.0.5, A = Ay ® ¢, where ) is an irreducible representation of G
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trivial on the subgroup of C' generated by ¢® and ¢ is a one-dimensional representation
of GG. Since X is symplectic, A and its contragredient representation have the same

character, which implies that for any g € G we have

d(g) - trXo(g) = d(g) " - trXo(g7").

Taking into account that A is trivial on (c¢®), the above equation for g = ¢* gives
#(c**) = 1, i.e.,, A can be considered as an irreducible symplectic representation of
the finite group H = G/{(c**) =2 E x C/{c**). By abuse of notation we will denote
the image of ¢ in C/(c*) also by ¢, then ¢** = 1 and ¢ lec = ¥ in H. As an
irreducible representation of the semi-direct product H, A can be constructed from a
one-dimensional representation 1y of E in the following way. Let 1;(e) = £ for some
n-th root of unity £ of order d in C*. Let I' = (¢”), where = |k| in (Z/dZ)*, and
1o be a one-dimensional representation of I'. Then 1y and vy can be extended to

representations of £ x I via

wl(c‘w@t) = wl(et%

¢2(va€t) — ¢2(va)-
Then A = Indf, (¢ @ 2) ([S], p. 62, Prop. 25). Let W be a representation space
of H corresponding to A\, V.= Cb C W be a one-dimensional subrepresentation of

Resgxr)\ isomorphic to 97 ® 19 and spanned by a nonzero vector b € V over C.

Then W =V & cV & AV @ --- @1V and )\ has the following form in the basis
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{b,cb, b, ..., " 1b}:

£ 0 0 0 000 a(c”)

0 ¢ 0 0 100 0
AMe)=|0 o ¢ 0 , AM=[01 0 0

00 0 .. ¢ 000 ... 0

Since A is symplectic, x = dim \ is even and det A = 1, hence det A(¢) = —o(c*) = 1,
which implies that 19(c”) = —1. Denote by x the character of A. By Proposition 39

([S], p- 109), A is symplectic if and only if

1 2
1= ik Zx(y ). (A.0.1)

yeH

Let y = c’¢!, consequently, 4> = c2et++") Clearly, x(y?) = 0 if y> ¢ E x I' and
y*> € E x T if and only if x divides 2v and, since x is even, if and only if £ divides v.

Let v = §m, then we have

D x) = D0 x() =D x(deltt)

yeH yeH
yreExr (A.0.2)
_ Z X(et(l—i-k“)) o Z X(et(1+kv)).
m,t m,t
m even m odd
Let S = > ;X(et(”kv)) and Sy = de;X(et(Hkv))'
m even m O

If m is even, then v = (%) and, since x = |k| in (Z/dZ)*, 1 + k" = 2 (modd).
Since y(e!) = & 4+ M 4+ ... 4 &7 and €% = 1, we have x(e!'**)) = y(e?) and
Sp= Y > x(e*). We will show that > x(e*) = 0. First, note that if d = 1,2,

m even t t

then A is one-dimensional, hence cannot be symplectic.
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If r € Z and r = 0 (mod d) then

X(ert) — grtkﬂ — Z - grkj
t=0 =0 j=0 =0
Thus
n-l1 ) nx, r=0(modd);
x(e™) = (A.0.3)
=0 0, r#0(modd).

Since d # 1,2, formula (A.0.3) implies that S; = 0.

If m is odd, then ¥ = k2 (mod d), hence y(e!!++")) = X(et(1+k%)). Thus

n—1 n—1
v 25 z
52: 2 : § :X(et(lJrk )) — . § :X(et(1+k2))
m odd t=0 t=0

and by (A.0.3) we have

2sn, 1+ k2 =0(modd);
Sy = (A.0.4)

0, 14k 0(modd).

Hence by (A.0.2)

1 9 1 S
. = (8 - S5,) = ——2
|H| ZX(?J) 2sn (51— 52) 2sn’
yeH
which together with (A.0.1) and (A.0.4) proves the proposition. O

Let D be a group, U a finite-dimensional C[D]-module, and U* the contragredient
of U. Let U denote the vector space over C with the underlying abelian group U*
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and multiplication by constants defined as follows:
a-¢p=ap, acC,¢pecU"

where @ is the complex conjugate of a. Clearly, the C[D]-module structure on U*
makes U into a C[D]-module. In what follows by U we mean a C[D]-module with
this structure. We say that U is unitary if U admits a nondegenerate invariant

hermitian form (not necessarily positive definite).

Lemma A.0.6. Fvery semisimple unitary, orthogonal, or symplectic representation

A of a group D has the following form
AZUBTBN - BN,

where v is a representation of D, v = v* if X is orthogonal or symplectic and v = U
if X is unitary, A1, ..., A\ are pairwise nonisomorphic irreducible unitary, orthogonal,

or symplectic representations of D respectively.

Proof of Lemma A.0.6. We say that a unitary, orthogonal, or symplectic representa-
tion is minimal if it cannot be written as an orthogonal sum of nonzero invariant sub-
spaces. Clearly, every unitary, orthogonal, or symplectic representation is an orthog-
onal sum of minimal unitary, orthogonal, or symplectic representations respectively.
Thus, it is enough to prove that if X is a semisimple minimal unitary, orthogonal, or
symplectic representation of D, then either A is irreducible or A = v & v for some
irreducible representation v of D. Let U be a representation space of D corresponding
to A, U = U* if X is orthogonal or symplectic and U = U if A is unitary. Since \ is
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semisimple, U = V1 &+ --®V,,, where V1, ..., V, are nonzero simple C[D]-submodules
of U. Let (-,-) be a nondegenerate invariant form on U. It defines a C[D]-module
isomorphism ¢ between U and U via ¢(u) = (u,-), u € U. Let ¥ : U — Vi ®---®V,
denote the usual isomorphism between U = (V; @ --- @ V,))~ and V; @ --- @ V,,. For
each ¢ and j let ay; @ V; — ‘7] be a C[D]-module homomorphism defined by the

following diagram:

where ; is the projection onto j-th factor. Since 1 o ¢ is an isomorphism, there
exists some V; such that ay; # 0, which implies that «y; is an isomorphism, since
Vi,...,V, are simple. If i = 1, then it follows that (-,-)|y; is nondegenerate, hence
V) and its orthogonal complement are invariant subspaces of U. Since U is minimal,
it implies that U = V; and U is irreducible. Thus, we can assume that for each j
we have aj; = 0, which is equivalent to (V;,V;) = 0. Without loss of generality we
can assume that ajs # 0. Then ag; # 0. Indeed, if a9 # 0, then there is some
u € Vi such that (u,-)|y, # 0, i.e., there is some v € V5 such that (u,v) # 0, hence
(v,u) # 0, which is equivalent to a9, # 0. Let us prove now that (-,-)|y e, is
nondegenerate. Let u+v € Vi@ Vs and (u+v,z+y) =0 forany z+y € Vi & V5. We
have (u+v,z+y) = (u,y)+ (v,x) = 0, because (V; , V1) = (Vo ,V5) = 0. Take x = 0
in this equation, then (u,y) = 0 for any y € V3, hence u = 0, because ay3(V1) = Va.

Analogously, v = 0. Since U is minimal, the same argument as above implies that
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U=VieWh=VaV. O

Proof of Proposition 2.2.6. By Lemma A.0.6

AZvEr A G- BN, (A.0.5)
where v is a representation of G and Ay, ..., \; are pairwise nonisomorphic irreducible
symplectic representations of G. Let v = u:lll ® .- @V, where vy, ..., v, are pair-

wise nonisomorphic irreducible representations of G. By Lemma A.0.5 for each i we
have v; = 1 ® ¢;, where ¢; is a one-dimensional representation of G and 1 is an
irreducible representation of G trivial on (c*). It follows that v can be considered
as a representation of H = G /(c**) and as a representation of H it can be written in
the following form v = Indgxpim, where 1); is a one-dimensional representation of
E x Ty, ;(e) =& for an n-th root of unity & of order d;, x; = |k| in (Z/d;Z)*, and

[, = (¢™) (see the proof of Proposition 2.2.5 and [S], p. 62, Prop. 25). Thus

& 0 ... 0
o) = 0 & ... 0 |
00 ... g
&) 0 .0
o —doae | O G
’ N (0
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In the second matrix we used the relation ¢;(e)*~* = 1, which follows from the fact

. By Proposition

that ¢; is a one-dimensional representation of G and c~lec = e
2.2.5 each \; = IndgX 1,Pi» where p; is a one-dimensional representation of £ x Lj;,
pi(e) = n; for an n-th root of unity n; of order w;, y; = |k| in (Z/u;,Z)*, L; = (¢¥),
and p;(c¥) = —1.

We will need the following lemma:

Lemma A.0.7. Let dq,...,d,, be pairwise distinct natural numbers. For each d; let
pi(X) € C[X] be a monic polynomial, all the roots of which are some primitive d;-th
roots of unity and let p(X) = p1(X) - pn(X). If p(X) € Q[X], then each p;(X) is a

power of the d;-th cyclotomic polynomial ®g4,(X).

Proof. The statement follows from considering the factorization of p(X) into irre-

ducibles in Q[X]. O

Since the characteristic polynomial p of A(e) has coefficients in Q, by Lemma A.0.7
we can assume that £ ¢4(e), ..., &o0(e),m,. .., n are primitive roots of unity of the
same order d and that p = ®; for some v, where ®, is the d-th cyclotomic polynomial.
Indeed, X\ can be written as a sum of semisimple symplectic representations of G which
have this property and it is enough to show that for each of them (2.2.3) holds.

Let x = |k|in (Z/dZ)* and T" = (¢*). If A =2 v @ v* then there is nothing to prove.
Thus, we assume that there is A\ in (A.0.5). Since A; is symplectic, x is even, d # 1, 2,
and k2 = —1(modd) by Proposition 2.2.5. Note, that x divides each z;. Indeed,

(&idi(e))F" = &ai(e), hence k% = 1 (mod d), because & ¢;(e) is a primitive d-th root
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of unity by assumption. For each 7 denote by p,, the characteristic polynomial of
vi(e) and by p,- the characteristic polynomial of ;(e). Then p,, = p,-. This is true
because z divides z;, x is even, k3 # 1(modd), and k2 = —1 (modd), hence each

root of p,, appears in p,, with its complex conjugate. Thus

_ 20 2l 21 2t
D =Dy Py Py Py

where for each ¢ we denote by p,, the characteristic polynomial of \;(e).
For each primitive d-th root of unity € write ¢(€) = (X —&)(X —&F)--- (X —&F" ),
where x = |k|in (Z/dZ)*. Clearly, all £, &F, . .. L& are distinet and for two primitive

d-th roots of unity £ and £’ either ¢(£) = ¢(&') or ¢(€) and ¢(¢’) have no common roots.

In this notation py, = q(1;) and p,, = q(&¢i(e))™, where a; = Z. Since Ay,..., A
are irreducible, symplectic, and pairwise nonisomorphic, it follows from Proposition
2.2.5 that q(n;) # q(n;) for i # j. Without loss of generality we can assume that p

has the following form:

p=q(&igr(e))®™ - q(&res(e))*™ qlm)™ - - q(m)*, (A.0.6)

where f <r, my,...,my are positive integers, and q(&1¢1(e)), ..., q({s¢r(e)) have no

common roots. There are two possibilities:

1. there exists some ¢(&;¢;(e)) which is not equal to any of ¢(1,), . . ., ¢(n;). Without

loss of generality we can assume that i = 1;

2. each ¢(&¢i(e)) equals some g(n;).
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(1) In this case, since p = @}, it follows from (A.0.6) that for each j we have z; +
2 - a(j) = 2my, where a(j) = mg if q(n;) equals some ¢(ég¢ps(e)) and «a(j) = 0
otherwise. Thus, in this case all z1, ..., z; are even and [\ = [v]+ [V*] + 2 [10], where
Lo = )\1%1 BB )\t%t is symplectic of finite image because all Ay, ..., \; are symplectic
of finite images. (2) In this case, since p = @Y, it follows from (A.0.6) that for each
J we have z; +2 - a(j) = v, where a(j) = mg if ¢(n;) equals some ¢(égps(e)) and

a(j) = 0 otherwise. Moreover, it follows that q(n;) - - - q(n:) = ®4. Thus
(A =W+ ] =2 [ +v- [+ + o [A,

where i, = /\(1)‘(1) DD )\?(t) is symplectic of finite image and it is enough to show
that 5\1 oD j\t is realizable over Q. Recall that for each 1, 5\1 = Indgxrgoi, where
pi(e) = & for some primitive d-th root of unity &;, z = |k| in (Z/dZ)*, T = (¢*), and
wi(c®) =1 (see Proposition 2.2.5 and (2.2.2)). Since the representations of this form
are completely defined by a root of unity £, we will denote them by ©(&). For any r
dividing d the cyclic group (k) acts on the set of all primitive r-th roots of unity via

E— &k Let {&l,..., €%} be the set of representatives for this action and let
o(r) = P ol
i=1

Then the characteristic polynomial of ©(r)(e) is just ®,. Since the characteristic
polynomial of (\; @ --- & A\)(e) is q(m) - - q(n,) = g, it follows that A\; & --- B\, =
©(d). By induction on d we will prove that each O(d) is realizable over Q.

Clearly, ©(d) is realizable over Q when d = 1, because in this case ©(d) = 1. Let

L = (e x C and 7 = Ind¥1. Then the characteristic polynomial of 7(e) is z¢ — 1,
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consequently,

T @@(T) on FE.

r|d
We will prove that this is true on the whole group H. Observe, that for any r all
O(£l),...,0(&r) are irreducible over C and O(£7) = O(¢%) only if i = i’ and r = 7.

r

Let X' be the character of ©(£!). Then, using Frobenius reciprocity, we have
(m,0(¢1)) = (Ind;/1,0(¢;)) = (1,Res/O(&;)) =
d . d d A
v ) u vy L) = 1
s L) = S = 1
hence 7 = €P,;©(r) on H. Since 7 is realizable over Q and O(r) is realizable over

Q for any r < d by induction, ©(d) =7 — €D, ;.4 O(r) is realizable over Q. O

Proof of Proposition 2.2.9. Let A = k @ w2, Then W(k ® 7) = W(A ® 7), because
real powers of w do not change the root number. Since the root number of repre-
sentations of W(K/K) is multiplicative in short exact sequences, there is a unique
homomorphism

a: RW(K/K)) — C*
such that a([\]) = W()) for any representation A of W(K /K). Thus, it follows from

Corollary 2.2.7 that

W (o ® 7)?

WA =Wen W er): o5

W @7) - W(pe @7). (A.0.7)
Since 7 has finite image and real-valued character, we have

Wpor) Wprer) = Wper) - W(per))
= det(p®7)(=1) = det pu(—=1)™7 . det 7(—1)4m~,
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Also, since pg and gy, are symplectic and of finite images,
Wpo®7) =41, W(up®7)==%1
([Ro2], p. 315), hence from (A.0.7) we get
WA®T)=det u(—1)4™" - det 7(—=D)M™H - W (i, @7)-- - Wi(pa ®7).  (A.0.8)

Thus, we need to compute Wy & 7),...,W(u, ® 7). Let v be an irreducible sym-
plectic subrepresentation of A\. Let L/K"" be a minimal subextension of K /K"
over which B acquires good reduction. Then, as was discussed in Section 2.2, A
and, consequently, v can be considered as representations of G = E x (®), where
E = Gal(L/K""") is a finite cyclic group (because p > 2m + 1) and (®) is an in-
finite cyclic group. Let x = dim~. Then by Proposition 2.2.5, as a representation
of G, v is induced from a one-dimensional representation of £ x (®%). Hence, as a
representation of W(K /K), ~ is induced from a one-dimensional representation ¢ of
W(K/H,), where H, is the unramified extension of K of degree z, i.e., v = Indf= ¢.
Since vy is symplectic, z is even. Let = 2y and let H, be the unramified extension of
K of degree y, hence K C H, C H,. Let v = Indfﬁqﬁ, T = ResgyT, then v = Ind?”y’

and by Formula (1.4) ([Ro2], p. 316) we have
W(yer)=W(ndy (Y @7)) = WH @)W (nd 1y, )24 (A.0.9)

Let us prove first that W (Indj’15,)>%™ 7 = 1. Let @ be a uniformizer of K. Tt is
easy to check that Indﬁyl H, = @?;01 Xi, where xo, ..., Xy—1 are all the distinct unram-
ified characters of K satisfying y;(w)? = 1. Hence W (Ind}*1 m,) = 11—y W(x:)- By
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Formula (e3) ([Rol], p. 142) for each i we have W(x;) = &', where n(¢)) € Z, each
& is a y-th root of unity, and & # &; if ¢ # j. Hence Hf;ol W(x:) = H?:_()l ?(w) =+1
and

W (Indj"1p,)29m7 = 1. (A.0.10)

To compute W (' ® 7') we will show that Theorem 2.2.8 can be applied to H,,
7', and 7’. Indeed, 7’ is a representation of Gal(K/H,) with real-valued character
and +' = Indgzqﬁ is a two-dimensional representation of W(K/H,) induced from a
character ¢ of finite image (by Proposition 2.2.5), hence 7' is a representation of
Gal(K/H,). Since Indgyfy’ = = is irreducible, +/ is irreducible too. Since dim~y’ = 2,
7' is symplectic if and only if det ' is trivial, because Sp(2,C) = SL(2,C) ([Ro2], p.
317). From Proposition 2.2.5 we find that as a representation of E x (®¥), 4/ has the

following form

0 ¢! 1 0

where e is a generator of F, £ is a root of unity. It follows immediately that det v’ = 1.
Thus to be able to apply Theorem 2.2.8, we need only to check that ¢ is a tame
character of H). It follows from the fact that ¢ is trivial on Gal(K/L) and L/K"""

is tamely ramified, because p > 2m + 1. By Theorem 2.2.8
W ®7) = det 7/(—1) - gt 7 . (—1){LrH )40 ) (A.0.11)

where 7" is the unramified quadratic character of H, A = Indﬁ;(qﬁ ® 0), 0 is the

unramified quadratic character of HS, and ¢ = £1.
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Since 7" = ResgyT, we have det 7" = det 7 o Ny, ), hence
det 7/(—=1) = det 7(—1)E] = det 7(—1)Y. (A.0.12)
By Frobenius reciprocity
(L) + (0 7') = (lu, @, 7') = (1u, ® 1, Resy"7) = (Indi (1, & '), 7).

As was mentioned above, Indgyl H, = @?;01 Xi, where xo,...,Xxy—1 are all the dis-
tinct unramified characters of K| satisfying x;(w)? = 1. Analogously, Indgyn’ =
@?’yl Xi, where Xy, ..., X2y—1 are all the distinct unramified characters of K™ satis-

fying xY(w) = =1 (y <i <2y —1). Thus

2y—1

Indy? (1, © 7) EBXI,

where xo, . . ., X2,—1 are all the distinct unramified characters of K> satisfying y;(w)? =
1, and
2y—1
L)+ =D ().
i=0

Since 7 has a real-valued character, for each x; of order greater than 2, (x;,7) will

appear in this sum twice, i.e.,
(L)Y + @, 7)=1,7)+n7)  (mod 2). (A.0.13)
Finally, by Frobenius reciprocity,
(v.7) = (Indff* (¢ ® 0), Resy'7) = (Indj* (¢ ® 0), 7) = (4, 7). (A.0.14)
Now formulas (A.0.9) - (A.0.14) imply

Wy ®7) = detr(~1)¥ - g7 . (~1) ) ), (A.0.15)
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Applying (A.0.15) to pq,. .., pe and substituting the result into (A.0.8) we get the

statement of the proposition. O
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Appendix B

We keep the notation of Section 2.1.

Lemma B.0.8. Let o' = (0, N) be the representation of W' (K /K) associated to the
natural l-adic representation of Gal(K/K) on Vi(A)* and let o' = v @ (6 @ sp(2)) for

some representations v and 6 of W(K/K). Then dim§ = r.

Proof. Since dim§ = rank N and for any finite extension L C K of K we have
Resyy w10’ = (Resko, N) ([Rol], p. 130), we can assume that T splits over K and
B has good reduction over K.

We have the following exact sequence of Gal(K /K )-modules ([Ra], p. 312):
0 — G(E)m — AK)m 2% Y(E)/1"Y (K) — 0. (B.0.1)

Since G(K) is divisible, sequence (B.0.1) induces an exact Gal(K /K )-equivariant

sequence of [-adic Tate modules:
0 — T)(G) — T)(A) — Z — 0,

where Z = lim(Y (K)/I"Y (K)) with the maps being the natural quotient maps. By
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tensoring the above sequence with Q; over Z; we get the following exact Gal(K /K)-

equivariant sequence:
0 — Vi(G) — Vi(A) = Z @7, Q, — 0. (B.0.2)

For a positive integer n let u, denote the group of n-th roots of unity in K,
Ti(pn) = {iglﬂ,ln with the [-th power maps. Let K;» be the tamely ramified extension
of K" of degree [" and let tjn : [ — p» be the composition of the restriction map
onto Gal(Kjn/K*"") with the isomorphism Gal(Kjn/K*"") = .

Let zpn € A(K)pm, i € I, and ¢y (z2) = [y] for some y € Y(K) and ¢ given by

(B.0.1). Then a formula on p. 314 in [Ra] yields:
Z(I’ln) = Tn + Vin (y ® tln(Z)), (BOS)

where v @ Y(K) ®z pyn — T(K)pn is the following composition of Gal(K /K)-

module homomorphisms:
Y(K) ®Z [ — HOInz(X(F), Z) ®Z Hyn ; T(F)ln,

where X is the character group of T and the first map is induced by the geometric
monodromy

oY X X — 7Z;

finally, v (Y@t (i)) € T(K ) is considered as an element of A(K ). via the inclusions

T(F)ln — G(F)ln —> A(F)ln



For each i € I we have the following maps a, (i) : Y(K)/I"Y(K) — T(K)p

given by the following composition:

Y(R)/I"Y (K) 9 V(K @4 pn 25 T(R ),

where ¥, (1)([y]) = y @t (i), y € Y(K). It is easy to show that {a, (i)} induce the
homomorphism

a(i) = (an(i)) - 2 — T(T),

where Z = lim(Y (K)/I"Y (K)). By extending scalars to Q; we get
(i) : Z @z, Q — Vi(T). (B.0.4)

Let 3 : Gal(K/K) — GL(V;(A)) be the natural I-adic representation of Gal(K /K)

on V;(A). Then (B.0.3) and (B.0.4) imply:
Bi(i) =id +d/(i) o ¢, i€,

where id : Vi(A) — V/(A) is the identity map and ¢ is given by (B.0.2). On the
other hand,

ﬁl (Z) = exp(al (l)Rl),

where ¢ is in some open subgroup J of I, a; : I — Q; is a nontrivial continuous
homomorphism, and R; is a nilpotent endomorphism on V;(A) ([Rol], Prop. on
p. 131). Since ¢/ = (0, N) is the representation of W'(K/K) associated to 3} :
Gal(K/K) — GL(V;(A)*), it follows that N is obtained from —R! by extending

scalars via a field embedding ¢ : Q; — C. Thus, rank B = rank N = dim ¢ and
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R? = N? = ( by assumption. Thus,
d(i)od=aqi)R, 1€,

and, since ¢ is surjective, it is enough to show that there exists i € I such that o/ (i)
is surjective.
There exists ig € I such that t(ig) is a generator of pya for each n. It implies

that 1, (7p) is an isomorphism for each n, hence it is enough to show that the map

Vo lim(Y (K) ®z pun) ®z, Q@ — Vi(T)

—

induced by (vn) is surjective. Since pg is nondegenerate ([F-C], p. 52, Remark 6.3),

we have the following exact sequence:
0 — Y(K) % Homy(X(K),Z) — M — 0,

where g(y) = o(y, -) and M is finite, since Y (K ) and Homyz (X (K), Z) are free abelian
groups of the same rank r. Applying the functor (—) ®z = to the above sequence,
we get:

Y(F) ®Z Min l/l—n> T(F)ln — M ®Z Hpn —— O’
hence the exact sequence
0 — imvpm — T(K)p — M/I"M — 0.

Since Y (K) ®y i is a finite group, im v is a finite group, hence {im v} satisfies
the Mittag-Leffler condition and we have the following exact sequence:
0 — lim(im vpn) — TY(T) — lim(M /1" M) — 0. (B.0.5)

75



Here lim(im v») & im v, where
pu

v=(ypn): hin(Y(K) ®gz pn ) — T(T).
Indeed, let S, = Y (K) ®z um, then we have an exact sequence
0 — kerypn — S,, — imypm — 0,

where the maps from S,, to im v;» are induced by v». Since ker v is finite for each
n, {ker v} satisfies the Mittag-Leffler condition, hence one has the following exact
sequence

0 — lim(ker yn) — lim S,, — lim(im n) — 0, (B.0.6)

which together with (B.0.5) implies lim(im =) = im v.
Thus, applying the exact functor (—) ®z, @, to (B.0.5) and taking into account

that M is finite, we get:
0 — (imv) ®z, Q — Vi(T) — 0,

which implies

imv = (imv) ®z, Q = Vi(T),

hence v/ is surjective. O
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Appendix C

The following example was suggested by R. Gow. Let ) be the quaternion group
and let A = X %Y be the semidirect product of a cyclic group X = (x) of order 3
generated by an element x and a cyclic group Y = (y) of order 4 generated by an

element y, with X normal. Let G = @ x A.

Proposition C.0.9. G has an irreducible complex finite-dimensional orthogonal rep-

resentation with Schur index 2 over the rationals.

Proof. Let ¢ : Q — GLy(C) be a representation of @) given by the following formulas

on the generators ¢ and j of Q:

V-1 0 0 —1
o(i) = ;o) =
0 —v-1 1 0

It is easy to check that ¢ is irreducible and has Q-valued character. Let
Y A — GLy(C)
be a representation of A given by the following formulas on the generators x and y of

7



0 ¢ 1 0

where £ = exp(%) and ¢ denotes the complex conjugate of £. In fact, 1) = Ind‘;‘(x@g)a,
where « is a 1-dimensional representation of X x (y?) given by a(z) = £ and a(y?) =
—1. It is easy to check that 1 is irreducible and has Q-valued character. Thus,
o=¢®1y: G — GLyC) is irreducible and has Q-valued character. It is easy to
check by Frobenius-Schur method that ¢ is orthogonal, i.e., has Schur index 1 over
the reals. We claim that o has Schur index 2 over the rationals. Since ¢ has Q-valued
character, by Brauer-Speiser theorem it is enough to show that o is not realizable
over Q. To do so, we first find the decomposition of the group algebra Q|G| into
simple factors and then show that neither of them corresponds to o.

It is known that there is the following isomorphism of algebras over Q:

Q[G] = Q[Q] ®q Q[A].

Thus, we need to find the decompositions of Q[Q)] and Q[A].

Since {1} is a normal subgroup of @ and Q/{£1} = Z/2Z x Z/2Z, @ has 4
distinct 1-dimensional representations realizable over Q, which together with ¢ are all
the irreducible complex representations of () (up to isomorphism). On the other hand,
the natural embedding of () into the quaternion ring Hg over QQ defines a surjective

homomorphism Q[@] — Hyg, hence

QR =QxQxQxQ x Hg. (C.0.1)
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Thus, ) has a unique irreducible representation over Q of degree 4 which must be
O D 0.

It is easy to check that A has 5 conjugacy classes of cyclic subgroups, hence A
has 5 irreducible representations over Q (up to isomorphism). Since A/ X = Z/4Z, A
has 2 distinct 1-dimensional representations realizable over Q and one 2-dimensional

representation A over Q given by

It is easy to check that A is irreducible over Q. Also, A has the following irreducible
(over C) representation p = IndfCX(yQﬂ, where 3(x) = £, B(y?) = 1. It is easy to

check that p =2 v, where v is given by

which implies that p is realizable over Q. Since the simple factors of Q[A] correspond-

ing to A and p are Q(i) and M>(Q) respectively, we get

QA =Q x Q x Qi) x My(Q) x U,

where U is a simple algebra corresponding to the last 5-th irreducible representation

n of A over Q. It follows that dimn = 4 and n = ¢» & 1. We have
n =Y @1 = IndGa @ IndSa* = IndS(a @ a),

where H = A x (y?), o* is the contragredient of a, and o @ «* is isomorphic to the
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representation v of H given by

Since all the simple algebras in the decomposition (C.0.1) of Q[Q)] are central and
simple, the simple algebras in the decomposition of Q[G] will be isomorphic to the
tensor products of the simple algebras appearing in the decomposition of Q[Q] with
the simple algebras appearing in the decomposition of Q[A]. This implies that the
irreducible representations of G' over Q are isomorphic to the tensor products of the
irreducible representations of () over Q with the irreducible representations of A over

Q. Thus, G has the following list of irreducible representations over Q:

8 1-dimensional representations;

8 2-dimensional representations;

6 4-dimensional representations, namely (¢ @ ¢) ® m;, where m, m are 1-
dimensional representations of A realizable over Q and w; ® (¢ @ ), where

w1, ...,ws are 1-dimensional representations of () realizable over Q;

2 8-dimensional representations;

1 16-dimensional representation.

Since o is a 4-dimensional representation of G irreducible over C, it follows that o is

not from this list, hence o is not realizable over Q. O
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Appendix D

Proof of Proposition 4.2.1. Let I' = T(K)/A. We have the following exact sequence

of Gal(K /K)-modules:

0—A—T(K)—T—0. (D.0.1)

Since A = 7 and T'(K) is a divisible group, this sequence induces the following exact

Gal(K /K)-equivariant sequence of [-adic Tate modules:
0 —T(T) —T)(T) — x1®Z] — 0, (D.0.2)

where Tj(T) denotes T}(T(K)). Let L C K be a finite Galois extension of K over
which T splits. Since T;(7T) is a free Z;-module of rank r it follows from (D.0.2) that

T,(T") is a free Z;-module of rank s+ r, hence by Proposition D.0.10 below we have
Resiep' = (wp )™ @ (w' @sp(2))™, (D.0.3)

where wy, = Reskw. The rest of the proof is similar to the proof of Proposition 2.3.1.

Since Resyy /)0 = (Resk p, S) and Resk p is semisimple by (D.0.3), o’ is admissible
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by Lemma 2.2.1. Hence it has the following form:

t
p = @ a; @ sp(ny), (D.0.4)
i=1

where each «; is a representation of W(K /K) and each n; is a positive integer ([Rol],
p. 133, Cor. 2). Also, it follows from (D.0.3) that S? = 0 and rank S = s. Thus,

each n; in (D.0.4) is 1 or 2 and
pead(fesp2), (D.0.5)

where « is a representation of W(K/K) of dimension r — s and (3 is a representation
of W(K/K) of dimension s.

Applying the exact functor (—) ®z, Q; to (D.0.2) and taking duals afterwards, we
get

0— x1®Qf — V()" — Vi(T)* — 0, (D.0.6)

where Vi(T) = Vi(T(K)) and x; = (x1)*, since x; is a representation of finite im-
age, realizable over Z. Sequence (D.0.6) induces an exact sequence of corresponding

representations of W/ (K /K), i.e.,
0— (noQ®)eC—VIl) e C— V([T ® C—0 (D.0.7)

is an exact sequence of W (K /K)-modules. Moreover, x; is the representation of
W(K/K) on (x; ® Q) ®, C, o/ = (p,S) is the representation of W'(K/K) on
Vi(T)* ®, C, and by Lemma 2.3.2, Y ® w™! is the representation of W/(K/K) on

Vi(T)* ®, C. Since p is semisimple, the exact sequence (D.0.7) of W(K /K)-modules
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splits, i.e.,
pEXI® (W)

On the other hand, from (D.0.5) we have:
pEadfo(feow).
Thus, combining the last two congruences, we get
aB BB BRW) Ex B (xRw™). (D.0.8)

We claim that § ® w is isomorphic to a subrepresentation of y;. Suppose there is

an irreducible component 3, of 3 such that Gy ®w is isomorphic to a subrepresentation

of y®@w™! ie.,

BoOwr@w ! (D.0.9)

for some irreducible component z of x. It follows from (D.0.8) that (3, is isomorphic

1

to a subrepresentation of y ® w™" or i, which is impossible, because x, x, and x;

have finite images, whereas w does not. Indeed, suppose By = y ® w™*

or fy = z,
where y is an irreducible component of x and z is an irreducible component of ;.
From (D.0.9) we get

BoEr@uw?,
hence

2 ~

QWi yRuw ! or rw 2z

By taking determinants of both sides in each case, we get

det det
etr w2k o T w2k (D.0.10)

dety det 2 ’
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where m = dimy, k = dimx. Since z, y, and z have finite images (as being subrep-
resentations of y or y;) and w has infinite image, (D.0.10) gives a contradiction.
Thus, § ® w is isomorphic to a subrepresentation of y;. Since 8 ® w and x; have
the same dimension s, we have 3®w = 1, hence 8 = y; ®w™!. By the uniqueness of
decomposition of a semisimple module into simple modules, we conclude from (D.0.8)

that o &y, @ w1, O]

Proposition D.0.10. Let A C (K*)" be a free discrete subgroup of rank s (s < r) and
denote (K™)"/A by T'. Let p = (p,S) be the representation of W (K /K) associated
to the l-adic representation of Gal(K/K) on Vi(I')*. Let T)(T) be a free Zy-module of

rank s +r. Then

p/ o~ (w—1>€B(r—s) oy (w—l ® Sp(z))EBS.

Proof. Let p1,...,ps € A be a basis of A, satisfying the assertion of Lemma D.0.12
below. First, let us choose a Q-basis for V; = Vi(I'). Let fi = (fi(n)),..., fs =

(fs(n)) € T(T), where fi(n),..., fs(n) as elements of (K )" have the following form:

fl(n)ln:pl, ,fs(n)lnzps and

Aln+1) = fi(n), ... fln+1)" = fy(n).

Let € = (£(n)), where each £(n) € K~ is a primitive ["-th root of unity and £(n+1)! =

f(n> Let fs+1 = (ferl(n))?' : '7fs+r = (ferr(n)) € E(F>7 where fs+1(n>7' : '7fS+T(n>
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as elements of (K )" satisfy the following properties:
Yy g prop

for1(n) = (&(n),1,...,1),
fs+2(n) = (175(’”)""71)7

fs—i—r(n) = (17 17 to 75(”))

Then fi,..., fs1r is a basis of V;. Indeed, it is easy to check that fi,..., fsi, are
linearly independent over Z;. Since Tj(I") is a free Z;-module of rank s + r, it follows
that fi,..., fsir is a basis of V.

Let p; : Gal(K/K) — GL(V;) be the [-adic representation associated to the
Gal(K /K)-module V;. Then the matrix representation of p; with respect to the basis

fi, .-+, fsir has the following form:

(@) = . ali) = , (D.0.11)

where E, and E; are the identity matrices, i € I, and B(i) € Mat,«4(Q;). It is known
that there exists a nilpotent endomorphism S; of V;* such that S is obtained from 5
by extending of scalars via a field embedding ¢ : ; — C; moreover, S; is a unique

nilpotent endomorphism such that

pi (i) = exp(t(1)S), (D.0.12)

where t; : [ — (Q; is a nontrivial continuous homomorphism and 7 belongs to an
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open subgroup of I. Furthermore, for any g € W(K /K) we have

p(g) = pi (g)exp(—t:(i)S1), (D.0.13)

where pf(g)exp(—t;(i)S;) is considered as an element of GL(V;* ®, C) via ¢ ([Rol], p.
131, Prop.(i), (ii)). Formula (D.0.11) for p;(®) implies that, considered as a matrix
over C via 1, it is diagonalizable. It follows from Formula (D.0.13) that p(®) is
diagonalizable, hence p is semisimple and p’ is admissible by Lemma 2.2.1.

Let @ be a uniformizer of K and let I = (ww(n)), where each w(n) € K has the

following property:

There exists ig € I such that

io(I1) = (ig(w@(n))) = (@(n)é(n)*™) = €11,
where oo = (a(n)) € Z;. By Lemma D.0.11 below « # 0.

Lemma D.0.11. Let g € O and let g, € K denote a root of 2" — g = 0. Then

i(gn) = gn for any i € I and n € N if and only if g € O*.

Proof. Clearly, i(g,) = g, for any ¢ € I and n € N if and only if K(g,) is unramified
over K for any n.

Let g € O*. Then the assertion follows from the fact that z!" — g, considered as
a polynomial in k[z], has no multiple root ([L], p. 48, Prop. 7).

Conversely, since g/ = g, the valuation of g in K(g,) is divisible by {". Since
K (g,) is unramified over K for any n, the valuation v, of ¢ in K coincides with the
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valuation of ¢ in K(g,), hence v, is divisible by [ for any n, which implies that v,

must be zero and g € O*. n

Let pr = (pij), prj € K*, 1 <k <s,1<j <r. It follows from Lemma D.0.12
below that without loss of generality we can assume that py, ¢ O for any k and
that py; € O™ whenever £ > j, 1 < j < r. Thus there exist u;, € O and m;, € Z*

such that pg, = uy, - @™ Let (ux(n)) be a sequence in K such that
up(n)" =wu, and  wu(n +1)' = ug(n).

For fr(n) € (K" write fy(n) = (fr;(n)), where fi;(n) € K, 1 < k < s, and

1 <j <r. Then as fg(n) we can take ug(n) - w(n)™. For iy we have

io(f1) = (i0(f1(n))) = (io(f11(n)), i0(fr2(n)), . io(f1r(n))),

where by Lemma D.0.11 we have:

io(f11(n)) = uy(n) - w(n)™ - £(n)*MW™ = f11(n) - £(n)*m

Analogously, using Lemma D.0.11, we get the following formulas:

io(f1) = fi-follt - foda - for,,

. b b
20<f2> = f2 : ngSZ ’ fsi?;”'fs—&-r?

Z'O(fS) = fS' ;sms' g;r-ll ;Trr
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for some a;,b;,...,c; € Z;. This implies that B(iy) has the following form:

amq 0 . 0
¥ ama 0
B(ig) = :
* * amyg
where a, my, ..., ms € Z)°, hence rank B(ip) = s.
Since p’ is admissible,
k
o=@ @spny), (D.0.14)
j=1

where 7y, ..., 7, are representations of W(K/K) ([Rol], p. 133, Cor. 2 ). Since
pi (1) = exp(t;(i)S;) by (D.0.12) and (p;(i) — Esir)* = 0 from (D.0.11), it follows that

(S)* =0, i.e., each n; in (D.0.14) is 1 or 2, hence

pEad (Besp(2)),

where o and 3 are representations of W(K /K). Since rank B(is) = s, the equation
(D.0.12) implies that rank S = rank S; = s, hence dim § = s and dima = r — s.
Let us prove now that a = @, ,w™' and = @, ,w™'. It can be easily verified

that (D.0.11) — (D.0.13) imply

p(g) = , g€ W(K/K), (D.0.15)
0 (wfl)@r

hence there is a complete flag of subrepresentations
0)#WyC---CWe, =V*®,C
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of p. Since p is semisimple, it implies that p is a direct sum of one-dimensional

subrepresentations, hence from (D.0.15)

= @w‘l and [ 2 @w‘l.
m

Lemma D.0.12. Let K be a non-Archimedean local field with ring of integers O. Let
A C (K*)" be a free discrete subgroup of rank s (s < r). There exist a basis py, ..., Ds
of A and natural numbers ny,...,ns (1 <np <ng <--- < ng <r) with the following
property: if p, = (prj), 1 <k <s, 1 <j<r, and py; € K*, then p;,, ¢ O for any

v and pr,, € O* whenever | > 1.

Proof. First, note that (O*)" N A = {1}. Indeed, if z € (O*)" N A and = # 1, then
(™) is an infinite sequence in (O*)" N A, hence it has a limit point, because (O*)" is
compact, which contradicts the assumption that A is discrete.

Let @ be a uniformizer of K. The map O* x Z — K* given by
(u,n) — uww"

is an isomorphism of topological groups. For every positive integer r it induces an
isomorphism (K*)" = (O*)" x Z". Let m: (K*)" — Z" be the projection onto Z"
and ti,...,ts be a basis of A. Since (O*)"NA = {1}, w(t1),...,n(ts) form a basis of
7m(A). Indeed, otherwise, there exist my,...,ms € Z, not all of which are zeros, such
that

mam(ty) + -+ + mgm(ts) = 0.
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Then 1 # ¢ -+t € (O*)" N A. Thus, 7(A) C Z" is a subgroup of rank s and it is

enough to prove the following sublemma:

Sublemma D.0.13. Let G C Z" be a subgroup of rank s (s < r). There ezist a basis
g1, ---,9s of G and natural numbers ny, ..., ns (1 <np <ng < --- < ng <) with the
following property: if g = (g;), 1 <k <s, 1 <j <r, and g; € Z, then g, # 0

for any v and g;,, = 0 whenever [ > 1.

Indeed, if we assume Sublemma D.0.13, then there is a basis ¢i,...,gs of w(A)
with the property described in Sublemma D.0.13. Since 7 (t;),...,n(ts) is a basis of

m(A), there is a matrix D = (d;;) € GL,(Z) such that

gi:Zdi]‘ﬂ'(t]‘), 1 S’LSS
J
Then p; = [, t;l” , 1 <i<s, will be a basis of A with the required property. O]

Proof of Sublemma D.0.13. Suppose r = s. We will prove the sublemma in this case
by induction on r. Clearly, it holds when r» = 1. Let r be arbitrary and eq,...,e, be
the standard basis of Z". There exists k € Z* such that G N (e,) = (ke,), because
me, € G, where m = |B| and B = Z"/G. Then G/(ke,) C Z"! is a subgroup of
rank r — 1. By induction, there exist gi,...,g,_1 € G such that in G/(ke,) we have:
g‘i:Zaijej, 1< <r—1,
j=1
for some a;; € Z such that a; # 0 for any ¢ and a;; = 0 whenever ¢ > j. Then

i, ---59r—1, 9 = ke, will be a basis of G with the required property.
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Suppose now that s # r. Let q1, ..., qs be a basis of G. Then ¢; = Zj bije;, where
B = (b;j) € Matsy,(Z). Since qi,...,qs is a basis, rank B = s, i.e., there exists an

s x s-submatrix By of B such that det By # 0. Let By have the following form:

bin, bin, ... Din,

ban, bon, ... bap,
By =

bsny bsny -+ bsn,

Then p; = Zj bin,€n;, 1 < i < s, are linearly independent, hence generate a free
subgroup H of rank s in Ze,, ® - - - @ Ze,,. By the case r = s above there is a matrix
C € GL4(Z) such that
Z CriDi = Z hknj €n;»
( J
where hy,, € Z, hin, # 0 for any i and hy,, = 0 whenever [ > 4. Then g = > i Chili

1 <k < s, will be a basis of G with the required property. O
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