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ABSTRACT

ROOT NUMBERS OF ABELIAN VARIETIES AND REPRESENTATIONS OF

THE WEIL-DELIGNE GROUP

Maria Sabitova

Ted Chinburg

We generalize a theorem of D. Rohrlich concerning root numbers of elliptic curves

over the field of rational numbers. Our result applies to abelian varieties over number

fields. Namely, under certain conditions which naturally extend the conditions used by

D. Rohrlich, we show that the root numberW (A, τ) associated to an abelian variety A

over a number field F and a complex finite-dimensional irreducible representation τ of

Gal(F/F ) with real-valued character is equal to 1. In the case where the ground field

is Q, we show that our result is consistent with a refined version of the conjecture

of Birch and Swinnerton-Dyer. We also give a description of unitary, orthogonal,

and symplectic admissible representations of the Weil-Deligne group of a local non-

Archimedean field.
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Chapter 1

Introduction

One of the main objects of study in this thesis is the root number W (A, τ) associ-

ated to an abelian variety A of dimension g over a number field F and a continuous

irreducible complex finite-dimensional representation τ of Gal(F/F ) with real-valued

character. The root number W (A, τ) is a complex number of absolute value 1. As-

sume for simplicity that F = Q. Then W (A, τ) appears in the following conjectural

functional equation:

Λ(A, τ, s) = W (A, τ) · Λ(A, τ ∗, 2− s), (1.0.1)

where s ∈ C, τ ∗ is the contragredient of τ , and

Λ(A, τ, s) = Cs · Γ(s)g dim τ · L(A, τ, s)

for some positive constant C and the twisted L-function L(A, τ, s) which is a mero-

morphic function of s defined in a right half-plane. This function is conjectured to

have an analytic continuation to the entire complex plane. Since τ has real-valued
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character, τ ∼= τ ∗. Assuming (1.0.1) and considering the power series expansion of

L(A, τ, s) about s = 1, we get:

W (A, τ) = (−1)ords=1L(A,τ,s). (1.0.2)

In this thesis we generalize a result by D. Rohrlich for elliptic curves ([Ro2], p.

313, Prop. E) to abelian varieties. We prove the following theorem:

Theorem 1.0.1. Let F be a number field, L a finite Galois extension of F , and

τ an irreducible complex finite-dimensional representation of Gal(L/F ) with real-

valued character. Let g be a fixed positive integer and assume that the decomposition

subgroups of Gal(L/F ) at all the places of F lying over all the primes less or equal to

2g + 1 are abelian. If the Schur index mQ(τ) is 2 then W (A, τ) = 1 for every abelian

variety A of dimension g over F .

If F = Q then Theorem 1.0.1 is predicted by the conjectures of Birch-Swinnerton-

Dyer and Deligne-Gross. Namely, the conjectures of Birch-Swinnerton-Dyer and

Deligne-Gross imply

ords=1L(A, τ, s) = 〈σA, τ〉, (1.0.3)

where σA is the natural representation of Gal(Q/Q) on C⊗Z A(Q) and 〈σA, τ〉 is the

multiplicity of τ in σA ([Ro3], p. 127, Prop. 2). Thus, we get from (1.0.2) and (1.0.3):

W (A, τ) = (−1)〈σA,τ〉.

Since σA is realizable over Q and τ is irreducible, mQ(τ) divides 〈σA, τ〉. Thus, if

mQ(τ) = 2 then W (A, τ) = 1 for every abelian variety A over Q if (1.0.3) is true (cf.
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[Ro2], p. 313).

To prove Theorem 1.0.1 we use the following formula:

W (A, τ) =
∏
v

W (Av, τv),

where v runs through all the places of F , Av = A×FFv, Fv denotes the completion of F

with respect to v, and τv is the restriction of τ to Gal(Fv/Fv) ↪→ Gal(F/F ). To define

W (Av, τv) for every place v let σ′v denote the representation of the Weil-Deligne group

W ′(F v/Fv) associated to the first cohomology of Av. Then W (Av, τv) = W (σ′v ⊗ τv),

where τv is viewed as a representation of W ′(F v/Fv). We will in fact show the

following stronger result:

Theorem 1.0.2 (Theorem A). W (Av, τv) = 1 for all v under the hypotheses of

Theorem 1.0.1.

First, we describe W (Av, τv) when τv is a complex finite-dimensional continuous

representation of Gal(Fv/Fv) with real-valued character. If v is an infinite place then

σ′v is associated to the components of H1(Av(C),C) in the Hodge decomposition. We

show in Lemma 3.1.1 that

W (Av, τv) = (−1)g dim τv . (1.0.4)

If v is a finite place, then

W (σ′v ⊗ τv) =
ε(σ′v ⊗ τv, ψv, dxv)

|ε(σ′v ⊗ τv, ψv, dxv)|
,

where ψv is a nontrivial additive character of Fv and dxv is a Haar measure on Fv.

Here σ′v is isomorphic to the representation of W ′(F v/Fv) afforded by H1
l (Av), where
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l is a rational prime different from the residual characteristic of Fv. It is known that

H1
l (Av)

∼= Vl(Av)
∗ as Gal(F v/Fv)-modules over Ql, where Vl(Av) = Tl(Av) ⊗Zl

Ql,

Tl(Av) is the l-adic Tate module of Av, and Vl(Av)
∗ denotes the contragredient of

Vl(Av). Thus, we can assume that σ′v is the representation of W ′(F v/Fv) associated to

Vl(Av)
∗. Clearly, W (σ′v⊗τv) does not depend on the choice of dxv and it turns out that

W (σ′v ⊗ τv) does not depend on the choice of ψv either. Moreover, W (σ′v ⊗ τv) = ±1

(see Section 2.1).

We consider two cases: Av is an abelian variety with potential good reduction

and the general case. If Av has potential good reduction, it follows from Néron-Ogg-

Šhafarevič criterion that σ′v is actually a representation of the Weil group W(F v/Fv).

If the characteristic of the residue class field kv of Fv is greater than 2g+1, we use the

theory of Serre-Tate together with methods of the representation theory to describe

the class of σ′v⊗ω
1/2
v in the Grothendieck group of virtual representations ofW(F v/Fv)

(Corollary 2.2.7, Formula (2.2.4)). Here ωv is the one-dimensional representation of

W(F v/Fv) given by

ωv|Iv = 1, ωv(Φv) = q−1
v ,

where Iv is the inertia subgroup of Gal(F v/Fv), Φv is an inverse Frobenius element

of Gal(F v/Fv), and qv = card(kv). Since the root number of representations of

W(F v/Fv) is multiplicative in short exact sequences, this result enables us to prove

the following formula for W (σ′v ⊗ τv) when char(kv) > 2g + 1 (cf. Proposition 2.2.9):

W (σ′v ⊗ τv) = det τv(−1)l1 · βdim τv · γl2 · (−1)〈νv ,τv〉, (1.0.5)
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where l1 ∈ Z, β = ±1, γ = ±1, l2 = 〈1, τv〉 + 〈ηv, τv〉, ηv is the unramified quadratic

character of F×v , and νv is a representation of Gal(F v/Fv) realizable over Q (cf. [Ro2],

p. 318, Thm. 1).

In the general case we use the theory of uniformization of abelian varieties. Ac-

cording to this theory there exists a semi-abelian variety Gv over Fv and a discrete

subgroup Yv of Gv such that, in terms of rigid geometry, Av is isomorphic to the

quotient Gv/Yv. The semi-abelian variety Gv fits into an exact sequence

0 −→ Tv −→ Gv
fv−→ Bv −→ 0, (1.0.6)

where Bv is an abelian variety over Fv with potential good reduction, Tv is a torus

over Fv of dimension r; Yv is an étale sheaf of free abelian groups over Spec(Fv) of

rank r. To describe σ′v in this case we use a formula of M. Raynaud ([Ra], p. 314)

which gives the action of the inertia group Iv on the ln-torsion points of an abelian

variety over a non-Archimedean local field in the case when the uniformization data

splits. We need this formula to show that in this case

σ′v
∼= κv ⊕ (χv ⊗ ω−1

v ⊗ sp(2)), (1.0.7)

where κv is the representation of W ′(F v/Fv) associated to the natural l-adic repre-

sentation of Gal(F v/Fv) on Vl(Bv)
∗,

χv : Gal(F v/Fv) −→ GLr(Z)

is the representation of Gal(F v/Fv) corresponding to the Galois module Yv(F v), and

sp(2) is given by (2.1.1) (see Proposition 2.3.1). Since the root number of a direct
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sum of representations of W ′(F v/Fv) equals the product of the root numbers of the

summands, we get from (1.0.7)

W (σ′v ⊗ τv) = W (κv ⊗ τv) ·W (χv ⊗ ω−1
v ⊗ τv ⊗ sp(2)). (1.0.8)

If char(kv) > 2g + 1 then (1.0.5) can be applied to κv, i.e.,

W (κv ⊗ τv) = det τv(−1)l1 · βdim τv · γl2 · (−1)〈νv ,τv〉, (1.0.9)

where l1, β, γ, l2, and νv are as in (1.0.5) when σ′v is replaced by κv.

The rest of the proof of Theorem 1.0.2 is analogous to one of Proposition E ([Ro2],

p. 347). Namely, it follows from Lemma on p. 339 and Lemma on p. 347 in [Ro2] that

dim τ is even. Hence we get from (1.0.4) that W (Av, τv) = 1 for infinite places. If v

is a finite place then the assumption mQ(τ) = 2 implies W (χv⊗ω−1
v ⊗ τv⊗ sp(2)) = 1

([Ro2], p. 327, Prop. 6), hence we have from (1.0.8)

W (σ′v ⊗ τv) = W (κv ⊗ τv). (1.0.10)

If v is a finite place such that char(kv) > 2g+1 then (1.0.9) holds which, together

with the assumption mQ(τ) = 2, implies W (κv ⊗ τv) = 1, hence W (σ′v ⊗ τv) = 1.

If v is a finite place such that char(kv) ≤ 2g + 1 then the conditions on bad

primes in Theorem 1.0.1 imply that τv is symplectic ([Ro2], Lemma on p. 347). Also,

κv ⊗ ω
1/2
v is symplectic, because κv comes from an abelian variety (see Section 2.1).

Since real powers of ωv do not change the root number,

W (κv ⊗ τv) = W (κv ⊗ ω1/2
v ⊗ τv) = 1 (1.0.11)
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as the root number of the tensor product of two symplectic representations ofW(F v/Fv)

([Ro2], p. 319, Prop. 2 and the remark after it). Thus, in this case we also have

W (σ′v ⊗ τv) = 1 by (1.0.10) and (1.0.11).

If U is a complex finite-dimensional vector space and λ : D −→ GL(U) is a

representation of a group D on U , then by λ̌ : D −→ GL(Ǔ) we denote the represen-

tation of D on Ǔ , where Ǔ is a C[D]-module with the underlying D-module U∗ and

multiplication by constants defined as follows:

a · φ = aφ, a ∈ C, φ ∈ U∗.

We say that U is unitary if U admits a nondegenerate invariant hermitian form

(not necessarily positive definite). In this thesis we also study unitary, orthogonal,

and symplectic representations of the Weil-Deligne group W ′(K/K) of a local non-

Archimedean field K. Namely, we prove the following theorem:

Theorem 1.0.3 (Theorem B). Let σ′ be a minimal unitary, orthogonal, or symplec-

tic admissible representation of W ′(K/K) (i.e., a unitary, orthogonal, or symplectic

representation respectively that cannot be written as an orthogonal sum of nonzero

invariant subrepresentations). Let U be a representation space of σ′ and 〈· , ·〉 a non-

degenerate invariant form on U . Then either σ′ is indecomposable or U ∼= V ⊕ Ṽ ,

where V is an indecomposable submodule of U , Ṽ = V ∗ if 〈· , ·〉 is bilinear, and Ṽ = V̌

if 〈· , ·〉 is sesquilinear. Moreover, if λ is the isomorphism of V ⊕ Ṽ onto U and 〈· , ·〉′

is the form on V ⊕ Ṽ given by

〈x, y〉′ = 〈λ(x), λ(y)〉, x, y ∈ V ⊕ Ṽ ,
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then 〈· , ·〉′|V and 〈· , ·〉′|Ṽ are degenerate, 〈· , ·〉′ : V × Ṽ −→ C is the standard form

given by

〈u, f〉′ = f(u), u ∈ V, f ∈ Ṽ .

This thesis is organized in the following way. In Chapter 2 we study the root num-

ber W (σ′ ⊗ τ), where τ is a complex finite-dimensional representation of Gal(K/K)

with real-valued character, K is a local non-Archimedean field of characteristic zero,

and σ′ is the representation of W ′(K/K) associated to the natural l-adic represen-

tation of Gal(K/K) on Vl(A)∗, where A is an abelian variety over K. Section 2.1

contains general facts and notation. In Section 2.2 we study the case of an abelian

variety with potential good reduction. Section 2.3 deals with the general case. In

Chapter 3 we give the proof of Theorem 1.0.2 (Theorem A) and discuss two special

cases of the theorem when local calculations are especially easy. Chapter 4 is devoted

to Theorem 1.0.3 (Theorem B). In Section 4.1 we give a proof of the theorem and

in Section 4.2 we use it instead of Raynaud’s result mentioned above to give an ele-

mentary proof of (1.0.7) in a special case when in (1.0.6) the image of Yv under fv is

finite.

We put proofs of the results of Section 2.2 in Appendix A. Appendix B contains

a lemma needed for the proof of the main result of Section 2.3 (Proposition 2.3.1).

Appendix C contains an example of an orthogonal complex finite-dimensional irre-

ducible representation of a finite group with Schur index 2 over the rationals. In

Appendix D we give a description of the representation of W ′(K/K) associated to

8



the natural l-adic representation of Gal(K/K) on Vl(A)∗ in the case when A is the

quotient of a torus by a discrete subgroup. This result will be used in Section 4.2.

Unless stated otherwise, we assume that all the representations under considera-

tion are complex and finite-dimensional.
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Chapter 2

Root numbers of abelian varieties

over local non-Archimedean fields

of characteristic zero

2.1 General facts and notation

Let K be a non-Archimedean local field of characteristic zero with residue class field

k and a uniformizer $. Let K be a fixed algebraic closure of K and let Kunr be

the maximal unramified extension of K contained in K. Let I = Gal(K/Kunr) be

the inertia subgroup of Gal(K/K) and let Φ be an inverse Frobenius element of

Gal(K/K), i.e., Φ is a preimage of the inverse of the Frobenius automorphism under

the decomposition map
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π : Gal(K/K) −→ Gal(k/k).

By a representation σ of the Weil group W(K/K) we mean a continuous homo-

morphism

σ : W(K/K) −→ GL(U),

where U is a finite-dimensional complex vector space (for the definition of W(K/K)

see [Ro1], §1). Let ω : W(K/K) −→ C× be the one-dimensional representation of

W(K/K) given by

ω|I = 1, ω(Φ) = q−1,

where q = card(k). For a finite extension F of K contained in K, we identify by local

class field theory the one-dimensional representations of W(K/F ) with characters of

F× (i.e., continuous homomorphisms from F× into C×). Also, if φ is a representation

of W(K/F ), the representation of W(K/K) induced by φ will be denoted by IndFKφ.

Analogously, if ψ is a representation ofW(K/K), then the restriction of ψ toW(K/F )

will be denoted by ResFKψ.

By a representation σ′ of the Weil-Deligne group W ′(K/K) we mean a continuous

homomorphism

σ′ : W ′(K/K) −→ GL(U),

where U is a finite-dimensional complex vector space and the restriction of σ′ to the

subgroup C of W ′(K/K) is complex analytic (for the definition of W ′(K/K) see

[Ro1], §3). It is known that there is a bijection between representations of W ′(K/K)
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and pairs (σ,N), where σ : W(K/K) −→ GL(U) is a representation of W(K/K) and

N is a nilpotent endomorphism on U such that

σ(g)Nσ(g)−1 = ω(g)N, g ∈ W(K/K).

In what follows we identify σ′ with the corresponding pair (σ,N) and write σ′ =

(σ,N). Also, a representation σ of W(K/K) is identified with the representation

(σ, 0) of W ′(K/K) ([Ro1], §§1–3).

For a positive integer n let sp(n) = (σ,N) denote the special representation of

dimension n, i.e., the representation of W ′(K/K) on Cn (with the standard basis

e0, . . . , en−1) given by the following formulas:

σ(g)ei = ω(g)iei, 0 ≤ i ≤ n− 1, g ∈ W(K/K), (2.1.1)

Nej = ej+1, 0 ≤ j ≤ n− 2,

Nen−1 = 0.

We say that a representation σ′ = (σ,N) of W ′(K/K) is admissible if σ is semisimple

([Ro1], p. 132, §5).

Let A be an abelian variety over K. For a rational prime l different from p =

char(k) let Tl(A) be the l-adic Tate module of A. It is a free Zl-module of rank 2g,

where g = dimA. Put Vl(A) = Tl(A)⊗Zl
Ql and let

σl : Gal(K/K) −→ GL(Vl(A)∗)

denote the contragredient of the natural l-adic representation of Gal(K/K) on Vl(A).

We are interested in the representation σ′ = (σ,N) of W ′(K/K) associated to σl by

12



the standard procedure ( see e.g., [Ro1], §4). Let ı : Ql ↪→ C be a field embedding.

Then σ : W(K/K) −→ GL(Vl(A)∗ ⊗ı C) is a representation of W(K/K) (which is

not necessarily obtained from the restriction of σl to W(K/K) by extending scalars

via ı : Ql ↪→ C) and N ∈ End(Vl(A)∗ ⊗ı C) is a nilpotent endomorphism (see [Ro1],

p. 130, §4 for more detail). A priori, σ′ depends on the choice of l and ı, but by

abuse of notation we write σ′ instead of σ′l,ı. We will prove later that in our context

σ′ does not depend on the choice of l and ı. Let τ be a representation of Gal(K/K)

with real-valued character. Our goal in this chapter is to compute the root number

W (σ′ ⊗ τ).

Note that there is a nondegenerate, skew-symmetric, Gal(K/K)-equivariant pair-

ing

〈−,−〉 : Vl(A)× Vl(A) −→ Ql ⊗ ωl,

where ωl is the l-adic cyclotomic character of Gal(K/K). Indeed, let A∨ be the dual

abelian variety to A and let

el : Tl(A)× Tl(A
∨) −→ Zl ⊗ ωl

be the Weil pairing, which is nondegenerate and Gal(K/K)-equivariant ([M], p. 131,

§16). Let L be an ample invertible sheaf on A ([M], p. 114, Cor. 7.2). Then

ϕL : A −→ A∨ is an isogeny ([M], p. 119, §10) and the pairing

eL
l : Tl(A)× Tl(A) −→ Zl ⊗ ωl

defined for a, a′ ∈ Tl(A) by eL
l (a, a′) = el(a, ϕL (a′)) is skew-symmetric ([M], p. 134,

13



Prop. 16.6). Clearly, the pairing on Vl(A) obtained from eL
l by extending scalars to

Ql is nondegenerate and Gal(K/K)-equivariant.

Having 〈−,−〉, it is easy to show that σ′ ⊗ ω1/2 is symplectic (cf. [Ro1], p. 150,

§16). Then σ′ ⊗ ω1/2 ⊗ τ is self-contragredient and of trivial determinant, hence

W (σ′ ⊗ ω1/2 ⊗ τ) does not depend on the choice of a nontrivial additive character of

K and W (σ′ ⊗ ω1/2 ⊗ τ) = ±1 ([Ro2], p. 315). Since W (σ′ ⊗ τ) = W (σ′ ⊗ ω1/2 ⊗ τ),

the same conclusion holds for W (σ′ ⊗ τ).

One of the main theories we are using to find a formula for W (σ′ ⊗ τ) is the

theory of uniformization of abelian varieties. According to this theory there exists a

semi-abelian variety G over K and a discrete subgroup Y of G such that, in terms

of rigid geometry, A is isomorphic to the quotient G/Y . The semi-abelian variety G

fits into an exact sequence

0 −→ T −→ G
f−→ B −→ 0, (2.1.2)

where B is an abelian variety over K with potential good reduction, T is a torus over

K of dimension r; Y is an étale sheaf of free abelian groups over Spec(K) of rank r.

14



2.2 Case of an abelian variety with potential good

reduction.

We keep the notation of Section 2.1. Let B be an abelian variety overK with potential

good reduction and let

κl : Gal(K/K) −→ GL(Vl(B)∗)

denote the natural l-adic representation of Gal(K/K) on Vl(B)∗. First, note that the

representation κ′ = (κ, S) of W ′(K/K) associated to κl is actually a representation

of W(K/K), i.e., S = 0. Indeed, κ′ is a representation of W(K/K) if and only if κl

is trivial on an open subgroup of I ([Ro1], p. 131, Prop.(i)). Let

ψl : Gal(K/K) −→ Aut(Tl(B))

denote the representation corresponding to the Gal(K/K)-module Tl(B). Since B

has potential good reduction, the image by ψl of I is finite ([S-T], p. 496, Thm.

2(i)), which implies that the image by κl of I is finite, hence κl is trivial on an open

subgroup of I (cf. [Ro1], p. 148).

Lemma 2.2.1. A complex finite-dimensional representation of a group is semisimple

if and only if its restriction to a subgroup of finite index is semisimple.

Proof. It is known that a complex finite-dimensional representation λ of a group

is semisimple if and only if its restriction to a normal subgroup of finite index is

semisimple ([Che], p. 82, Prop. 1 and [Ro1], p. 148). Moreover, since every subgroup
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of finite index contains a normal subgroup of finite index, this implies that λ is

semisimple if and only if its restriction to a subgroup of finite index is semisimple.

Lemma 2.2.2. κ is semisimple.

Proof. Since the image by κ of I is finite, by Lemma 2.2.1 it is enough to show

that κ(Φ) is diagonalizable. Also, if L ⊂ K is a finite extension of K over which B

acquires good reduction then again by Lemma 2.2.1, κ is semisimple if and only if its

restriction toW(K/L) is semisimple. Thus, we can assume that B has good reduction

(cf. [Ro1], p. 148). Let B0 be the Néron minimal model of B and B̃ = B0 ×O k

the special fiber of B0. Since B has good reduction, the reduction map defines a

Gal(K/K)-equivariant isomorphism of Tl(B) onto Tl(B̃), where Gal(K/K) acts on

Tl(B̃) via the decomposition map π ([S-T], p. 495, Lem. 2). Thus,

Vl(B) ∼= Vl(B̃) (2.2.1)

as Gal(K/K)-modules.

Lemma 2.2.3. Let D be a group and let U be a finite-dimensional representation of

D over a field `. Then U is semisimple if the subalgebra of End`(U) generated by the

image of D is semisimple.

Proof. Obvious.

Since the subalgebra of EndQl
(Vl(B̃)) generated by the automorphisms of Vl(B̃)

defined by elements of Gal(k/k) is semisimple ([T1], p. 138), the natural l-adic

representation βl of Gal(k/k) on Vl(B̃) is semisimple by Lemma 2.2.3. Since Gal(k/k)
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is abelian, βl is a direct sum of one-dimensional representations, hence βl(π(Φ)) is

diagonalizable, consequently, κ∗l (Φ) is diagonalizable, because κ∗l (Φ) is equivalent to

βl(π(Φ)) via (2.2.1). This proves that κ(Φ) is diagonalizable, because κ(Φ) is just

κl(Φ) considered as an element of GL(Vl(B)∗ ⊗ı C).

Corollary 2.2.4. The representation κ does not depend on the choice of l and ı.

Proof. [Ro1], p. 148 and Lemma 2.2.2.

Since B has potential good reduction, by the theory of Serre-Tate there exists a

minimal finite subextension L/Kunr ofK/Kunr over which B acquires good reduction.

It is a Galois extension and it is tamely ramified if p > 2m + 1, where m = dimB.

Moreover, Gal(K/L) is contained in the kernel of the representation ψl ([S-T], p. 497,

Cor. 2 and p. 498, Cor. 3). Thus, κ and, consequently κ ⊗ ω1/2, can be considered

as representations of the group

W(L/K) = W(K/K)/Gal(K/L) ∼= Gal(L/Kunr) o 〈Φ〉,

where 〈Φ〉 is the infinite cyclic group generated by Φ (cf. [Ro2], p. 331). Through-

out this section we assume that p > 2m + 1. Then, under this assumption E =

Gal(L/Kunr) is a finite cyclic group of order not divisible by p and κ ⊗ ω1/2 is a

semisimple (by Lemma 2.2.2), symplectic (see Section 2.1) representation of the semi-

direct product G = E o 〈Φ〉 of finite and infinite cyclic groups. Using Corollary on

p. 499 in [S-T], it is immediate that κ has Q-valued character. Since ω is trivial on

I, it follows that ResGE(κ⊗ω1/2) has Q-valued character. The following results give a
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description of such a representation, i.e., a semisimple symplectic representation λ of

a semi-direct product of a finite cyclic group E and an infinite cyclic group such that

the restriction of λ to E has Q-valued character. They will be used later to generalize

a formula for the root number obtained by D. Rohrlich.

Proposition 2.2.5. Let C = 〈c〉 be an infinite cyclic group generated by an element

c and let E = 〈e〉 be a finite cyclic group of order n generated by an element e.

Let G = E o C be a semi-direct product, where C acts on E via c−1ec = ek for

some k ∈ (Z/nZ)×. Denote by s the order of k in (Z/nZ)×. Then every irreducible

symplectic representation λ of G factors through the group H = G/〈c2s〉 and as a

representation of H it has the following form

λ = IndHEoΓφ,

where Γ is a subgroup of C/〈c2s〉 generated by an element cx and φ is a one-dimensional

representation of E o Γ satisfying the following conditions:

• φ(e) = ξ for an n-th root of unity ξ of order d (d 6= 1, 2)

• x is the order of k in (Z/dZ)×

• x is even

• φ(cx) = −1

• 1 + k
x
2 ≡ 0 (mod d).

Conversely, every representation of this form is symplectic and irreducible.
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Proof. See Appendix A.

In the notation of Proposition 2.2.5 let λ = InflGHIndHEoΓφ be a symplectic irre-

ducible representation of G and θ the one-dimensional representation of E o Γ such

that θ(cx) = −1, θ(e) = 1. Let

λ̂ = InflGHIndHEoΓ(φ⊗ θ). (2.2.2)

Whereas λ is symplectic, λ̂ is realizable over R, as can be checked using Proposition

39 ([S], p. 109).

For a group D let R(D) denote the Grothendieck group of the abelian category

of finite-dimensional representations of D over C. If ρ is such a representation we

denote by [ρ] the corresponding element of R(D).

Proposition 2.2.6. Let G = E o C be a semi-direct product as in Proposition 2.2.5

and λ a semisimple symplectic representation of G. If ResGEλ has Q-valued character,

then in R(G) we have

[λ] = [µ] + [µ∗] + 2 · ([µ0]− [µ′0]) + [µ1] + · · ·+ [µa], (2.2.3)

where µ is a representation of G, µ∗ is the contragredient of µ, µ0 and µ′0 are sym-

plectic representations of G with finite images, µ1, . . . , µa are irreducible symplectic

subrepresentations of λ with finite images, µ̂1, . . . , µ̂a are representations with finite

images given by (2.2.2) such that µ̂1 ⊕ · · · ⊕ µ̂a is realizable over Q.

Proof. See Appendix A.
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Corollary 2.2.7. Let κ be the representation of W(K/K) corresponding to Vl(B)∗,

m = dimB, and p > 2m+ 1. Then in R(W(K/K)) we have

[κ⊗ ω1/2] = [µ] + [µ∗] + 2 · ([µ0]− [µ′0]) + [µ1] + · · ·+ [µa], (2.2.4)

where µ is a representation of W(K/K), µ∗ is the contragredient of µ, µ0 and µ′0 are

symplectic representations of W(K/K) with finite images, µ1, . . . , µa are irreducible

symplectic subrepresentations of κ⊗ ω1/2 with finite images, µ̂1, . . . , µ̂a are represen-

tations with finite images given by (2.2.2) such that µ̂1 ⊕ · · · ⊕ µ̂a is realizable over

Q.

Let τ be a representation of Gal(K/K) with real-valued character. To compute

the root number W (κ ⊗ τ) we generalize the following result by D. Rohrlich ([Ro2],

p. 318, Thm. 1) :

Theorem 2.2.8. Let K be a local non-Archimedean field of characteristic zero. Let

τ be a representation of Gal(K/K) with real-valued character. Then

W (λ⊗ τ) = det τ(−1) · ϕ(uH2/K)dim τ · (−1)〈1,τ〉+〈η,τ〉+〈λ̂,τ〉,

were λ is a two-dimensional irreducible, symplectic representation of Gal(K/K) of

the form λ = IndH2
K φ, H2 is the unramified quadratic extension of K, φ is a tame

character of H×2 ; η is the unramified quadratic character of K×; λ̂ = IndH2
K (φ ⊗ θ),

where θ is the unramified quadratic character of H×2 , and ϕ(uH2/K) = ±1.

We prove the following generalization of Theorem 2.2.8:
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Proposition 2.2.9. Let κ be the representation of W(K/K) corresponding to Vl(B)∗,

m = dimB, and p > 2m+1. Let τ be a representation of Gal(K/K) with real-valued

character. In the notation of Corollary 2.2.7 we have

W (κ⊗ τ) = detµ(−1)dim τ · det τ(−1)l1 · αdim τ · (−1)l2 ,

where l1 = dimµ+ 1
2
(dimµ1 + · · ·+dimµa), α = ±1, l2 = a · 〈1, τ〉+ a · 〈η, τ〉+ 〈µ̂1⊕

· · · ⊕ µ̂a, τ〉, and η is the unramified quadratic character of K×.

Proof. See Appendix A.

2.3 General case

We keep the notation of Section 2.1. Let σ′ = (σ,N) be the representation of

W ′(K/K) associated to the natural l-adic representation of Gal(K/K) on Vl(A)∗,

κ the representation of W ′(K/K) associated to the natural l-adic representation of

Gal(K/K) on Vl(B)∗, and

χ : Gal(K/K) −→ GLr(Z)

the representation corresponding to the Gal(K/K)-module Y (K). It is known that

there is a finite Galois extension L ⊂ K of K such that Gal(K/L) acts trivially on

Y (K), hence χ has finite image. Here κ is actually a representation of W(K/K) (see

Section 2.2) and we identify κ with the representation (κ, 0) of W ′(K/K). Also, we

identify χ with the representation (Res
Gal(K/K)

W(K/K)
χ, 0) of W ′(K/K).

The main result of this section is the following proposition:
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Proposition 2.3.1.

σ′ ∼= κ⊕ (χ⊗ ω−1 ⊗ sp(2)).

To prove Proposition 2.3.1 we will need the following lemmas.

Lemma 2.3.2. Let λ′ = (λ,R) be the representation of W ′(K/K) associated to the

natural l-adic representation of Gal(K/K) on Vl(T )∗. Then R = 0 and

λ ∼= χ⊗ ω−1.

Proof. ¿From the exact Gal(K/K)-equivariant sequence (2.1.2) we get the following

exact sequence of Gal(K/K)-modules:

0 −→ T (K) −→ G(K) −→ B(K) −→ 0.

Since T (K) is a divisible group, the last sequence induces an exact Gal(K/K)-

equivariant sequence of l-adic Tate modules:

0 −→ Tl(T ) −→ Tl(G) −→ Tl(B) −→ 0.

By tensoring the above sequence with Ql over Zl and taking duals over Ql afterwards,

we get the exact sequence of Gal(K/K)-modules:

0 −→ Vl(B)∗ −→ Vl(G)∗ −→ Vl(T )∗ −→ 0. (2.3.1)

LetX be the character group of T . Then T (K) ∼= HomZ(X(K), K
×
) as Gal(K/K)-

modules over Z, hence we have the following sequence of isomorphisms of Gal(K/K)-

modules:

Vl(T ) = Tl(T )⊗Zl
Ql
∼= HomZ(X(K), Tl(K

×
))⊗Zl

Ql (2.3.2)

∼= (X(K)⊗Z Ql)
∗ ⊗Ql

Vl(K
×
).
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It is known that there is an injective homomorphism φ : Y −→ X with finite cokernel

([F-C], p. 58), consequently

Y (K)⊗Z Ql
∼= X(K)⊗Z Ql

as Gal(K/K)-modules over Ql. Thus, we get from (2.3.2)

Vl(T )∗ ∼= (Y (K)⊗Z Ql)⊗Ql
Vl(K

×
)∗. (2.3.3)

Let ı : Ql ↪→ C be a field embedding and let Fl,ı be the functor which associates to an

l-adic representation of Gal(K/K) a representation of W ′(K/K). Clearly, the image

of the representation of Gal(K/K) on Y (K) ⊗Z Ql under Fl,ı is χ and the image of

the representation of Gal(K/K) on Vl(K
×
)∗ under Fl,ı is ω−1. Since Fl,ı respects

tensor products, by (2.3.3) the image λ′ of the representation of Gal(K/K) on Vl(T )∗

under Fl,ı is isomorphic to χ ⊗ ω−1. Thus, λ′ is a representation of W(K/K), i.e.,

R = 0.

Lemma 2.3.3. Let ρ′ = (ρ, P ) be the representation of W ′(K/K) associated to the

natural l-adic representation of Gal(K/K) on Vl(G)∗. Then P = 0 and

ρ ∼= κ⊕ (χ⊗ ω−1).

Proof. Sequence (2.3.1) induces an exact sequence of corresponding representations

of W ′(K/K), i.e.,

0 −→ Vl(B)∗ ⊗ı C h−→ Vl(G)∗ ⊗ı C g−→ Vl(T )∗ ⊗ı C −→ 0 (2.3.4)

is an exact sequence of W ′(K/K)-modules, where ı : Ql ↪→ C is a field embed-

ding, (κ, 0) is the representation of W ′(K/K) on Vl(B)∗ ⊗ı C, ρ′ = (ρ, P ) is the
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representation of W ′(K/K) on Vl(G)∗ ⊗ı C, and by Lemma 2.3.2, (χ ⊗ ω−1, 0) is

the representation of W ′(K/K) on Vl(T )∗ ⊗ı C. In particular, (2.3.4) is an exact

sequence of W(K/K)-modules and it splits if ρ is semisimple, which implies that

ρ ∼= κ⊕ (χ⊗ ω−1). Thus, it is enough to show that P = 0 and ρ is semisimple.

Let L ⊂ K be a finite Galois extension of K such that T ×K L splits and B×K L

has good reduction. Since ρ is semisimple if and only if its restriction to a subgroup

of finite index is semisimple (Lemma 2.2.1) and ResW ′(K/L)ρ
′ = (ResLKρ, P ) ([Ro1],

p. 130), to prove that P = 0 and ρ is semisimple we can assume that T splits over

K and B has good reduction over K. Then it follows from Lemma 2.3.2 that χ is

trivial. Also, since the image of I under ρ is finite, by Lemma 2.2.1 to prove that ρ

is semisimple it is enough to prove that ρ(Φ) is diagonalizable.

Taking into account that χ is trivial, from (2.3.4) we obtain that in a suitable

basis ρ(Φ) has the following form:

ρ(Φ) =

 κ(Φ) ∗

0 qEr

 , (2.3.5)

where Er is the r × r-identity matrix. Let

κl : Gal(K/K) −→ Aut(Tl(B))

be the l-adic representation corresponding to the Galois module Tl(B). It is known

that the absolute values of the eigenvalues of κl(Φ) are equal to q1/2 ([S-T], Corollary

on p. 499). Then the absolute values of the eigenvalues of κ(Φ) are equal to q−1/2,

since the eigenvalues of κ(Φ) are the inverses of the eigenvalues of κl(Φ). It follows
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that none of the eigenvalues of κ(Φ) is equal to q. Since κ(Φ) is diagonalizable by

Lemma 2.2.2, formula (2.3.5) shows that ρ(Φ) is diagonalizable, hence ρ is semisimple

and ρ′ is admissible.

Let us show now that P = 0. Since (2.3.4) is an exact sequence of W ′(K/K)-

modules, we have

Ph(x) = 0, ∀x ∈ Vl(B)∗ ⊗ı C,

g(Py) = 0, ∀y ∈ Vl(G)∗ ⊗ı C,

which implies that P 2 = 0. On the other hand, since ρ′ is admissible, it has the

following form:

ρ′ ∼=
s⊕
i=1

αi ⊗ sp(ni),

where each αi is a representation of W(K/K), each ni is a positive integer, and we

can assume that ni 6= nj if i 6= j ([Ro1], p. 133, Cor. 2). Since P 2 = 0, it follows

that each ni is 1 or 2, i.e., without loss of generality we can assume that

ρ′ ∼= α1 ⊕ (α2 ⊗ sp(2)). (2.3.6)

We will show that α2 = 0. Assume that α2 6= 0. ¿From (2.3.6) we have

ρ ∼= α1 ⊕ α2 ⊕ (α2 ⊗ ω).

On the other hand, since ρ is semisimple, the exact sequence (2.3.4) of W(K/K)-

modules splits, i.e.,

ρ ∼= κ⊕ (ω−1)⊕r.
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Thus, combining the last two isomorphisms, we get

α1 ⊕ α2 ⊕ (α2 ⊗ ω) ∼= κ⊕ (ω−1)⊕r. (2.3.7)

By assumption, B has good reduction, hence by Néron-Ogg-Šhafarevič criterion

([S-T], p. 493, Thm. 1) the inertia group I acts trivially on Vl(B)∗. Since by

Lemma 2.2.2, κ is semisimple it implies that κ ∼=
⊕2m

i=1 κi, where m = dimB and

κ1, . . . , κ2m are one-dimensional representations of W(K/K). Thus, it follows from

(2.3.7) that α2 is a sum of one-dimensional representations. Let α0 be one of them.

Using the uniqueness of decomposition of a semisimple module into simple modules

we have from (2.3.7):

α0
∼= ω−1 or α0

∼= κi

for some κi, hence

α0 ⊗ ω ∼= 1 or α0 ⊗ ω ∼= κi ⊗ ω.

In particular, the absolute value of α0⊗ω(Φ) is 1 or q−3/2, because the absolute value

of κi(Φ) is q−1/2 for each i (see above). This implies that α0 ⊗ ω is neither ω−1 nor

κj for any j which contradicts (2.3.7). Thus, α2 = 0 and ρ′ is a representation of

W(K/K).

Lemma 2.3.4. σ′ is admissible.

Proof. One has the following exact Gal(K/K)-equivariant sequence ([Ra], p. 312):

0 −→ G(K)ln −→ A(K)ln −→ Y (K)/lnY (K) −→ 0,
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where G(K)ln denotes Hom(Z/lnZ, G(K)) and A(K)ln denotes Hom(Z/lnZ, A(K)).

Clearly, G(K) is divisible. (It follows from the definition of a semi-abelian scheme

together with the fact that the groups of points over K of a torus or of an abelian

variety are divisible.) Since Y (K) is a free group of rank r and G(K) is divisible, we

have the following exact sequence of Gal(K/K)-modules:

0 −→ Tl(G) −→ Tl(A) −→ χ⊗ Zr
l −→ 0.

By tensoring the above sequence with Ql over Zl and taking duals over Ql afterwards,

we get:

0 −→ χ⊗Qr
l −→ Vl(A)∗ −→ Vl(G)∗ −→ 0, (2.3.8)

because χ ∼= χ∗ as a representation with finite image, realizable over Z.

As in the proof of Lemma 2.3.3, by Lemma 2.2.1 we can assume that B has good

reduction over K, T splits over K, and hence χ is trivial. Also, by Lemma 2.2.1 to

prove that σ′ is admissible it is enough to prove that σ(Φ) is diagonalizable.

Sequence (2.3.8) induces an exact sequence of corresponding representations of

W ′(K/K), i.e.,

0 −→ (χ⊗Qr
l )⊗ı C −→ Vl(A)∗ ⊗ı C −→ Vl(G)∗ ⊗ı C −→ 0 (2.3.9)

is an exact sequence of W ′(K/K)-modules. Moreover, χ is the representation of

W ′(K/K) on (χ ⊗ Qr
l ) ⊗ı C, σ′ = (σ,N) is the representation of W ′(K/K) on

Vl(A)∗ ⊗ı C, and by Lemma 2.3.3, κ ⊕ (χ ⊗ ω−1) is the representation of W ′(K/K)

on Vl(G)∗⊗ı C. Taking into account that χ is trivial and (2.3.9) is an exact sequence
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of W(K/K)-modules, we obtain that in a suitable basis σ(Φ) has the following form:

σ(Φ) =


Er ∗ ∗

0 qEr ∗

0 0 κ(Φ)

 . (2.3.10)

Here κ(Φ) is diagonalizable by Lemma 2.2.2. Since the absolute values of the eigen-

values of κ(Φ) are equal to q−1/2 (see above), none of the eigenvalues of κ(Φ) is equal

to 1 or q. Thus, (2.3.10) shows that σ(Φ) is diagonalizable, hence σ is semisimple,

and σ′ is admissible.

Proof of Proposition 2.3.1. Since σ′ is admissible by Lemma 2.3.4 and the represen-

tations of the Weil-Deligne group W ′(K/K) on (χ ⊗ Qr
l ) ⊗ı C and Vl(G)∗ ⊗ı C are

actually representations of the Weil group W(K/K), the same argument as in the

proof of (2.3.6) in Lemma 2.3.3 applied to (2.3.9) gives that σ′ has the following form:

σ′ ∼= γ ⊕ (δ ⊗ sp(2)), (2.3.11)

where γ and δ are representations of W(K/K). Hence

σ ∼= γ ⊕ δ ⊕ (δ ⊗ ω).

On the other hand, since σ is semisimple by Lemma 2.3.4, the exact sequence (2.3.9)

of W(K/K)-modules splits, i.e.,

σ ∼= χ⊕ κ⊕ (χ⊗ ω−1).

Thus, combining the last two isomorphisms, we get

γ ⊕ δ ⊕ (δ ⊗ ω) ∼= χ⊕ κ⊕ (χ⊗ ω−1). (2.3.12)
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Note that χ is isomorphic to a subrepresentation of γ ⊕ (δ ⊗ ω), because by (2.3.9)

χ ↪→ kerN ∼= γ ⊕ (δ ⊗ ω).

Thus, δ is isomorphic to a subrepresentation of κ ⊕ (χ ⊗ ω−1) by the uniqueness

of decomposition of a semisimple module into simple modules. We claim that δ is

isomorphic to a subrepresentation of χ⊗ω−1. Indeed, suppose there is an irreducible

subrepresentation δ0 of δ which is isomorphic to a subrepresentation of κ. Since

the absolute values of the eigenvalues of κ(Φ) are equal to q−1/2 (see above), the

eigenvalues of δ0(Φ) are of absolute value q−1/2. Hence the eigenvalues of δ0 ⊗ ω(Φ)

are of absolute value q−3/2. On the other hand, it follows from (2.3.12) that δ0 ⊗ ω

is isomorphic to a subrepresentation of χ, κ, or χ ⊗ ω−1, which is a contradiction

because the eigenvalues of χ(Φ), κ(Φ), and χ⊗ω−1(Φ) are of absolute values 1, q−1/2,

and q respectively. Thus, δ is isomorphic to a subrepresentation of χ ⊗ ω−1. Since

dim δ = r by Lemma B.0.8 (see Appendix B), we have δ ∼= χ⊗ ω−1, hence γ ∼= κ by

(2.3.12) and σ′ ∼= κ⊕ (χ⊗ ω−1 ⊗ sp(2)) by (2.3.11).

Corollary 2.3.5. The representation σ′ does not depend on the choice of l and ı.

Proof. The statement is a consequence of Corollary 2.2.4 and Proposition 2.3.1.

Corollary 2.3.6. Let τ be a representation of Gal(K/K) with real-valued character.

Then

W (σ′ ⊗ τ) = W (κ⊗ τ) · det τ(−1)r · detχ(−1)dim τ · (−1)〈χ,τ〉. (2.3.13)
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Moreover, when p > 2g + 1 we have

W (σ′⊗τ) = detµ(−1)dim τ ·detχ(−1)dim τ ·det τ(−1)r+l1 ·αdim τ ·(−1)〈χ,τ〉+l2 , (2.3.14)

where µ, l1, α, and l2 are as in Proposition 2.2.9.

Proof. Since the root number of a direct sum of representations of W ′(K/K) equals

the product of the root numbers of the summands, we get from Proposition 2.3.1

W (σ′ ⊗ τ) = W (κ⊗ τ) ·W (χ⊗ ω−1 ⊗ sp(2)⊗ τ),

where by Proposition 6 ([Ro2], p. 327)

W (χ⊗ ω−1 ⊗ sp(2)⊗ τ) = det τ(−1)r · detχ(−1)dim τ · (−1)〈χ,τ〉,

which proves (2.3.13).

Formula (2.3.14) is a consequence of (2.3.13) together with Proposition 2.2.9.
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Chapter 3

Root numbers of abelian varieties

over number fields (Theorem A)

3.1 Proof of Theorem A

We keep the notation of the introduction.

Lemma 3.1.1. Let A be an abelian variety of dimension g over a number field F

and τ a representation of Gal(F/F ) with real-valued character. Then at every infinite

place v of F we have

W (Av, τv) = (−1)g dim τ .

Proof. To define W (Av, τv) let σ′v denote the representation of the Weil-Deligne group

W ′(F v/Fv) associated to the components of H1(Av(C),C) in the Hodge decompo-

sition, then W (Av, τv) = W (σ′v ⊗ τv), where τv is viewed as a representation of
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W ′(F v/Fv). If v is an infinite place such that Fv ∼= C, then the representation

σ′v = σv of W ′(C/C) = W(C/C) = C× has the following form:

σv = (ϕ1,0 ⊗H1,0)⊕ (ϕ0,1 ⊗H0,1),

where ϕp,q : W(C/C) −→ C× (p, q ∈ Z) are given by

ϕp,q(z) = z−pz̄−q,

H1,0 and H0,1 are the components of H1(Av(C),C) in the Hodge decomposition:

H1(Av(C),C) = H1,0 ⊕H0,1.

Here H1,0 and H0,1 are endowed with the trivial action of W(C/C), hence

σv = (ϕ1,0 ⊕ ϕ0,1)
⊕g. (3.1.1)

Let v be an infinite place such that Fv ∼= R. We have

W ′(C/R) = W(C/R) = C× ∪ JC×,

where J2 = −1 and JzJ−1 = z̄ for z ∈ C×. Here W(C/C) is identified with the

subgroup C× of W(C/R). In this case the representation σ′v = σv of W(C/R) has the

following form:

σv = IndC
R ϕ0,1 ⊗H0,1,

where IndC
R ϕ0,1 denotes the representation of W(C/R) induced from ϕ0,1. As in the

complex case, H0,1 is endowed with the trivial action of W(C/R), hence

σv = (IndC
R ϕ0,1)

⊕g (3.1.2)
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([Ro1], p. 155, §20).

It follows from the proof of Theorem 2(i) ([Ro2], p. 329) that

W ((ϕ1,0 ⊕ ϕ0,1)⊗ τv) = (−1)dim τ if Fv ∼= C and

W ((IndC
R ϕ0,1)⊗ τv) = (−1)dim τ if Fv ∼= R.

Now the statement follows from these formulas together with formulas (3.1.1) and

(3.1.2).

Lemma 3.1.2 ([Ro2], Lemma on p. 347). Let G be a finite group, D ⊆ G an

abelian subgroup, and τ an irreducible representation of G with real-valued character.

If mQ(τ) = 2 then ResGDτ is symplectic.

Lemma 3.1.3. Let G be a finite group and τ an irreducible representation of G with

real-valued character. If mQ(τ) = 2 then dim τ is even and det τ is trivial.

Proof. By Lemma on p. 339 in [Ro2] if τ has odd dimension or nontrivial determinant,

then there is a cyclic subgroup D of G such that ResGDτ is not symplectic, which

contradicts Lemma 3.1.2.

Proof of Theorem A (Theorem 1.0.2). By Lemmas 3.1.1 and 3.1.3, W (Av, τv) = 1 at

every infinite place v of F .

Let v be a finite place of F lying over a prime number p. Let σ′v be the represen-

tation of W ′(F v/Fv) associated to the first cohomology of Av. Since by Lemma 3.1.3

det τ is trivial and dim τ is even, (2.3.13) implies

W (Av, τv) = W (κv ⊗ τv) · (−1)〈χv ,τv〉, (3.1.3)
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where χv is a representation of Gal(F v/Fv) realizable over Z (see Section 2.3 for the

definition of χv). Moreover, when p > 2g + 1 from (2.3.14) we have

W (Av, τv) = (−1)a〈1,τv〉+a〈ηv ,τv〉+〈λ,τv〉+〈χv ,τv〉, (3.1.4)

where ηv is the unramified quadratic character of F×v , and λ = µ̂1 ⊕ · · · ⊕ µ̂a is a

representation of Gal(F v/Fv) realizable over Q.

The rest of the proof is analogous to the argument given by D. Rohrlich in [Ro2].

Let K ⊂ F be a finite Galois extension of F such that τ factors through the group

G = Gal(K/F ) and χv factors through the decomposition subgroup H of G at v.

Then

〈χv, τv〉 = 〈IndGHχv, τ〉

by Frobenius reciprocity. Since χv is realizable over Q, IndGHχv is realizable over Q,

hence 〈IndGHχv, τ〉 is divisible by mQ(τ). By assumption mQ(τ) = 2, hence 〈χv, τv〉 is

even. Analogously, 〈1, τv〉, 〈ηv, τv〉, and 〈λ, τv〉 are even, henceW (Av, τv) = W (κv⊗τv)

by (3.1.3) and when p > 2g + 1 we have W (Av, τv) = 1 by (3.1.4). When p ≤ 2g + 1

the decomposition subgroup of Gal(L/F ) at v is abelian by assumption, hence τv is

symplectic by Lemma 3.1.2. Also, κv ⊗ ωv
1/2 is symplectic, because κv comes from

an abelian variety (see Section 2.1). Since κv is a representation of W(F v/Fv) (see

Section 2.2) and real powers of ωv do not change the root number,

W (κv ⊗ τv) = W (κv ⊗ ωv
1/2 ⊗ τv) = 1

by Proposition 2 and the remark after it on p. 319 in [Ro2].
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3.2 Special cases of Theorem A

We keep the notation of the introduction. In this section we discuss two special

cases of Theorem A when the local calculations of the root number under consider-

ation become especially easy. The first case is when the conductor of A is prime to

the conductor of τ (Proposition 3.2.1) and the second case is when τ is symplectic

(Proposition 3.2.3).

Proposition 3.2.1. Let A be an abelian variety over a number field F of dimension

g and conductor N . Let τ be a continuous complex finite-dimensional representation

of Gal(F/F ) with real-valued character, of even dimension and conductor f . For

each place v of F let τv denote the restriction of τ to the decomposition subgroup of

Gal(F/F ) at v and let mv(A) be the exponent of N at v. Assume that f is prime to

N . Then for the local root number W (Av, τv) associated to Av = A×F Fv and τv one

has the following formula:

W (Av, τv) =



1 if v 6 |fN or v = ∞

det τv($v)
mv(A) if v|N

det τv(−1)g if v|f

where $v is a uniformizer of Fv. (The statement of this proposition was suggested by

B. Gross.)

Proof. If v = ∞ then W (Av, τv) = 1 by Lemma 3.1.1. Suppose v <∞. If v does not

divide N then Av has good reduction over Fv, hence by the criterion of Néron-Ogg-
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Šhafarevič σ′v is actually a representation of W(F v/Fv) trivial on Iv. Since σ′v ⊗ ω
1/2
v

is symplectic (see Section 2.1), this implies that

σ′v ⊗ ω1/2
v

∼= α⊕ α∗

for some representation α of W(F v/Fv). Thus, taking into account that real powers

of ωv do not change the root number, τv has finite image and real-valued character,

we have

W (Av, τv) = W (σ′v ⊗ ω1/2
v ⊗ τv) = W (α⊗ τv)W ((α⊗ τv)

∗) = (3.2.1)

= det(α⊗ τv)(−1) = detα(−1)dim τ · det τv(−1)dimα.

Since dim τ is even and dimα = g, (3.2.1) gives

W (Av, τv) = det τv(−1)g.

Let v do not divide f . Then τv is unramified. Let V be a representation space of

τv, W a representation space of σ′v, and σ′v = (σv,M), where σv is a representation

of W(F v/Fv) and M is a nilpotent endomorphism on W . Denote U = W ⊗ V and

U Iv
M⊗1 = (ker(M ⊗ 1))Iv . We have

W (σ′v ⊗ τv) = W (σv ⊗ τv) ·
δ(σ′v ⊗ τv)

|δ(σ′v ⊗ τv)|
, (3.2.2)

where δ(σ′v ⊗ τv) = det(−Φv|UIv/UIv
M⊗1

) (see [Ro1], §11). Since τv is an unramified

representation of W(F v/Fv), we have U Iv ∼= W Iv ⊗ V and U Iv
M⊗1

∼= W Iv
M ⊗ V , where

W Iv
M = (kerM)Iv . Hence

δ(σ′v ⊗ τv) = det(−Φv|W Iv/W Iv
M

)dim τ · det(Φv|V )dimW Iv−dimW Iv
M = (3.2.3)

= δ(σ′v)
dim τ · det τv($v)

dimW Iv−dimW Iv
M .
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Also, since τv is unramified and of finite image, for a nontrivial additive character ψv

of Fv by (3.4.6) ([T2], p. 15) we have

W (σv ⊗ τv) = W (σv)
dim τ · det τv($v)

a(σv)+2gn(ψv). (3.2.4)

Putting (3.2.2), (3.2.3), and (3.2.4) together and taking into account that the deter-

minant of τv is ±1 (because τv is of finite image and real-valued character) and

a(σ′v) = a(σv) + dimW Iv − dimW Iv
M ,

we get

W (σ′v ⊗ τv) = W (σ′v)
dim τ · det τv($v)

a(σ′v).

Since W (σ′v) = W (σ′v ⊗ ω
1/2
v ) = ±1 (as the root number of a symplectic representa-

tion), dim τ is even, and a(σ′v) = mv(A), this implies

W (Av, τv) = W (σ′v ⊗ τv) = det τv($v)
mv(A)

and the proposition follows.

Remark 3.2.2. It might happen that the conductor of A is not coprime to the con-

ductor of τ . Indeed, there exist elliptic curves and irreducible representations τ of

Gal(F/F ) with real-valued character, of even dimension and trivial determinant such

that W (E, τ) = −1 (see e.g, [Ro2], p. 312, Prop. B). It follows from Proposition

3.2.1 that the conductors of such E and τ are not coprime.

Proposition 3.2.3. Let K be a local non-Archimedean field and let K be a fixed

separable algebraic closure of K. If σ′ and τ ′ are admissible symplectic representations
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of W ′(K/K) then

W (σ′ ⊗ τ ′) = 1.

Proof. Let I be the inertia subgroup of Gal(K/K), Φ an inverse Frobenius element

of Gal(K/K), and let ω be the unramified character of K× equal to the cardinality of

the residue class field of K on a uniformizer. It follows from Theorem 1.0.3 (Theorem

B) that

σ′ ∼= ρ′ ⊕ (ρ′)∗ ⊕ (π1 ⊗ sp(n1))⊕ · · · ⊕ (πk ⊗ sp(nk)),

where ρ′ is a representation of W ′(K/K), each πi is an irreducible representation of

W(K/K) and each ni is a positive integer such that πi ⊗ sp(ni) is symplectic. Then

W ((ρ′ ⊕ (ρ′)∗)⊗ τ ′) = det(ρ′ ⊗ τ ′)(−1) = 1,

because τ ′ is symplectic. Clearly, this argument is symmetric in σ′ and τ ′, hence it is

enough to prove Proposition 3.2.3 when σ′ and τ ′ have the following forms:

σ′ = α⊗ sp(n),

τ ′ = β ⊗ sp(m),

where n ≥ m are positive integers and α, β are irreducible representations ofW(K/K)

such that α ⊗ sp(n) and β ⊗ sp(m) are symplectic. Note that α ⊗ ω
n−1

2 is either

orthogonal or symplectic. In fact, since σ′ is symplectic, we have

α⊗ sp(n) ∼= (α⊗ sp(n))∗ ∼= α∗ ⊗ ω−(n−1) ⊗ sp(n).

By the uniqueness of decomposition of an admissible reperesentation ofW ′(K/K) into

indecomposables ([Ro1], p. 133, Cor. 2) this implies α ∼= α∗⊗ω−(n−1) or equivalently
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α⊗ω n−1
2 ∼= (α⊗ω n−1

2 )∗. Since α⊗ω n−1
2 is an irreducible representation of W(K/K),

α⊗ω n−1
2 ∼= ρ⊗ωs for some irreducible representation ρ of W(K/K) with finite image

and s ∈ C ([Ro1], Prop. on p. 127). Thus, ρ⊗ωs ∼= ρ∗⊗ω−s and hence ωs has finite

image (it can been seen e.g., by taking the determinant). Consequently, α⊗ω n−1
2 has

finite image and since it is self-dual, it is either orthogonal or symplectic. Also, if n

is a positive integer then

ω−(n−1
2

) ⊗ sp(n) =


orthogonal, if n is odd,

symplectic, if n is even

([Ro1], p. 136).

Since the real powers of ω do not change the root number, without loss of generality

we can assume that α (as well as β) is either orthogonal or symplectic. Thus, we have

the following four cases:

1) n and m are even, α and β are orthogonal;

2) n and m are odd, α and β are symplectic;

3) n is odd, m is even, α is symplectic, and β is orthogonal;

4) n is even, m is odd, α is orthogonal, and β is symplectic.

Lemma 3.2.4. For positive integers m and n such that m ≤ n we have

sp(m)⊗ sp(n) ∼=
m−1⊕
i=0

(ωi ⊗ sp(n+m− 2i− 1)). (3.2.5)
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Proof. Clearly, (3.2.5) is equivalent to

(ω−(m−1
2

) ⊗ sp(m))⊗ (ω−(n−1
2

) ⊗ sp(n)) ∼= (3.2.6)

m−1⊕
i=0

(ω−(n+m−2i−2
2

) ⊗ sp(n+m− 2i− 1)).

In the Lie algebra sl(2,C) we choose the following basis over C:

X0 =

 1 0

0 −1

 , X+ =

 0 1

0 0

 , X− =

 0 0

1 0

 .

For a positive integer k let Ck be the representation space of ω−( k−1
2

) ⊗ sp(k) =

(ν,M) with the standard basis e0, e1, . . . , ek−1. Define an action of sl(2,C) on Ck as

follows:

X− = N, (3.2.7)

X0ej = (k − 1− 2j)ej, 0 ≤ j ≤ k − 1,

X+ej = j(k − j)ej−1, 1 ≤ j ≤ k − 1,

X+e0 = 0.

This yields the unique irreducible representation of sl(2,C) of dimension k ([K], §18).

We claim that any sl(2,C)-submodule of (ω−(m−1
2

)⊗sp(m))⊗(ω−(n−1
2

)⊗sp(n)) is also

aW ′(K/K)-submodule. Indeed, it follows from the fact that an element of this tensor

product is an eigenvector for X0 with eigenvalue ρ if and only if it is an eigenvector for

W(K/K) with weight ω−p/2; and N just acts as X−. The lemma follows easily from

the claim together with the decomposition of the tensor product of two irreducible

representations of sl into irreducibles ([K], §18).
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By Lemma A.0.6 (see Appendix A)

α⊗ β ∼= π ⊕ π∗ ⊕ µ1 ⊕ · · · ⊕ µa, (3.2.8)

where π is a representation of W(K/K), µ1, . . . , µa are irreducible orthogonal repre-

sentations of W(K/K) in cases 1) and 2) and µ1, . . . , µa are irreducible symplectic

representations of W(K/K) in cases 3) and 4).

Let σ′ ⊗ τ ′ = (λ,N). Then

W (σ′ ⊗ τ ′) = W (λ) ·∆(σ′ ⊗ τ ′),

where W (λ) = 1 (by Prop. 2 and the remark after it in [Ro2], p. 319) and

∆(σ′ ⊗ τ ′) =
δ(σ′ ⊗ τ ′)

|δ(σ′ ⊗ τ ′)|
.

Thus, it is enough to show that ∆(σ′⊗τ ′) = 1. Note that ∆((π⊕π∗)⊗ωr⊗sp(k)) = 1

for any positive integer k, r ∈ R, and any representation π of W(K/K). It follows

from the fact the real powers of ω do not change ∆ (see (3.2.3)) together with Lemma

(ii) ([Ro1], p. 144). Lemma 3.2.4 together with (3.2.8) imply

∆(σ′ ⊗ τ ′) =
m−1∏
i=0

a∏
j=1

∆(µj ⊗ sp(n+m− 2i− 1)). (3.2.9)

Let j be fixed and let Vj denote a representation space of µj. It follows from the

definition that for each i we have

∆(µj ⊗ sp(n+m− 2i− 1)) = (−1)(n+m)·dimV I
j ·

det(Φ|V I
j
)n+m−2i−2

| det(Φ|V I
j
)|n+m−2i−2

. (3.2.10)

Since µj is self-dual, detµj = ±1. Moreover, V I
j is either {0} or Vj. Hence (3.2.10)

gives

∆(µj ⊗ sp(n+m− 2i− 1)) = (−1)(n+m)·dimV I
j · det(Φ|V I

j
)n+m. (3.2.11)
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In cases 1) and 2), n+m is even, hence (3.2.9) and (3.2.11) imply ∆(σ′⊗ τ ′) = 1. In

cases 3) and 4), det(Φ|V I
j
) = 1 and dimV I

j is even (because µj is symplectic), hence

(3.2.9) and (3.2.11) imply ∆(σ′ ⊗ τ ′) = 1.

Remark 3.2.5. If τ is symplectic then mQ(τ) = 2 but not vice versa: there are

examples of irreducible orthogonal complex representations of finite groups with the

Schur index over the rationals equal to 2 (see Appendix C).
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Chapter 4

Representations of the

Weil-Deligne group (Theorem B)

4.1 Theorem B

We keep the notation of Section 2.1 except thatK does not have to be of characteristic

zero and K denotes a separable algebraic closure of K. If U is a complex finite-

dimensional vector space and λ : D −→ GL(U) is a representation of a group D on

U , then by λ̌ : D −→ GL(Ǔ) we denote the representation of D on Ǔ , where Ǔ is

a C[D]-module with the underlying D-module U∗ and multiplication by constants

defined as follows:

a · φ = aφ, a ∈ C, φ ∈ U∗.
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We say that U is unitary if U admits a nondegenerate invariant hermitian form (not

necessarily positive definite).

Proposition 4.1.1. Let σ′ be an admissible representation of W ′(K/K). Then it

can be written in the following form:

σ′ ∼=
k⊕
i=1

πi ⊗ sp(ni),

where each πi is a representation of W(K/K), ni is a positive integer, and ni 6= nj

whenever i 6= j ([Ro1], p. 133, Cor. 2). If σ′ is unitary, orthogonal, or symplectic with

respect to a corresponding invariant nondegenerate form 〈·, ·〉 then each πi⊗ sp(ni) is

unitary, orthogonal, or symplectic respectively with respect to the restriction of 〈·, ·〉.

Proof. Let U be a representation space of σ′ and Ui a representation space of πi ⊗

sp(ni), 1 ≤ i ≤ k, so that U ∼=
⊕k

i=1 Ui. Let 〈· , ·〉 be a nondegenerate invariant form

on U and let Ũ be a W ′(K/K)-module over C such that Ũ = U∗ if 〈· , ·〉 is bilinear

and Ũ = Ǔ if 〈· , ·〉 is sesquilinear. Let φ : U −→ Ũ be the isomorphism of W ′(K/K)-

modules induced by 〈· , ·〉, and let ψ : Ũ ∼= (
⊕k

i=1 Ui)
∼
−→ Ũ1 ⊕ · · · ⊕ Ũk denote the

usual isomorphism. It is easy to show that for any n we have sp(n)∼ ∼= ω−(n−1)⊗sp(n),

hence Ũi ∼= Vi, where Vi denotes a representation space of π̃i⊗ω−(ni−1)⊗sp(ni). Denote

by λ : Ũ1 ⊕ · · · ⊕ Ũk −→ V1 ⊕ · · · ⊕ Vk the corresponding isomorphism. For each i let

ρi : Ui −→ Vi be defined by the following diagram:

U
λ◦ψ◦φ // V1 ⊕ · · · ⊕ Vk

πi

��
Ui
?�

OO

ρi // Vi
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where πi is the projection onto i-th factor. To prove that 〈· , ·〉|Ui
is nondegenerate

for each i is equivalent to proving that ρi is an isomorphism for each i, which follows

from Lemma 4.1.2 below.

Lemma 4.1.2. Let α′ = (α,N) and β′ = (β,M) be two isomorphic admissible rep-

resentations of W ′(K/K). Then they can be written in the following forms:

α′ ∼=
k⊕
i=1

αi ⊗ sp(ni) and β′ ∼=
k⊕
i=1

βi ⊗ sp(ni),

where each αi and βi is a representation of W(K/K), ni 6= nj whenever i 6= j. Let

U (resp. V ) be a representation space of α′ (resp. β′) and for each i let Ui (resp.

Vi) be a representation space of αi ⊗ sp(ni) (resp. βi ⊗ sp(ni)). Let φ : U −→ V be

an isomorphism of W ′(K/K)-modules and ψi : Ui −→ Vi, 1 ≤ i ≤ k, defined by the

following diagram:

U
φ // V

πi

��
Ui
?�

OO

ψi // Vi

where πi is the projection onto i-th factor. Then each ψi is an isomorphism of

W ′(K/K)-modules.

Proof. We will prove the lemma by induction on k. Clearly, it holds when k = 1.

Let k be arbitrary and let e0, . . . , enk−1 be the standard basis of Cnk . Without loss of

generality we can assume that nk > ni for any i. Let U◦k be a representation space of

αk, so Uk =
⊕nk−1

j=0 (U◦k ⊗ ej). Then

U = kerNnk−1 ⊕ (U◦k ⊗ e0) and

N jU = N j(kerNnk−1)⊕ (U◦k ⊗ ej), 0 ≤ j ≤ nk − 1. (4.1.1)
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Since φ is an isomorphism of W ′(K/K)-modules, we have from (4.1.1):

M jV = M j(kerMnk−1)⊕ φ(U◦k ⊗ ej), 0 ≤ j ≤ nk − 1. (4.1.2)

On the other hand, (4.1.1) holds in V , i.e.,

M jV = M j(kerMnk−1)⊕ (V ◦k ⊗ ej), 0 ≤ j ≤ nk − 1, (4.1.3)

where V ◦k denotes a representation space of βk. We have the following filtration of V :

V ⊇ kerMnk−1 ⊇MV ⊇M(kerMnk−1) ⊇ · · ·

· · · ⊇Mnk−1V = φ(U◦k ⊗ enk−1) = V ◦k ⊗ enk−1. (4.1.4)

Since V is a semisimple W(K/K)-module, taking into account (4.1.2), we get from

(4.1.4):

V = (

nk−2⊕
j=0

Aj)⊕ φ(Uk), (4.1.5)

where each Aj is a complement of M j+1V in M j(kerMnk−1). Analogously, taking

into account (4.1.3), we get from (4.1.4):

V = (

nk−2⊕
j=0

Aj)⊕ Vk. (4.1.6)

Combining (4.1.5) and (4.1.6), we see that πk ◦ φ(Uk) = Vk, hence ψk is an isomor-

phism. To be able to apply the inductive step, note that Aj’s can be chosen in such

a way that
nk−2⊕
j=0

Aj =
k−1⊕
i=0

Vi.
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Indeed, this follows from the following formulas:

kerMnk−1 = MV ⊕ (

nk−1⊕
i=0

(V ◦i ⊗ e0)) and

M j(kerMnk−1) = M j+1V ⊕ (

nk−1⊕
i=0

(V ◦i ⊗ ej)), 0 ≤ j ≤ nk − 1,

where each V ◦i is a representation space of βi. Thus, by (4.1.5)

V = (
k−1⊕
i=0

Vi)⊕ φ(Uk) = φ(
k−1⊕
i=0

Ui)⊕ φ(Uk),

which implies that the projection of φ(
⊕k−1

i=0 Ui) onto
⊕k−1

i=0 Vi is an isomorphism,

hence by induction ψ1, . . . , ψk−1 are isomorphisms.

Proof of Theorem B. Since σ′ is minimal, it follows from Proposition 4.1.1, that σ′ ∼=

α ⊗ sp(n), where α is a representation of W(K/K). Since σ′ is admissible, α is

semisimple, hence α =
⊕k

i=1 αi, where each αi is an irreducible subrepresentation of

α. For each i let Ui be a representation space of αi⊗ sp(n), so that U = U1⊕· · ·⊕Uk.

Let φ : U −→ Ũ1 ⊕ · · · ⊕ Ũk be the composition of the isomorphism induced by 〈· , ·〉

with the usual isomorphism of (U1 ⊕ · · · ⊕ Uk)
∼ onto Ũ1 ⊕ · · · ⊕ Ũk. For each i and j

let φij : Ui −→ Ũj be defined by the following diagram:

U
φ // Ũ1 ⊕ · · · ⊕ Ũk

πj

��
Ui
?�

OO

φij // Ũj

where πj is the projection onto j-th factor. We claim that for any i there exists j = j(i)

such that φij is an isomorphism. Indeed, let U◦i be a representation space of αi so

that Ui = U◦i ⊗Cn, where Cn is the representation space of sp(n). Let W = C be the
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representation space of ω−(n−1) and ψ : U −→
⊕k

i=1(Ũ
◦
i ⊗W ⊗ Cn) the composition

of φ with the usual isomorphism induced by αi ⊗ sp(n)∼ ∼= α̃i ⊗ ω−(n−1) ⊗ sp(n),

1 ≤ i ≤ k. For each i and j let ψij : U◦i ⊗ Cn −→ Ũ◦j ⊗W ⊗ Cn be defined by the

following diagram:

U
ψ // (Ũ◦1 ⊗W ⊗ Cn)⊕ · · · ⊕ (Ũ◦k ⊗W ⊗ Cn)

πj

��
U◦i ⊗ Cn

?�

OO

ψij // Ũ◦j ⊗W ⊗ Cn.

Let e0, . . . , en−1 be the standard basis of Cn. If for each i there exists j = j(i) such

that the projection of ψ(U◦i ⊗ e0) onto Ũ◦j ⊗W ⊗ e0 is nonzero, then U◦i
∼= Ũ◦j ⊗W

(because each U◦i is irreducible), hence Ui ∼= Ũj and φij 6= 0. Then it follows from

Schur’s lemma for indecomposable representations of W ′(K/K) ([Ro1], p. 133, Cor.

1) that φij is an isomorphism.

Assume now that there exists i such that the projection of ψ(U◦i ⊗ e0) onto Ũ◦j ⊗

W ⊗ e0 is zero for any j. Let N (resp. M) be the nilpotent endomorphism of U

(resp. of (Ũ◦1 ⊗W ⊗ Cn) ⊕ · · · ⊕ (Ũ◦k ⊗W ⊗ Cn)). Then ψ(U◦i ⊗ e0) ⊆ X, where

X =
⊕

t≥1;s(Ũ
◦
s ⊗W ⊗ et) and X ⊆ kerMn−1. Since U◦i ⊗ e0 6⊆ kerNn−1, we get a

contradiction with ψ being an isomorphism.

Thus, in particular, there exists some j such that φ1j is an isomorphism. If j = 1

then 〈· , ·〉|U1 is nondegenerate, hence U1 and its orthogonal complement are invariant

subspaces of U . Since U is minimal, it implies that U = U1 and U is indecomposable.

If j 6= 1 then without loss of generality we can assume that j = 2, 〈· , ·〉|U1 and

〈· , ·〉|U2 are degenerate. Let us show that 〈· , ·〉|U1⊕U2 is nondegenerate. Suppose it is
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degenerate, i.e., K = ker(〈· , ·〉|U1⊕U2) is nonzero. Let R1 (resp. R2) be the nilpotent

endomorphism of U1 (resp. U2). Then R = R1 ⊕ R2 is the nilpotent endomorphism

of U1 ⊕ U2. We claim that K
⋂

kerR 6= 0. Indeed, let x ∈ K and x 6= 0. Then there

exists i (0 ≤ i ≤ n− 1) such that Rix ∈ kerR and Rix 6= 0. Also,

〈Rix, y〉 = (−1)i · 〈x,Riy〉 = 0 for any y ∈ U1 ⊕ U2,

hence Rix ∈ K. Let x ∈ K
⋂

kerR and x 6= 0, i.e., x = x1 + x2, where xi ∈ kerRi,

i = 1, 2. Without loss of generality we can assume that x1 6= 0. Since φ12 is an

isomorphism, there exists y2 ∈ U2 such that 〈x1, y2〉 6= 0. By assumption, 〈· , ·〉|U2

is degenerate, hence K2 = ker(〈· , ·〉|U2) is nonzero. Then by the same argument as

above K2

⋂
kerR2 6= 0. Since kerR2 = U◦2 ⊗ en−1, it is irreducible, consequently

kerR2 ⊆ K2. In particular, 〈x2, y2〉 = 0. Hence

〈x1 + x2, y2〉 = 〈x1, y2〉.

Since 〈x1, y2〉 6= 0 by the choice of y2, we get a contradiction with x1 +x2 ∈ K. Thus,

〈· , ·〉|U1⊕U2 is nondegenerate. Since U is minimal the same argument as above implies

that U = U1 ⊕ U2
∼= Ũ2 ⊕ U2.

4.2 An application of Theorem B

We keep the notation of Section 2.3.

In this section we apply Theorem B to prove a special case of Proposition 2.3.1

when the image of Y ↪→ G under f in (2.1.2) is finite (see Proposition 4.2.4 below).
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We give an elementary proof of this case which, as far as the uniformization theory

is concerned, uses only exact sequence (2.1.2), the fact that Y ↪→ G is a free discrete

subgroup, and that there is a Gal(K/K)-equivariant isomorphism Tl(G(K)/Y (K)) ∼=

Tl(A).

Let ρ′ = (ρ, S) be the representation of W ′(K/K) associated to the natural l-

adic representation of Gal(K/K) on Vl(T (K)/Λ)∗, where Λ = T (K)
⋂
Y (K) is a free

discrete subgroup of T (K) of rank s (s ≤ r). Let L ⊂ K be a finite Galois extension

of K such that Gal(K/L) acts trivially on Y (K). Thus, Y (K) can be considered as

a Gal(L/K)-module. Let

χ : Gal(L/K) −→ GLr(Z)

denote the corresponding representation. Thus, from (2.1.2) we have the following

exact sequence of Gal(L/K)-modules:

0 −→ Λ⊗Z C −→ Y (K)⊗Z C −→ C ⊗Z C −→ 0,

where C = f(Y (K)). Let χ1 : Gal(L/K) −→ GLs(Z) denote the representation

of Gal(L/K) on Λ and χ2 : Gal(L/K) −→ GLr−s(Z) denote the representation of

Gal(L/K) on C ⊗Z C. Then

χ ∼= χ1 ⊕ χ2.

Proposition 4.2.1.

ρ′ ∼= (χ2 ⊗ ω−1)⊕ (χ1 ⊗ ω−1 ⊗ sp(2)).

Proof. See Appendix D.
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Corollary 4.2.2. If the image F of Y ↪→ G under f : G→ B in (2.1.2) is an étale

sheaf of finite abelian groups over Spec(K), then

ρ′ ∼= χ⊗ ω−1 ⊗ sp(2).

Proposition 4.2.3. If the image F of Y ↪→ G under f : G → B in (2.1.2) is an

étale sheaf of finite abelian groups over Spec(K), then one has an exact sequence of

Gal(K/K)-modules:

0 −→ Vl(B)∗ −→ Vl(A)∗ −→ Vl(T (K)/Λ)∗ −→ 0, (4.2.1)

where Vl(T (K)/Λ) = Tl(T (K)/Λ)⊗Zl
Ql.

Proof. ¿From the exact Gal(K/K)-equivariant sequence (2.1.2) we get the following

exact sequence of Gal(K/K)-modules:

0 −→ T (K)/Λ −→ G(K)/Y (K) −→ B(K)/F (K) −→ 0.

Since T (K) is a divisible group, the last sequence induces an exact Gal(K/K)-

equivariant sequence of l-adic Tate modules:

0 −→ Tl(T (K)/Λ) −→ Tl(G/Y ) −→ Tl(B/F ) −→ 0,

where Tl(G/Y ) denotes Tl(G(K)/Y (K)) and Tl(B/F ) denotes Tl(B(K)/F (K)). We

claim that there is a Gal(K/K)-equivariant isomorphism G(K)/Y (K) ∼= A(K). In-

deed, for any finite Galois extension L ⊂ K of K such that the degeneration data for

A splits over L we have a natural isomorphism

A(L) ∼= G(L)/Y (L) (4.2.2)
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([Cha], p. 720, Prop. 3.1). Since A(K) (resp. G(K), resp. Y (K)) is naturally

isomorphic to the direct limit of A(L) (resp. G(L), resp. Y (L)) when L runs over

finite extensions of K contained in K, the claim follows from (4.2.2) together with the

fact that the direct limit is an exact functor. Hence Tl(G/Y ) ∼= Tl(A) as Gal(K/K)-

modules and we have

0 −→ Tl(T (K)/Λ) −→ Tl(A) −→ Tl(B/F ) −→ 0. (4.2.3)

By tensoring the above sequence with Ql over Zl, we get an exact sequence of

Gal(K/K)-modules:

0 −→ Vl(T (K)/Λ) −→ Vl(A) −→ Vl(B/F ) −→ 0, (4.2.4)

where Vl(B/F ) denotes Tl(B/F ) ⊗Zl
Ql. Thus, it suffices to show that Vl(B/F ) ∼=

Vl(B) as Gal(K/K)-modules. Applying Hom(Z/lnZ,−) to the exact sequence 0 −→

F (K) −→ B(K) −→ B(K)/F (K) −→ 0 and taking into account that B(K) is a

divisible group, we get an exact sequence

0 −→ Fln −→ Bln −→ (B/F )ln −→ Ext1(Z/lnZ, F (K)) −→ 0,

where (B/F )ln denotes (B(K)/F (K))ln . Here Ext1(Z/lnZ, F (K)) ∼= F (K)/lnF (K),

as can be seen by applying the functor Hom(−, F (K)) to the standard projective

resolution of Z/lnZ. Thus, we get

0 −→ Fln −→ Bln −→ (B/F )ln
αn−→ F (K)/lnF (K) −→ 0.
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This sequence is equivalent to the following two short exact sequences

0 −→ Fln −→ Bln −→ kerαn −→ 0 and

0 −→ kerαn −→ (B/F )ln −→ F (K)/lnF (K) −→ 0.

Applying the left exact functor lim
←−

(−) to these sequences and denoting lim
←−

(kerαn)

by X and lim
←−

(F (K)/lnF (K)) by Z, we get

0 −→ Tl(F ) −→ Tl(B) −→ X and

0 −→ X −→ Tl(B/F ) −→ Z.

Since F (K) is finite, Tl(F ) and Z are torsion groups, hence Tl(F )⊗Zl
Ql = Z⊗Zl

Ql =

0. Thus, it follows that the sequences

0 −→ Vl(B) −→ X ⊗Zl
Ql and

0 −→ X ⊗Zl
Ql −→ Vl(B/F ) −→ 0

are exact, consequently, Vl(B) ↪→ Vl(B/F ). On the other hand, from (4.2.4)

dimQl
Vl(B/F ) = dimQl

Vl(A)− dimQl
Vl(T (K)/Λ),

where dimQl
Vl(A) = 2 ·dimA and dimQl

Vl(T (K)/Λ) = 2 ·dimT . (The last assertion

follows from (D.0.6), since s = r.) Hence

dimQl
Vl(B/F ) = 2 · (dimA− dimT ) = 2 · dimB.

Since dimQl
Vl(B) = 2·dimB, we have dimQl

Vl(B/F ) = dimQl
Vl(B). Thus, Vl(B/F ) ∼=

Vl(B). Clearly, they are isomorphic as Gal(K/K)-modules and the proposition fol-

lows.
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Proposition 4.2.4. If the image F of Y ↪→ G under f : G → B in (2.1.2) is an

étale sheaf of finite abelian groups over Spec(K), then

σ′ ∼= κ⊕ (χ⊗ ω−1 ⊗ sp(2)). (4.2.5)

Proof. Except for the slight variations we proceed as in the proof of Lemma 2.3.3. Se-

quence (4.2.1) induces an exact sequence of corresponding representations ofW ′(K/K),

i.e.,

0 −→ Vl(B)∗ ⊗ı C −→ Vl(A)∗ ⊗ı C −→ Vl(T (K)/Λ)∗ ⊗ı C −→ 0 (4.2.6)

is an exact sequence of W ′(K/K)-modules, where ı : Ql ↪→ C is a field embedding,

(κ, 0) is the representation of W ′(K/K) on Vl(B)∗ ⊗ı C, σ′ = (σ,N) is the represen-

tation of W ′(K/K) on Vl(A)∗ ⊗ı C, and by Corollary 4.2.2, χ ⊗ ω−1 ⊗ sp(2) is the

representation of W ′(K/K) on Vl(T (K)/Λ)∗ ⊗ı C.

The same argument as in the proof of (2.3.6) in Lemma 2.3.3 applied to (4.2.6)

proves that σ′ has the following form:

σ′ ∼= α⊕ (β ⊗ sp(2))⊕ (γ ⊗ sp(3)), (4.2.7)

where α, β, and γ are some representations of W(K/K). First, we will prove that

γ = 0. Assume γ 6= 0. ¿From (4.2.7) we have

σ ∼= α⊕ β ⊕ (β ⊗ ω)⊕ γ ⊕ (γ ⊗ ω)⊕ (γ ⊗ ω2).

On the other hand, since σ is semisimple, the exact sequence (4.2.6) of W(K/K)-

modules splits, i.e.,

σ ∼= κ⊕ (χ⊗ ω−1)⊕ χ.
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Thus, combining the last two isomorphisms, we get

κ⊕ (χ⊗ ω−1)⊕ χ ∼= α⊕ β ⊕ (β ⊗ ω)⊕ γ ⊕ (γ ⊗ ω)⊕ (γ ⊗ ω2). (4.2.8)

Moreover, since κ is isomorphic to a subrepresentation of kerN and kerN ∼= α⊕ (β⊗

ω)⊕(γ⊗ω2), κ is isomorphic to a subrepresentation of α⊕(β⊗ω)⊕(γ⊗ω2). Thus, by

the uniqueness of decomposition of a semisimple module into simple modules we get

from (4.2.8) that γ is isomorphic to a subrepresentation of (χ⊗ω−1)⊕χ. Since χ has

finite image, this implies that for any irreducible component γ0 of γ either γ0 or γ0⊗ω

has finite image. In particular, the absolute value of each eigenvalue of γ0(Φ) equals

either 1 or q. Since σ′ ⊗ ω1/2 is symplectic, Theorem B together with the uniqueness

of decomposition of an admissible representation of W ′(K/K) into indecomposable

representations imply that for any irreducible component γ0 of γ the representation

(γ0 ⊗ ω1/2 ⊗ sp(3))∗ is an irreducible component of γ ⊗ ω1/2 ⊗ sp(3). In particular,

this implies that γ∗0 ⊗ω−3 is an irreducible component of γ. Thus, either γ∗0 ⊗ω−3 or

γ∗0 ⊗ω−2 has finite image, hence the absolute value of each eigenvalue of γ∗0(Φ) equals

either q−3 or q−2 and we get a contradiction with the previous statement about the

absolute values of eigenvalues of γ0(Φ). Thus, γ = 0 and σ′ ∼= α⊕ (β ⊗ sp(2)).

The same argument can be used to show that β ∼= χ⊗ ω−1. Namely, taking into

account that κ is isomorphic to a subrepresentation of α ⊕ (β ⊗ ω), it follows from

(4.2.8) that β is isomorphic to a subrepresentation of χ⊕ (χ⊗ ω−1). Hence

β ∼= β1 ⊕ (β2 ⊗ ω−1) (4.2.9)

for some subrepresentations β1, β2 of χ. Since σ′ ⊗ ω1/2 is symplectic, Theorem
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B together with the uniqueness of decomposition of an admissible representation

of W ′(K/K) into indecomposable representations imply that β ⊗ ω1/2 ⊗ sp(2) is

symplectic. In particular, β ∼= β∗ ⊗ ω−2 which together with (4.2.9) gives

β1 ⊕ (β2 ⊗ ω−1) ∼= (β∗1 ⊗ ω−2)⊕ (β∗2 ⊗ ω−1).

By taking the determinant of both sides of this congruence, we get

det β1 · det β2 · ω−n2 = det β∗1 · det β∗2 · ω−2n1−n2 , (4.2.10)

where n1 = dim β1 and n2 = dim β2. Since β1 and β2 have finite images as subrepre-

sentations of χ and ω does not have a finite image, (4.2.10) gives n1 = 0. Thus, β is iso-

morphic to a subrepresentation of χ⊗ω−1. It follows from (4.2.6) that dim β ≥ dimχ,

because dim β = rankN and dimχ = rankS, hence β ∼= χ ⊗ ω−1. Then κ ∼= α by

(4.2.8) with γ = 0 and the uniqueness of decomposition of a semisimple representation

into simple subrepresentations.
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Appendix A

Lemma A.0.5. Let C = 〈c〉 be an infinite cyclic group generated by an element

c and let E = 〈e〉 be a finite cyclic group of order n generated by an element e.

Let G = E o C be a semi-direct product, where C acts on E via c−1ec = ek for

some k ∈ (Z/nZ)×. Denote by s the order of k in (Z/nZ)×. Then every irreducible

representation λ of G has the following form:

λ = λ0 ⊗ φ,

where λ0 is an irreducible representation of G trivial on the subgroup of C generated

by cs and φ is a one-dimensional representation of G.

Proof. Since cs is contained in the center of G and λ is an irreducible complex rep-

resentation, by Schur’s lemma λ(cs) is equal to a scalar a ∈ C×. Define a one-

dimensional representation φ of G as follows: φ(e) = 1 and φ(c) equals an s-th root

of a. Then λ0 = λ⊗ φ−1 is trivial on 〈cs〉 and λ = λ0 ⊗ φ.

Proof of Proposition 2.2.5. Let λ be an irreducible symplectic representation of G.

Then by Lemma A.0.5, λ = λ0 ⊗ φ, where λ0 is an irreducible representation of G
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trivial on the subgroup of C generated by cs and φ is a one-dimensional representation

of G. Since λ is symplectic, λ and its contragredient representation have the same

character, which implies that for any g ∈ G we have

φ(g) · trλ0(g) = φ(g)−1 · trλ0(g
−1).

Taking into account that λ0 is trivial on 〈cs〉, the above equation for g = cs gives

φ(c2s) = 1, i.e., λ can be considered as an irreducible symplectic representation of

the finite group H = G/〈c2s〉 ∼= E o C/〈c2s〉. By abuse of notation we will denote

the image of c in C/〈c2s〉 also by c, then c2s = 1 and c−1ec = ek in H. As an

irreducible representation of the semi-direct product H, λ can be constructed from a

one-dimensional representation ψ1 of E in the following way. Let ψ1(e) = ξ for some

n-th root of unity ξ of order d in C×. Let Γ = 〈cx〉, where x = |k| in (Z/dZ)×, and

ψ2 be a one-dimensional representation of Γ. Then ψ1 and ψ2 can be extended to

representations of E o Γ via

ψ1(c
xvet) = ψ1(e

t),

ψ2(c
xvet) = ψ2(c

xv).

Then λ = IndHEoΓ(ψ1 ⊗ ψ2) ([S], p. 62, Prop. 25). Let W be a representation space

of H corresponding to λ, V = Cb ⊆ W be a one-dimensional subrepresentation of

ResHEoΓλ isomorphic to ψ1 ⊗ ψ2 and spanned by a nonzero vector b ∈ V over C.

Then W = V ⊕ cV ⊕ c2V ⊕ · · · ⊕ cx−1V and λ has the following form in the basis

58



{b, cb, c2b, . . . , cx−1b}:

λ(e) =



ξ 0 0 . . . 0

0 ξk 0 . . . 0

0 0 ξk
2
. . . 0

...
...

...
. . .

...

0 0 0 . . . ξk
x−1


, λ(c) =



0 0 0 . . . ψ2(c
x)

1 0 0 . . . 0

0 1 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 0


.

Since λ is symplectic, x = dimλ is even and detλ = 1, hence detλ(c) = −ψ2(c
x) = 1,

which implies that ψ2(c
x) = −1. Denote by χ the character of λ. By Proposition 39

([S], p. 109), λ is symplectic if and only if

−1 =
1

|H|
·
∑
y∈H

χ(y2). (A.0.1)

Let y = cvet, consequently, y2 = c2vet(1+k
v). Clearly, χ(y2) = 0 if y2 6∈ E o Γ and

y2 ∈ E o Γ if and only if x divides 2v and, since x is even, if and only if x
2

divides v.

Let v = x
2
m, then we have∑

y∈H

χ(y2) =
∑
y∈H

y2∈EoΓ

χ(y2) =
∑
t,m

χ(cmxet(1+k
v))

=
∑
m,t

m even

χ(et(1+k
v))−

∑
m,t

m odd

χ(et(1+kv)).

(A.0.2)

Let S1 =
∑

m even

∑
t

χ(et(1+kv)) and S2 =
∑

m odd

∑
t

χ(et(1+kv)).

If m is even, then v = x(m
2
) and, since x = |k| in (Z/dZ)×, 1 + kv ≡ 2 (mod d).

Since χ(et) = ξt + ξkt + · · · + ξk
x−1t and ξd = 1, we have χ(et(1+k

v)) = χ(e2t) and

S1 =
∑

m even

∑
t

χ(e2t). We will show that
∑
t

χ(e2t) = 0. First, note that if d = 1, 2,

then λ is one-dimensional, hence cannot be symplectic.
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If r ∈ Z and r ≡ 0 (mod d) then

n−1∑
t=0

χ(ert) =
n−1∑
t=0

x−1∑
j=0

ξrtk
j

= nx.

If r ∈ Z and r 6≡ 0 (mod d) then

n−1∑
t=0

χ(ert) =
n−1∑
t=0

x−1∑
j=0

ξrtk
j

=
x−1∑
j=0

1− ξrnk
j

1− ξrkj = 0.

Thus

n−1∑
t=0

χ(ert) =


nx, r ≡ 0 (mod d);

0, r 6≡ 0 (mod d).

(A.0.3)

Since d 6= 1, 2, formula (A.0.3) implies that S1 = 0.

If m is odd, then kv ≡ k
x
2 (mod d), hence χ(et(1+kv)) = χ(et(1+k

x
2 )). Thus

S2 =
∑
m odd

n−1∑
t=0

χ(et(1+k
v)) =

2s

x
·
n−1∑
t=0

χ(et(1+k
x
2 ))

and by (A.0.3) we have

S2 =


2sn, 1 + k

x
2 ≡ 0 (mod d);

0, 1 + k
x
2 6≡ 0 (mod d).

(A.0.4)

Hence by (A.0.2)

1

|H|
·
∑
y∈H

χ(y2) =
1

2sn
· (S1 − S2) = − S2

2sn
,

which together with (A.0.1) and (A.0.4) proves the proposition.

Let D be a group, U a finite-dimensional C[D]-module, and U∗ the contragredient

of U . Let Ǔ denote the vector space over C with the underlying abelian group U∗
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and multiplication by constants defined as follows:

a · φ = aφ, a ∈ C, φ ∈ U∗,

where a is the complex conjugate of a. Clearly, the C[D]-module structure on U∗

makes Ǔ into a C[D]-module. In what follows by Ǔ we mean a C[D]-module with

this structure. We say that U is unitary if U admits a nondegenerate invariant

hermitian form (not necessarily positive definite).

Lemma A.0.6. Every semisimple unitary, orthogonal, or symplectic representation

λ of a group D has the following form

λ ∼= ν ⊕ ν̃ ⊕ λz11 ⊕ · · · ⊕ λzt
t ,

where ν is a representation of D, ν̃ = ν∗ if λ is orthogonal or symplectic and ν̃ = ν̌

if λ is unitary, λ1, . . . , λt are pairwise nonisomorphic irreducible unitary, orthogonal,

or symplectic representations of D respectively.

Proof of Lemma A.0.6. We say that a unitary, orthogonal, or symplectic representa-

tion is minimal if it cannot be written as an orthogonal sum of nonzero invariant sub-

spaces. Clearly, every unitary, orthogonal, or symplectic representation is an orthog-

onal sum of minimal unitary, orthogonal, or symplectic representations respectively.

Thus, it is enough to prove that if λ is a semisimple minimal unitary, orthogonal, or

symplectic representation of D, then either λ is irreducible or λ ∼= ν ⊕ ν̃ for some

irreducible representation ν of D. Let U be a representation space of D corresponding

to λ, Ũ = U∗ if λ is orthogonal or symplectic and Ũ = Ǔ if λ is unitary. Since λ is
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semisimple, U = V1⊕· · ·⊕Vn, where V1, . . . , Vn are nonzero simple C[D]-submodules

of U . Let 〈· , ·〉 be a nondegenerate invariant form on U . It defines a C[D]-module

isomorphism φ between U and Ũ via φ(u) = 〈u , ·〉, u ∈ U . Let ψ : Ũ −→ Ṽ1⊕· · ·⊕ Ṽn

denote the usual isomorphism between Ũ = (V1 ⊕ · · · ⊕ Vn)
∼ and Ṽ1 ⊕ · · · ⊕ Ṽn. For

each i and j let αij : Vi −→ Ṽj be a C[D]-module homomorphism defined by the

following diagram:

U
ψ◦φ // Ṽ1 ⊕ · · · ⊕ Ṽn

πj

��
Vi
?�

OO

αij // Ṽj

where πj is the projection onto j-th factor. Since ψ ◦ φ is an isomorphism, there

exists some Ṽi such that α1i 6= 0, which implies that α1i is an isomorphism, since

V1, . . . , Vn are simple. If i = 1, then it follows that 〈· , ·〉|V1 is nondegenerate, hence

V1 and its orthogonal complement are invariant subspaces of U . Since U is minimal,

it implies that U = V1 and U is irreducible. Thus, we can assume that for each j

we have αjj = 0, which is equivalent to 〈Vj , Vj〉 = 0. Without loss of generality we

can assume that α12 6= 0. Then α21 6= 0. Indeed, if α12 6= 0, then there is some

u ∈ V1 such that 〈u , ·〉|V2 6= 0, i.e., there is some v ∈ V2 such that 〈u , v〉 6= 0, hence

〈v , u〉 6= 0, which is equivalent to α21 6= 0. Let us prove now that 〈· , ·〉|V1⊕V2 is

nondegenerate. Let u+v ∈ V1⊕V2 and 〈u+v , x+y〉 = 0 for any x+y ∈ V1⊕V2. We

have 〈u+v , x+y〉 = 〈u , y〉+ 〈v , x〉 = 0, because 〈V1 , V1〉 = 〈V2 , V2〉 = 0. Take x = 0

in this equation, then 〈u , y〉 = 0 for any y ∈ V2, hence u = 0, because α12(V1) = Ṽ2.

Analogously, v = 0. Since U is minimal, the same argument as above implies that
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U = V1 ⊕ V2
∼= V1 ⊕ Ṽ1.

Proof of Proposition 2.2.6. By Lemma A.0.6

λ ∼= ν ⊕ ν∗ ⊕ λz11 ⊕ · · · ⊕ λzt
t , (A.0.5)

where ν is a representation of G and λ1, . . . , λt are pairwise nonisomorphic irreducible

symplectic representations of G. Let ν = νl11 ⊕ · · · ⊕ νlrr , where ν1, . . . , νr are pair-

wise nonisomorphic irreducible representations of G. By Lemma A.0.5 for each i we

have νi = ν0
i ⊗ φi, where φi is a one-dimensional representation of G and ν0

i is an

irreducible representation of G trivial on 〈cs〉. It follows that ν0
i can be considered

as a representation of H = G/〈c2s〉 and as a representation of H it can be written in

the following form ν0
i = IndHEoΓi

ψi, where ψi is a one-dimensional representation of

E o Γi, ψi(e) = ξi for an n-th root of unity ξi of order di, xi = |k| in (Z/diZ)×, and

Γi = 〈cxi〉 (see the proof of Proposition 2.2.5 and [S], p. 62, Prop. 25). Thus

ν0
i (e) =



ξi 0 . . . 0

0 ξki . . . 0

...
...

. . .
...

0 0 . . . ξk
xi−1

i


,

νi(e) = ν0
i ⊗ φi(e) =



ξiφi(e) 0 . . . 0

0 (ξiφi(e))
k . . . 0

...
...

. . .
...

0 0 . . . (ξiφi(e))
kxi−1


.
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In the second matrix we used the relation φi(e)
k−1 = 1, which follows from the fact

that φi is a one-dimensional representation of G and c−1ec = ek. By Proposition

2.2.5 each λi = IndHEoLi
ρi, where ρi is a one-dimensional representation of E o Li,

ρi(e) = ηi for an n-th root of unity ηi of order ui, yi = |k| in (Z/uiZ)×, Li = (cyi),

and ρi(c
yi) = −1.

We will need the following lemma:

Lemma A.0.7. Let d1, . . . , dm be pairwise distinct natural numbers. For each di let

pi(X) ∈ C[X] be a monic polynomial, all the roots of which are some primitive di-th

roots of unity and let p(X) = p1(X) · · · pm(X). If p(X) ∈ Q[X], then each pi(X) is a

power of the di-th cyclotomic polynomial Φdi
(X).

Proof. The statement follows from considering the factorization of p(X) into irre-

ducibles in Q[X].

Since the characteristic polynomial p of λ(e) has coefficients in Q, by Lemma A.0.7

we can assume that ξ1φ1(e), . . . , ξrφr(e), η1, . . . , ηt are primitive roots of unity of the

same order d and that p = Φv
d for some v, where Φd is the d-th cyclotomic polynomial.

Indeed, λ can be written as a sum of semisimple symplectic representations of G which

have this property and it is enough to show that for each of them (2.2.3) holds.

Let x = |k| in (Z/dZ)× and Γ = 〈cx〉. If λ ∼= ν⊕ν∗ then there is nothing to prove.

Thus, we assume that there is λ1 in (A.0.5). Since λ1 is symplectic, x is even, d 6= 1, 2,

and k
x
2 ≡ −1 (mod d) by Proposition 2.2.5. Note, that x divides each xi. Indeed,

(ξiφi(e))
kxi = ξiφi(e), hence kxi ≡ 1 (mod d), because ξiφi(e) is a primitive d-th root
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of unity by assumption. For each i denote by pνi
the characteristic polynomial of

νi(e) and by pν∗i the characteristic polynomial of ν∗i (e). Then pνi
= pν∗i . This is true

because x divides xi, x is even, k
xi
2 6≡ 1 (mod d), and k

x
2 ≡ −1 (mod d), hence each

root of pνi
appears in pνi

with its complex conjugate. Thus

p = p2l1
ν1
· · · p2lr

νr
pz1λ1

· · · pzt
λt
,

where for each i we denote by pλi
the characteristic polynomial of λi(e).

For each primitive d-th root of unity ξ write q(ξ) = (X−ξ)(X−ξk) · · · (X−ξkx−1
),

where x = |k| in (Z/dZ)×. Clearly, all ξ, ξk, . . . , ξk
x−1

are distinct and for two primitive

d-th roots of unity ξ and ξ′ either q(ξ) = q(ξ′) or q(ξ) and q(ξ′) have no common roots.

In this notation pλi
= q(ηi) and pνi

= q(ξiφi(e))
αi , where αi = xi

x
. Since λ1, . . . , λt

are irreducible, symplectic, and pairwise nonisomorphic, it follows from Proposition

2.2.5 that q(ηi) 6= q(ηj) for i 6= j. Without loss of generality we can assume that p

has the following form:

p = q(ξ1φ1(e))
2m1 · · · q(ξfφf (e))2mf q(η1)

z1 · · · q(ηt)zt , (A.0.6)

where f ≤ r, m1, . . . ,mf are positive integers, and q(ξ1φ1(e)), . . . , q(ξfφf (e)) have no

common roots. There are two possibilities:

1. there exists some q(ξiφi(e)) which is not equal to any of q(η1), . . . , q(ηt). Without

loss of generality we can assume that i = 1;

2. each q(ξiφi(e)) equals some q(ηj).

65



(1) In this case, since p = Φv
d, it follows from (A.0.6) that for each j we have zj +

2 · α(j) = 2m1, where α(j) = mβ if q(ηj) equals some q(ξβφβ(e)) and α(j) = 0

otherwise. Thus, in this case all z1, . . . , zt are even and [λ] = [ν]+ [ν∗]+2 · [µ0], where

µ0 = λ
z1
2

1 ⊕· · ·⊕λ
zt
2
t is symplectic of finite image because all λ1, . . . , λt are symplectic

of finite images. (2) In this case, since p = Φv
d, it follows from (A.0.6) that for each

j we have zj + 2 · α(j) = v, where α(j) = mβ if q(ηj) equals some q(ξβφβ(e)) and

α(j) = 0 otherwise. Moreover, it follows that q(η1) · · · q(ηt) = Φd. Thus

[λ] = [ν] + [ν∗]− 2 · [µ′0] + v · [λ1] + · · ·+ v · [λt],

where µ′0 = λ
α(1)
1 ⊕ · · · ⊕ λ

α(t)
t is symplectic of finite image and it is enough to show

that λ̂1 ⊕ · · · ⊕ λ̂t is realizable over Q. Recall that for each i, λ̂i = IndHEoΓϕi, where

ϕi(e) = ξi for some primitive d-th root of unity ξi, x = |k| in (Z/dZ)×, Γ = 〈cx〉, and

ϕi(c
x) = 1 (see Proposition 2.2.5 and (2.2.2)). Since the representations of this form

are completely defined by a root of unity ξ, we will denote them by Θ(ξ). For any r

dividing d the cyclic group 〈k〉 acts on the set of all primitive r-th roots of unity via

ξ 7−→ ξk. Let {ξ1
r , . . . , ξ

wr
r } be the set of representatives for this action and let

Θ(r) =
wr⊕
i=1

Θ(ξir).

Then the characteristic polynomial of Θ(r)(e) is just Φr. Since the characteristic

polynomial of (λ̂1 ⊕ · · · ⊕ λ̂t)(e) is q(η1) · · · q(ηt) = Φd, it follows that λ̂1 ⊕ · · · ⊕ λ̂t =

Θ(d). By induction on d we will prove that each Θ(d) is realizable over Q.

Clearly, Θ(d) is realizable over Q when d = 1, because in this case Θ(d) = 1. Let

L = 〈ed〉 o C and π = IndHL 1. Then the characteristic polynomial of π(e) is xd − 1,
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consequently,

π ∼=
⊕
r|d

Θ(r) on E.

We will prove that this is true on the whole group H. Observe, that for any r all

Θ(ξ1
r ), . . . ,Θ(ξwr

r ) are irreducible over C and Θ(ξir)
∼= Θ(ξi

′

r′) only if i = i′ and r = r′.

Let χir be the character of Θ(ξir). Then, using Frobenius reciprocity, we have

〈π,Θ(ξir)〉 = 〈IndHL 1,Θ(ξir)〉 = 〈1,ResHLΘ(ξir)〉 =

d

2ns

∑
u,v

χir(e
ducv) =

d

2ns

∑
u,v

χir(c
v) = 1,

hence π ∼=
⊕

r|d Θ(r) on H. Since π is realizable over Q and Θ(r) is realizable over

Q for any r < d by induction, Θ(d) = π −
⊕

r|d,r 6=d Θ(r) is realizable over Q.

Proof of Proposition 2.2.9. Let λ = κ ⊗ ω1/2. Then W (κ ⊗ τ) = W (λ ⊗ τ), because

real powers of ω do not change the root number. Since the root number of repre-

sentations of W(K/K) is multiplicative in short exact sequences, there is a unique

homomorphism

α : R(W(K/K)) −→ C×

such that α([λ]) = W (λ) for any representation λ of W(K/K). Thus, it follows from

Corollary 2.2.7 that

W (λ⊗ τ) = W (µ⊗ τ) ·W (µ∗ ⊗ τ) · W (µ0 ⊗ τ)2

W (µ′0 ⊗ τ)2
·W (µ1 ⊗ τ) · · ·W (µa ⊗ τ). (A.0.7)

Since τ has finite image and real-valued character, we have

W (µ⊗ τ) ·W (µ∗ ⊗ τ) = W (µ⊗ τ) ·W ((µ⊗ τ)∗)

= det(µ⊗ τ)(−1) = detµ(−1)dim τ · det τ(−1)dimµ.
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Also, since µ0 and µ′0 are symplectic and of finite images,

W (µ0 ⊗ τ) = ±1, W (µ′0 ⊗ τ) = ±1

([Ro2], p. 315), hence from (A.0.7) we get

W (λ⊗ τ) = detµ(−1)dim τ · det τ(−1)dimµ ·W (µ1 ⊗ τ) · · ·W (µa ⊗ τ). (A.0.8)

Thus, we need to compute W (µ1 ⊗ τ), . . . ,W (µa ⊗ τ). Let γ be an irreducible sym-

plectic subrepresentation of λ. Let L/Kunr be a minimal subextension of K/Kunr

over which B acquires good reduction. Then, as was discussed in Section 2.2, λ

and, consequently, γ can be considered as representations of G = E o 〈Φ〉, where

E = Gal(L/Kunr) is a finite cyclic group (because p > 2m + 1) and 〈Φ〉 is an in-

finite cyclic group. Let x = dim γ. Then by Proposition 2.2.5, as a representation

of G, γ is induced from a one-dimensional representation of E o 〈Φx〉. Hence, as a

representation of W(K/K), γ is induced from a one-dimensional representation φ of

W(K/Hx), where Hx is the unramified extension of K of degree x, i.e., γ = IndHx
K φ.

Since γ is symplectic, x is even. Let x = 2y and let Hy be the unramified extension of

K of degree y, hence K ⊆ Hy ⊆ Hx. Let γ′ = IndHx
Hy
φ, τ ′ = Res

Hy

K τ , then γ = Ind
Hy

K γ′

and by Formula (1.4) ([Ro2], p. 316) we have

W (γ ⊗ τ) = W (Ind
Hy

K (γ′ ⊗ τ ′)) = W (γ′ ⊗ τ ′)W (Ind
Hy

K 1Hy)
2 dim τ . (A.0.9)

Let us prove first that W (Ind
Hy

K 1Hy)
2 dim τ = 1. Let $ be a uniformizer of K. It is

easy to check that Ind
Hy

K 1Hy =
⊕y−1

i=0 χi, where χ0, . . . , χy−1 are all the distinct unram-

ified characters ofK×, satisfying χi($)y = 1. HenceW (Ind
Hy

K 1Hy) =
∏y−1

i=0 W (χi). By
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Formula (ε3) ([Ro1], p. 142) for each i we have W (χi) = ξ
n(ψ)
i , where n(ψ) ∈ Z, each

ξi is a y-th root of unity, and ξi 6= ξj if i 6= j. Hence
∏y−1

i=0 W (χi) =
∏y−1

i=0 ξ
n(ψ)
i = ±1

and

W (Ind
Hy

K 1Hy)
2 dim τ = 1. (A.0.10)

To compute W (γ′ ⊗ τ ′) we will show that Theorem 2.2.8 can be applied to Hy,

γ′, and τ ′. Indeed, τ ′ is a representation of Gal(K/Hy) with real-valued character

and γ′ = IndHx
Hy
φ is a two-dimensional representation of W(K/Hy) induced from a

character φ of finite image (by Proposition 2.2.5), hence γ′ is a representation of

Gal(K/Hy). Since Ind
Hy

K γ′ = γ is irreducible, γ′ is irreducible too. Since dim γ′ = 2,

γ′ is symplectic if and only if det γ′ is trivial, because Sp(2,C) = SL(2,C) ([Ro2], p.

317). From Proposition 2.2.5 we find that as a representation of E o (Φy), γ′ has the

following form

γ′(e) =

 ξ 0

0 ξ−1

 , γ′(Φy) =

 0 −1

1 0

 ,

where e is a generator of E, ξ is a root of unity. It follows immediately that det γ′ = 1.

Thus to be able to apply Theorem 2.2.8, we need only to check that φ is a tame

character of H×x . It follows from the fact that φ is trivial on Gal(K/L) and L/Kunr

is tamely ramified, because p > 2m+ 1. By Theorem 2.2.8

W (γ′ ⊗ τ ′) = det τ ′(−1) · ϕdim τ · (−1)〈1,τ
′〉+〈η′,τ ′〉+〈γ̂′,τ ′〉, (A.0.11)

where η′ is the unramified quadratic character of H×y , γ̂′ = IndHx
Hy

(φ ⊗ θ), θ is the

unramified quadratic character of H×x , and ϕ = ±1.
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Since τ ′ = Res
Hy

K τ , we have det τ ′ = det τ ◦NHy/K , hence

det τ ′(−1) = det τ(−1)[Hy :K] = det τ(−1)y. (A.0.12)

By Frobenius reciprocity

〈1, τ ′〉+ 〈η′, τ ′〉 = 〈1Hy ⊕ η′, τ ′〉 = 〈1Hy ⊕ η′,Res
Hy

K τ〉 = 〈Ind
Hy

K (1Hy ⊕ η′), τ〉.

As was mentioned above, Ind
Hy

K 1Hy =
⊕y−1

i=0 χi, where χ0, . . . , χy−1 are all the dis-

tinct unramified characters of K×, satisfying χi($)y = 1. Analogously, Ind
Hy

K η′ =⊕2y−1
i=y χi, where χy, . . . , χ2y−1 are all the distinct unramified characters of K× satis-

fying χyi ($) = −1 (y ≤ i ≤ 2y − 1). Thus

Ind
Hy

K (1Hy ⊕ η′) =

2y−1⊕
i=0

χi,

where χ0, . . . , χ2y−1 are all the distinct unramified characters ofK× satisfying χi($)2y =

1, and

〈1, τ ′〉+ 〈η′, τ ′〉 =

2y−1∑
i=0

〈χi, τ〉.

Since τ has a real-valued character, for each χi of order greater than 2, 〈χi, τ〉 will

appear in this sum twice, i.e.,

〈1, τ ′〉+ 〈η′, τ ′〉 ≡ 〈1, τ〉+ 〈η, τ〉 (mod 2). (A.0.13)

Finally, by Frobenius reciprocity,

〈γ̂′, τ ′〉 = 〈IndHx
Hy

(φ⊗ θ),Res
Hy

K τ〉 = 〈IndHx
K (φ⊗ θ), τ〉 = 〈γ̂, τ〉. (A.0.14)

Now formulas (A.0.9) – (A.0.14) imply

W (γ ⊗ τ) = det τ(−1)y · ϕdim τ · (−1)〈1,τ〉+〈η,τ〉+〈γ̂,τ〉. (A.0.15)
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Applying (A.0.15) to µ1, . . . , µa and substituting the result into (A.0.8) we get the

statement of the proposition.
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Appendix B

We keep the notation of Section 2.1.

Lemma B.0.8. Let σ′ = (σ,N) be the representation of W ′(K/K) associated to the

natural l-adic representation of Gal(K/K) on Vl(A)∗ and let σ′ ∼= γ ⊕ (δ⊗ sp(2)) for

some representations γ and δ of W(K/K). Then dim δ = r.

Proof. Since dim δ = rankN and for any finite extension L ⊂ K of K we have

ResW ′(K/L)σ
′ = (ResLKσ,N) ([Ro1], p. 130), we can assume that T splits over K and

B has good reduction over K.

We have the following exact sequence of Gal(K/K)-modules ([Ra], p. 312):

0 −→ G(K)ln −→ A(K)ln
φln−→ Y (K)/lnY (K) −→ 0. (B.0.1)

Since G(K) is divisible, sequence (B.0.1) induces an exact Gal(K/K)-equivariant

sequence of l-adic Tate modules:

0 −→ Tl(G) −→ Tl(A) −→ Z −→ 0,

where Z = lim
←−

(Y (K)/lnY (K)) with the maps being the natural quotient maps. By
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tensoring the above sequence with Ql over Zl we get the following exact Gal(K/K)-

equivariant sequence:

0 −→ Vl(G) −→ Vl(A)
φ−→ Z ⊗Zl

Ql −→ 0. (B.0.2)

For a positive integer n let µn denote the group of n-th roots of unity in K,

Tl(µ) = lim
←−

µln with the l-th power maps. Let Kln be the tamely ramified extension

of Kunr of degree ln and let tln : I −→ µln be the composition of the restriction map

onto Gal(Kln/K
unr) with the isomorphism Gal(Kln/K

unr) ∼= µln .

Let xln ∈ A(K)ln , i ∈ I, and φln(xln) = [y] for some y ∈ Y (K) and φln given by

(B.0.1). Then a formula on p. 314 in [Ra] yields:

i(xln) = xln + νln(y ⊗ tln(i)), (B.0.3)

where νln : Y (K) ⊗Z µln −→ T (K)ln is the following composition of Gal(K/K)-

module homomorphisms:

Y (K)⊗Z µln −→ HomZ(X(K),Z)⊗Z µln
∼−→ T (K)ln ,

where X is the character group of T and the first map is induced by the geometric

monodromy

µ0 : Y ×X −→ Z;

finally, νln(y⊗tln(i)) ∈ T (K)ln is considered as an element of A(K)ln via the inclusions

T (K)ln ↪→ G(K)ln ↪→ A(K)ln .
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For each i ∈ I we have the following maps αn(i) : Y (K)/lnY (K) −→ T (K)ln

given by the following composition:

Y (K)/lnY (K)
ψn(i)−→ Y (K)⊗Z µln

νln−→ T (K)ln ,

where ψn(i)([y]) = y ⊗ tln(i), y ∈ Y (K). It is easy to show that {αn(i)} induce the

homomorphism

α(i) = (αn(i)) : Z −→ Tl(T ),

where Z = lim
←−

(Y (K)/lnY (K)). By extending scalars to Ql we get

α′(i) : Z ⊗Zl
Ql −→ Vl(T ). (B.0.4)

Let βl : Gal(K/K) −→ GL(Vl(A)) be the natural l-adic representation of Gal(K/K)

on Vl(A). Then (B.0.3) and (B.0.4) imply:

βl(i) = id +α′(i) ◦ φ, i ∈ I,

where id : Vl(A) −→ Vl(A) is the identity map and φ is given by (B.0.2). On the

other hand,

βl(i) = exp(al(i)Rl),

where i is in some open subgroup J of I, al : I −→ Ql is a nontrivial continuous

homomorphism, and Rl is a nilpotent endomorphism on Vl(A) ([Ro1], Prop. on

p. 131). Since σ′ = (σ,N) is the representation of W ′(K/K) associated to β∗l :

Gal(K/K) −→ GL(Vl(A)∗), it follows that N is obtained from −Rt
l by extending

scalars via a field embedding ı : Ql ↪→ C. Thus, rankRl = rankN = dim δ and
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R2
l = N2 = 0 by assumption. Thus,

α′(i) ◦ φ = al(i)Rl, i ∈ J,

and, since φ is surjective, it is enough to show that there exists i0 ∈ I such that α′(i0)

is surjective.

There exists i0 ∈ I such that tln(i0) is a generator of µln for each n. It implies

that ψn(i0) is an isomorphism for each n, hence it is enough to show that the map

ν ′ : lim
←−

(Y (K)⊗Z µln)⊗Zl
Ql −→ Vl(T )

induced by (νln) is surjective. Since µ0 is nondegenerate ([F-C], p. 52, Remark 6.3),

we have the following exact sequence:

0 −→ Y (K)
g−→ HomZ(X(K),Z) −→M −→ 0,

where g(y) = µ0(y, ·) andM is finite, since Y (K) and HomZ(X(K),Z) are free abelian

groups of the same rank r. Applying the functor (−) ⊗Z µln to the above sequence,

we get:

Y (K)⊗Z µln
νln−→ T (K)ln −→M ⊗Z µln −→ 0,

hence the exact sequence

0 −→ im νln −→ T (K)ln −→M/lnM −→ 0.

Since Y (K) ⊗Z µln is a finite group, im νln is a finite group, hence {im νln} satisfies

the Mittag-Leffler condition and we have the following exact sequence:

0 −→ lim
←−

(im νln) −→ Tl(T ) −→ lim
←−

(M/lnM) −→ 0. (B.0.5)
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Here lim
←−

(im νln) ∼= im ν, where

ν = (νln) : lim
←−

(Y (K)⊗Z µln) −→ Tl(T ).

Indeed, let Sn = Y (K)⊗Z µln , then we have an exact sequence

0 −→ ker νln −→ Sn −→ im νln −→ 0,

where the maps from Sn to im νln are induced by νln . Since ker νln is finite for each

n, {ker νln} satisfies the Mittag-Leffler condition, hence one has the following exact

sequence

0 −→ lim
←−

(ker νln) −→ lim
←−

Sn −→ lim
←−

(im νln) −→ 0, (B.0.6)

which together with (B.0.5) implies lim
←−

(im νln) ∼= im ν.

Thus, applying the exact functor (−) ⊗Zl
Ql to (B.0.5) and taking into account

that M is finite, we get:

0 −→ (im ν)⊗Zl
Ql −→ Vl(T ) −→ 0,

which implies

im ν ′ ∼= (im ν)⊗Zl
Ql
∼= Vl(T ),

hence ν ′ is surjective.

76



Appendix C

The following example was suggested by R. Gow. Let Q be the quaternion group

and let A = X o Y be the semidirect product of a cyclic group X = 〈x〉 of order 3

generated by an element x and a cyclic group Y = 〈y〉 of order 4 generated by an

element y, with X normal. Let G = Q× A.

Proposition C.0.9. G has an irreducible complex finite-dimensional orthogonal rep-

resentation with Schur index 2 over the rationals.

Proof. Let φ : Q −→ GL2(C) be a representation of Q given by the following formulas

on the generators i and j of Q:

φ(i) =


√
−1 0

0 −
√
−1

 , φ(j) =

 0 −1

1 0

 .

It is easy to check that φ is irreducible and has Q-valued character. Let

ψ : A −→ GL2(C)

be a representation of A given by the following formulas on the generators x and y of
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A:

ψ(x) =

 ξ 0

0 ξ̄

 , ψ(y) =

 0 −1

1 0

 ,

where ξ = exp(2πi
3

) and ξ̄ denotes the complex conjugate of ξ. In fact, ψ = IndAXo〈y2〉α,

where α is a 1-dimensional representation of X o 〈y2〉 given by α(x) = ξ and α(y2) =

−1. It is easy to check that ψ is irreducible and has Q-valued character. Thus,

σ = φ ⊗ ψ : G −→ GL4(C) is irreducible and has Q-valued character. It is easy to

check by Frobenius-Schur method that σ is orthogonal, i.e., has Schur index 1 over

the reals. We claim that σ has Schur index 2 over the rationals. Since σ has Q-valued

character, by Brauer-Speiser theorem it is enough to show that σ is not realizable

over Q. To do so, we first find the decomposition of the group algebra Q[G] into

simple factors and then show that neither of them corresponds to σ.

It is known that there is the following isomorphism of algebras over Q:

Q[G] ∼= Q[Q]⊗Q Q[A].

Thus, we need to find the decompositions of Q[Q] and Q[A].

Since {±1} is a normal subgroup of Q and Q/{±1} ∼= Z/2Z × Z/2Z, Q has 4

distinct 1-dimensional representations realizable over Q, which together with φ are all

the irreducible complex representations of Q (up to isomorphism). On the other hand,

the natural embedding of Q into the quaternion ring HQ over Q defines a surjective

homomorphism Q[Q] −→ HQ, hence

Q[Q] ∼= Q×Q×Q×Q×HQ. (C.0.1)
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Thus, Q has a unique irreducible representation over Q of degree 4 which must be

φ⊕ φ.

It is easy to check that A has 5 conjugacy classes of cyclic subgroups, hence A

has 5 irreducible representations over Q (up to isomorphism). Since A/X ∼= Z/4Z, A

has 2 distinct 1-dimensional representations realizable over Q and one 2-dimensional

representation λ over Q given by

λ(x) =

 1 0

0 1

 , λ(y) =

 0 −1

1 0

 .

It is easy to check that λ is irreducible over Q. Also, A has the following irreducible

(over C) representation µ = IndAXo〈y2〉β, where β(x) = ξ, β(y2) = 1. It is easy to

check that µ ∼= ν, where ν is given by

ν(x) =

 0 −1

1 −1

 , ν(y) =

 1 0

1 −1

 ,

which implies that µ is realizable over Q. Since the simple factors of Q[A] correspond-

ing to λ and µ are Q(i) and M2(Q) respectively, we get

Q[A] = Q×Q×Q(i)×M2(Q)× U,

where U is a simple algebra corresponding to the last 5-th irreducible representation

η of A over Q. It follows that dim η = 4 and η ∼= ψ ⊕ ψ. We have

η ∼= ψ ⊕ ψ ∼= IndGHα⊕ IndGHα
∗ ∼= IndGH(α⊕ α∗),

where H = A o 〈y2〉, α∗ is the contragredient of α, and α ⊕ α∗ is isomorphic to the
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representation γ of H given by

γ(x) =

 0 −1

1 −1

 , γ(y2) =

 −1 0

0 −1

 .

Since all the simple algebras in the decomposition (C.0.1) of Q[Q] are central and

simple, the simple algebras in the decomposition of Q[G] will be isomorphic to the

tensor products of the simple algebras appearing in the decomposition of Q[Q] with

the simple algebras appearing in the decomposition of Q[A]. This implies that the

irreducible representations of G over Q are isomorphic to the tensor products of the

irreducible representations of Q over Q with the irreducible representations of A over

Q. Thus, G has the following list of irreducible representations over Q:

• 8 1-dimensional representations;

• 8 2-dimensional representations;

• 6 4-dimensional representations, namely (φ ⊕ φ) ⊗ πi, where π1, π2 are 1-

dimensional representations of A realizable over Q and ωi ⊗ (ψ ⊕ ψ), where

ω1, . . . , ω4 are 1-dimensional representations of Q realizable over Q;

• 2 8-dimensional representations;

• 1 16-dimensional representation.

Since σ is a 4-dimensional representation of G irreducible over C, it follows that σ is

not from this list, hence σ is not realizable over Q.
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Appendix D

Proof of Proposition 4.2.1. Let Γ = T (K)/Λ. We have the following exact sequence

of Gal(K/K)-modules:

0 −→ Λ −→ T (K) −→ Γ −→ 0. (D.0.1)

Since Λ ∼= Zs and T (K) is a divisible group, this sequence induces the following exact

Gal(K/K)-equivariant sequence of l-adic Tate modules:

0 −→ Tl(T ) −→ Tl(Γ) −→ χ1 ⊗ Zs
l −→ 0, (D.0.2)

where Tl(T ) denotes Tl(T (K)). Let L ⊂ K be a finite Galois extension of K over

which T splits. Since Tl(T ) is a free Zl-module of rank r it follows from (D.0.2) that

Tl(Γ) is a free Zl-module of rank s+ r, hence by Proposition D.0.10 below we have

ResLKρ
′ ∼= (ω−1

L )⊕(r−s) ⊕ (ω−1
L ⊗ sp(2))⊕s, (D.0.3)

where ωL = ResLKω. The rest of the proof is similar to the proof of Proposition 2.3.1.

Since ResW ′(K/L)ρ
′ = (ResLKρ, S) and ResLKρ is semisimple by (D.0.3), ρ′ is admissible
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by Lemma 2.2.1. Hence it has the following form:

ρ′ ∼=
t⊕
i=1

αt ⊗ sp(nt), (D.0.4)

where each αi is a representation of W(K/K) and each ni is a positive integer ([Ro1],

p. 133, Cor. 2). Also, it follows from (D.0.3) that S2 = 0 and rankS = s. Thus,

each ni in (D.0.4) is 1 or 2 and

ρ′ ∼= α⊕ (β ⊗ sp(2)), (D.0.5)

where α is a representation of W(K/K) of dimension r− s and β is a representation

of W(K/K) of dimension s.

Applying the exact functor (−)⊗Zl
Ql to (D.0.2) and taking duals afterwards, we

get

0 −→ χ1 ⊗Qs
l −→ Vl(Γ)∗ −→ Vl(T )∗ −→ 0, (D.0.6)

where Vl(T ) = Vl(T (K)) and χ1
∼= (χ1)

∗, since χ1 is a representation of finite im-

age, realizable over Z. Sequence (D.0.6) induces an exact sequence of corresponding

representations of W ′(K/K), i.e.,

0 −→ (χ1 ⊗Qs
l )⊗ı C −→ Vl(Γ)∗ ⊗ı C −→ Vl(T )∗ ⊗ı C −→ 0 (D.0.7)

is an exact sequence of W ′(K/K)-modules. Moreover, χ1 is the representation of

W ′(K/K) on (χ1 ⊗ Qs
l ) ⊗ı C, ρ′ = (ρ, S) is the representation of W ′(K/K) on

Vl(Γ)∗ ⊗ı C, and by Lemma 2.3.2, χ ⊗ ω−1 is the representation of W ′(K/K) on

Vl(T )∗ ⊗ı C. Since ρ is semisimple, the exact sequence (D.0.7) of W(K/K)-modules
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splits, i.e.,

ρ ∼= χ1 ⊕ (χ⊗ ω−1).

On the other hand, from (D.0.5) we have:

ρ ∼= α⊕ β ⊕ (β ⊗ ω).

Thus, combining the last two congruences, we get

α⊕ β ⊕ (β ⊗ ω) ∼= χ1 ⊕ (χ⊗ ω−1). (D.0.8)

We claim that β ⊗ ω is isomorphic to a subrepresentation of χ1. Suppose there is

an irreducible component β0 of β such that β0⊗ω is isomorphic to a subrepresentation

of χ⊗ ω−1, i.e.,

β0 ⊗ ω ∼= x⊗ ω−1 (D.0.9)

for some irreducible component x of χ. It follows from (D.0.8) that β0 is isomorphic

to a subrepresentation of χ ⊗ ω−1 or χ1, which is impossible, because x, χ, and χ1

have finite images, whereas ω does not. Indeed, suppose β0
∼= y ⊗ ω−1 or β0

∼= z,

where y is an irreducible component of χ and z is an irreducible component of χ1.

From (D.0.9) we get

β0
∼= x⊗ ω−2,

hence

x⊗ ω−2 ∼= y ⊗ ω−1 or x⊗ ω−2 ∼= z.

By taking determinants of both sides in each case, we get

detx

det y
= ω−m+2k or

detx

det z
= ω2k, (D.0.10)
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where m = dim y, k = dimx. Since x, y, and z have finite images (as being subrep-

resentations of χ or χ1) and ω has infinite image, (D.0.10) gives a contradiction.

Thus, β ⊗ ω is isomorphic to a subrepresentation of χ1. Since β ⊗ ω and χ1 have

the same dimension s, we have β⊗ω ∼= χ1, hence β ∼= χ1⊗ω−1. By the uniqueness of

decomposition of a semisimple module into simple modules, we conclude from (D.0.8)

that α ∼= χ2 ⊗ ω−1.

Proposition D.0.10. Let Λ ⊂ (K×)r be a free discrete subgroup of rank s (s ≤ r) and

denote (K
×
)r/Λ by Γ. Let ρ′ = (ρ, S) be the representation of W ′(K/K) associated

to the l-adic representation of Gal(K/K) on Vl(Γ)∗. Let Tl(Γ) be a free Zl-module of

rank s+ r. Then

ρ′ ∼= (ω−1)⊕(r−s) ⊕ (ω−1 ⊗ sp(2))⊕s.

Proof. Let p1, . . . , ps ∈ Λ be a basis of Λ, satisfying the assertion of Lemma D.0.12

below. First, let us choose a Ql-basis for Vl = Vl(Γ). Let f1 = (f1(n)), . . . , fs =

(fs(n)) ∈ Tl(Γ), where f1(n), . . . , fs(n) as elements of (K
×
)r have the following form:

f1(n)l
n

= p1, . . . , fs(n)l
n

= ps and

f1(n+ 1)l = f1(n), . . . , fs(n+ 1)l = fs(n).

Let ξ = (ξ(n)), where each ξ(n) ∈ K× is a primitive ln-th root of unity and ξ(n+1)l =

ξ(n). Let fs+1 = (fs+1(n)), . . . , fs+r = (fs+r(n)) ∈ Tl(Γ), where fs+1(n), . . . , fs+r(n)

84



as elements of (K
×
)r satisfy the following properties:

fs+1(n) = (ξ(n), 1, . . . , 1),

fs+2(n) = (1, ξ(n), . . . , 1),

. . .

fs+r(n) = (1, 1, . . . , ξ(n)).

Then f1, . . . , fs+r is a basis of Vl. Indeed, it is easy to check that f1, . . . , fs+r are

linearly independent over Zl. Since Tl(Γ) is a free Zl-module of rank s+ r, it follows

that f1, . . . , fs+r is a basis of Vl.

Let ρl : Gal(K/K) −→ GL(Vl) be the l-adic representation associated to the

Gal(K/K)-module Vl. Then the matrix representation of ρl with respect to the basis

f1, . . . , fs+r has the following form:

ρl(Φ) =

 Es 0

∗ q−1 · Er

 , ρl(i) =

 Es 0

B(i) Er

 , (D.0.11)

where Er and Es are the identity matrices, i ∈ I, and B(i) ∈ Matr×s(Ql). It is known

that there exists a nilpotent endomorphism Sl of V ∗l such that S is obtained from Sl

by extending of scalars via a field embedding ı : Ql ↪→ C; moreover, Sl is a unique

nilpotent endomorphism such that

ρ∗l (i) = exp(tl(i)Sl), (D.0.12)

where tl : I −→ Ql is a nontrivial continuous homomorphism and i belongs to an
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open subgroup of I. Furthermore, for any g ∈ W(K/K) we have

ρ(g) = ρ∗l (g)exp(−tl(i)Sl), (D.0.13)

where ρ∗l (g)exp(−tl(i)Sl) is considered as an element of GL(V ∗l ⊗ı C) via ı ([Ro1], p.

131, Prop.(i), (ii)). Formula (D.0.11) for ρl(Φ) implies that, considered as a matrix

over C via ı, it is diagonalizable. It follows from Formula (D.0.13) that ρ(Φ) is

diagonalizable, hence ρ is semisimple and ρ′ is admissible by Lemma 2.2.1.

Let $ be a uniformizer of K and let Π = ($(n)), where each $(n) ∈ K× has the

following property:

$(n)l
n

= $ and $(n+ 1)l = $(n).

There exists i0 ∈ I such that

i0(Π) = (i0($(n))) = ($(n)ξ(n)α(n)) = ξαΠ,

where α = (α(n)) ∈ Zl. By Lemma D.0.11 below α 6= 0.

Lemma D.0.11. Let g ∈ O and let gn ∈ K denote a root of xl
n − g = 0. Then

i(gn) = gn for any i ∈ I and n ∈ N if and only if g ∈ O×.

Proof. Clearly, i(gn) = gn for any i ∈ I and n ∈ N if and only if K(gn) is unramified

over K for any n.

Let g ∈ O×. Then the assertion follows from the fact that xl
n − g, considered as

a polynomial in k[x], has no multiple root ([L], p. 48, Prop. 7).

Conversely, since gl
n

n = g, the valuation of g in K(gn) is divisible by ln. Since

K(gn) is unramified over K for any n, the valuation vg of g in K coincides with the
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valuation of g in K(gn), hence vg is divisible by ln for any n, which implies that vg

must be zero and g ∈ O×.

Let pk = (pkj), pkj ∈ K×, 1 ≤ k ≤ s, 1 ≤ j ≤ r. It follows from Lemma D.0.12

below that without loss of generality we can assume that pkk 6∈ O× for any k and

that pkj ∈ O× whenever k > j, 1 ≤ j ≤ r. Thus there exist uk ∈ O× and mk ∈ Z×

such that pkk = uk ·$mk . Let (uk(n)) be a sequence in K
×

such that

uk(n)l
n

= uk and uk(n+ 1)l = uk(n).

For fk(n) ∈ (K
×
)r write fk(n) = (fkj(n)), where fkj(n) ∈ K

×
, 1 ≤ k ≤ s, and

1 ≤ j ≤ r. Then as fkk(n) we can take uk(n) ·$(n)mk . For i0 we have

i0(f1) = (i0(f1(n))) = (i0(f11(n)), i0(f12(n)), . . . , i0(f1r(n))),

where by Lemma D.0.11 we have:

i0(f11(n)) = u1(n) ·$(n)m1 · ξ(n)α(n)m1 = f11(n) · ξ(n)α(n)m1 .

Analogously, using Lemma D.0.11, we get the following formulas:

i0(f1) = f1 · fαm1
s+1 · fa2

s+2 · · · far
s+r,

i0(f2) = f2 · fαm2
s+2 · f b3s+3 · · · f brs+r,

. . .

i0(fs) = fs · fαms
2s · f cs+1

2s+1 · · · f crs+r
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for some ai, bj, . . . , ck ∈ Zl. This implies that B(i0) has the following form:

B(i0) =



αm1 0 . . . 0

∗ αm2 . . . 0

...
...

. . .
...

∗ ∗ . . . αms

...
...

. . .
...


,

where α,m1, . . . ,ms ∈ Z×l , hence rankB(i0) = s.

Since ρ′ is admissible,

ρ′ ∼=
k⊕
j=1

πj ⊗ sp(nj), (D.0.14)

where π1, . . . , πk are representations of W(K/K) ([Ro1], p. 133, Cor. 2 ). Since

ρ∗l (i) = exp(tl(i)Sl) by (D.0.12) and (ρl(i)−Es+r)2 = 0 from (D.0.11), it follows that

(Sl)
2 = 0, i.e., each nj in (D.0.14) is 1 or 2, hence

ρ′ ∼= α⊕ (β ⊗ sp(2)),

where α and β are representations of W(K/K). Since rankB(i0) = s, the equation

(D.0.12) implies that rankS = rankSl = s, hence dim β = s and dimα = r − s.

Let us prove now that α ∼=
⊕

r−s ω
−1 and β ∼=

⊕
s ω
−1. It can be easily verified

that (D.0.11) – (D.0.13) imply

ρ(g) =

 Es ∗

0 (ω−1)⊕r

 , g ∈ W(K/K), (D.0.15)

hence there is a complete flag of subrepresentations

(0) 6= W1 ⊂ · · · ⊂ Ws+r = V ∗l ⊗ı C
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of ρ. Since ρ is semisimple, it implies that ρ is a direct sum of one-dimensional

subrepresentations, hence from (D.0.15)

α ∼=
⊕
r−s

ω−1 and β ∼=
⊕
s

ω−1.

Lemma D.0.12. Let K be a non-Archimedean local field with ring of integers O. Let

Λ ⊂ (K×)r be a free discrete subgroup of rank s (s ≤ r). There exist a basis p1, . . . , ps

of Λ and natural numbers n1, . . . , ns (1 ≤ n1 < n2 < · · · < ns ≤ r) with the following

property: if pk = (pkj), 1 ≤ k ≤ s, 1 ≤ j ≤ r, and pkj ∈ K×, then pini
6∈ O× for any

i and plni
∈ O× whenever l > i.

Proof. First, note that (O×)r ∩ Λ = {1}. Indeed, if x ∈ (O×)r ∩ Λ and x 6= 1, then

(xn) is an infinite sequence in (O×)r ∩Λ, hence it has a limit point, because (O×)r is

compact, which contradicts the assumption that Λ is discrete.

Let $ be a uniformizer of K. The map O× × Z −→ K× given by

(u, n) 7→ u$n

is an isomorphism of topological groups. For every positive integer r it induces an

isomorphism (K×)r ∼= (O×)r × Zr. Let π : (K×)r −→ Zr be the projection onto Zr

and t1, . . . , ts be a basis of Λ. Since (O×)r ∩Λ = {1}, π(t1), . . . , π(ts) form a basis of

π(Λ). Indeed, otherwise, there exist m1, . . . ,ms ∈ Z, not all of which are zeros, such

that

m1π(t1) + · · ·+msπ(ts) = 0.
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Then 1 6= tm1
1 · · · tms

s ∈ (O×)r ∩ Λ. Thus, π(Λ) ⊆ Zr is a subgroup of rank s and it is

enough to prove the following sublemma:

Sublemma D.0.13. Let G ⊆ Zr be a subgroup of rank s (s ≤ r). There exist a basis

g1, . . . , gs of G and natural numbers n1, . . . , ns (1 ≤ n1 < n2 < · · · < ns ≤ r) with the

following property: if gk = (gkj), 1 ≤ k ≤ s, 1 ≤ j ≤ r, and gkj ∈ Z, then gini
6= 0

for any i and glni
= 0 whenever l > i.

Indeed, if we assume Sublemma D.0.13, then there is a basis g1, . . . , gs of π(Λ)

with the property described in Sublemma D.0.13. Since π(t1), . . . , π(ts) is a basis of

π(Λ), there is a matrix D = (dij) ∈ GLs(Z) such that

gi =
∑
j

dijπ(tj), 1 ≤ i ≤ s.

Then pi =
∏

j t
dij

j , 1 ≤ i ≤ s, will be a basis of Λ with the required property.

Proof of Sublemma D.0.13. Suppose r = s. We will prove the sublemma in this case

by induction on r. Clearly, it holds when r = 1. Let r be arbitrary and e1, . . . , er be

the standard basis of Zr. There exists k ∈ Z× such that G ∩ (er) = (ker), because

mer ∈ G, where m = |B| and B = Zr/G. Then G/(ker) ⊆ Zr−1 is a subgroup of

rank r − 1. By induction, there exist g1, . . . , gr−1 ∈ G such that in G/(ker) we have:

ḡi =
r−1∑
j=1

aijej, 1 ≤ i ≤ r − 1,

for some aij ∈ Z such that aii 6= 0 for any i and aij = 0 whenever i > j. Then

g1, . . . , gr−1, gr = ker will be a basis of G with the required property.
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Suppose now that s 6= r. Let q1, . . . , qs be a basis of G. Then qi =
∑

j bijej, where

B = (bij) ∈ Mats×r(Z). Since q1, . . . , qs is a basis, rankB = s, i.e., there exists an

s× s-submatrix B0 of B such that detB0 6= 0. Let B0 have the following form:

B0 =



b1n1 b1n2 . . . b1ns

b2n1 b2n2 . . . b2ns

...
...

. . .
...

bsn1 bsn2 . . . bsns


.

Then pi =
∑

j binj
enj

, 1 ≤ i ≤ s, are linearly independent, hence generate a free

subgroup H of rank s in Zen1 ⊕ · · ·⊕Zens . By the case r = s above there is a matrix

C ∈ GLs(Z) such that ∑
i

ckipi =
∑
j

hknj
enj
,

where hknj
∈ Z, hini

6= 0 for any i and hlni
= 0 whenever l > i. Then gk =

∑
i ckiqi,

1 ≤ k ≤ s, will be a basis of G with the required property.
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