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ABSTRACT. We classify toroidal solenoids defined by non-singular n X n-matrices A
with integer coefficients by studying associated first Cech cohomology groups. In a
previous work, we classified the groups in the case n = 2 using generalized ideal classes
in the splitting field of the characteristic polynomial of A. In this paper we explore the
classification problem for an arbitrary n.

1. INTRODUCTION

The goal of this paper is to classify toroidal solenoids defined by non-singular matrices
with integer coefficients as introduced by M. C. McCord in 1965 [M65]. More precisely, let
T™ denote a torus considered as a quotient of R” by its subgroup Z". A matrix A € M,,(Z)
induces a map A : T" — T, A([x]) = [Ax], [x] € T", x € R". Consider the inverse
system (Mjafj)jel\b where fj : Mj+1 — Mj, Mj = T" and fj = A for all] € N. The
inverse limit Sy of the system is called a (toroidal) solenoid. As a set, S4 is a subset of
[1;2, M; consisting of points (z;) € [[;Z, M; such that z; € M; and f;(2j41) = z; for

Vi eN ie.,
&:%@eﬂw

J=1

Zj S Tn, A(Zj+1) = Zj, ] S N} .

Endowed with the natural group structure and the induced topology from the Tychonoff
(product) topology on Hj‘;l T", S4 is an n-dimensional topological abelian group. It is
compact, metrizable, and connected, but not locally connected and not path connected.
Toroidal solenoids are examples of inverse limit dynamical systems. When n = 1 and
A = d, d € 7Z, solenoids are called d-adic solenoids or Vietoris solenoids. The first
examples were studied by L. Vietoris in 1927 for d = 2 [V27] and later in 1930 by van
Dantzig for an arbitrary d [D37]. The problem of classifying toroidal solenoids (up to
homeomorphisms) has been studied extensively based on their topological invariants and
holonomy pseudogroup actions (see e.g., [CHL13] and [BLP19]). In [S22] and the present
work, we employ a number-theoretic approach to solving the problem.

It is known that the first Cech cohomology group H 1(84,Z) of S, is isomorphic to a
subgroup G 4: of Q" defined by the transpose A’ of A as follows:

Ga={(A)"*x|xeZ" kel}.
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On the other hand, since Sy is a compact connected abelian group, H'(S4,7Z) is iso-
morphic to the character group Syiof Su. T hus, for a non-singular B € M,,(Z), using
Pontryagin duality theorem, we see that S4, Sp are isomorphic as topological groups if
and only if G 4¢, Gt are isomorphic as abstract groups. Therefore, we study isomorphism
classes of groups of the form G4, where A € M,,(Z) is non-singular.

If n =1, we have A, B € Z and G4, G are isomorphic if and only if A, B have the
same prime divisors. Note that if A, B are conjugate by a matrix in GL,,(Z), then clearly
G 4, Gp are isomorphic (notationally, G4 = Gg). However, the converse is not true. In
general, the class of matrices A, B € M,,(Z) with isomorphic groups G4, Gp is much
larger than the class of GL,(Z)-conjugate matrices. We have an example, where given
an irreducible polynomial h € Z[z], there are three GLy(Z)-conjugacy classes of matrices
with integer coefficients and characteristic polynomial h, but all three classes constitute
just one class of isomorphic groups of the form G, [S22, Example 4]. It might also
happen that G4 & Gg, but A, B do not even share the same characteristic polynomial,
so that A, B are not conjugate by a matrix in GL,(Q) (see e.g., [S22, Example 2]). In
[S22] we classified groups G4 in the case n = 2. In the generic case, i.e., when the
characteristic polynomial of A is irreducible, we linked G4 to a generalized ideal class
generated by an eigenvector of A in the splitting field of the characteristic polynomial
of A. We showed that if G4 = Gp, then the characteristic polynomials of A, B share
the same splitting field and, essentially, G4 and Gp are isomorphic if and only if the
corresponding ideal classes are multiples of each other. It turns out that this is no longer
true when n > 2. In this paper, we finish the classification of groups G4 (and hence, the
associated toroidal solenoids Sy4) for an arbitrary n. We provide necessary and sufficient
conditions for G4 = Gp for any A, B € M,(Z) and consider special cases as well. In
particular, we formulate sufficient conditions under which G4 = Gp if and only if the
corresponding ideal classes are multiples of each other. We give examples illustrating how
our theorems can be used to check whether G4 = Gp for given A, B € M,,(Z) in practice.
We also consider applications of the obtained results to the class of Z"-odometers defined
by matrices A € M,,(Z).

Acknowledgements. The author thanks Mario Bonk for suggesting the problem and
useful discussions. Support for this project was provided by PSC-CUNY Awards TRADA-
51-133, TRADB-53-92 jointly funded by The Professional Staff Congress and The City

University of New York.

2. LOCALIZATION

For a non-singular n x n-matrix A with integer coefficients, A € M,,(Z), define
(2.1) Ga={AM|x€e€Z" keZ}, Z'CG,4CQ"

One can readily check that G4 is a subgroup of Q™.
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For a prime p € N denote
m
Zo = {~ €Q|mneZ nt0, (pn) =1},

a subring of Q. (Here (p,n) denotes the greatest common divisor of p and n.) Let Q,
denote the field of p-adic numbers with the subgring of p-adic integers Z,. For N = det A,
N eZ,N+#0,let

1 m
be the ring of N-adic rationals.
Remark 2.1. Note that G4 is a (additive) subgroup of R", since A~% = mfl, k €N,

with A € M,,(Z). However, G4 # R" in general.
Lemma 2.2. For a prime p € N denote G4, = G4 ®z L. Then
Ga=[Gap=R" [\ Gap
P pldet A

Here G 4, 1s considered as a subset of Q™.

Proof. See [F73, p. 183, Lemma 93.1] for the first equality, which holds for any abelian
subgroup of Q™ and, more generally, for an abelian torsion free group of at most countable
rank. Hence, taking into account Remark , we have G4 C R" ﬂpl gt 4 Gap. The

opposite inclusion is proved as in [oc.cit. Namely, let z € R" mpl qet 4 Gap- Then
T = inai, T € Ly, a; € Gy,

and there exists s € Z coprime with p such that sx € G4. Since x € R", there exists a
power of N such that N¥z € Z" k € N, N = det A. Let py,ps,...,m € N be all the
prime divisors of N. Since z € ﬂmdet 1 Gap, by above, for each p; there exists s; € Z

coprime with p; such that s;z € G4. Since N¥, sy, ss,...,s; are coprime and Z" C Gy,
we have z € G 4. O

For a prime p € N denote @A,p = (4 ®z Z,. Naturally, Zy, < EAJD - @g.
Lemma 2.3. Let @A,p =Gya®y Ly, GAJ, =Gy ®z Z(p). Then
Q"N Gayp = Gayp,
where Q" — Qp, and the intersection is in Q.

Proof. See [E73 p. 183, Lemma 93.2], [D37]. It is proved there that if G is an abelian
torsion free group of at most countable rank, then

(G ®z Q) N (G @z Zp) = G Qg L.
Apply the result to G = G4 and note that G4 ®7z Q = Q™. O
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Corollary 2.4.
Ga=[)(Q"NGap)= (] (R"NGa,).

D p|det A
Proof. Follows from Lemma [2.2] and Lemma [2.3 O

Proposition 2.5. [S22, Prop. 3.8] Let A € M, (Z) be non-singular, let ha € Z[z]| be
the characteristic polynomial of A, and let p € Z be prime. Let t, = t,(A) denote the
multiplicity of zero in the reduction of ha modulo p, 0 <t, <n. Then, as Z,-modules,

@Am = QZP D Zg_tp.
In particular,
(1) p does not divide det A if and only if Ga, = Ly;
(2) ha =" (mod p) if and only if G, = Q1.
Thus,
(2.3) aA,p = Dp(A) ©® RP(A)7

where D, (A) = Q) denotes a divisible part of G 4,, and R,(A) = Z; " denotes a reduced
Z,-submodule of G 4,. Let

det A = api'ps? - - - p)’
be the prime-power factorization of det A, where pi,po,...,p; € N are distinct primes,
a = =*1, and sy, S0, ..., € N. Let

P = P(A) = {p17p27 s apl}‘
The case P = (), equivalently, A € GL,,(Z), has been settled as follows:

Lemma 2.6. [S22, Lemma 3.2] Let A, B € M,,(Z) be non-singular.
(1) Assume A € GL,(Z). Then G4 = Gg if and only if B € GL,(Z) if and only if
Ga=Gp=1".
(17) Let Gy = G and A & GL,(Z), i.e., det A # £1. Then det B # +1 and det A,
det B have the same prime divisors (in Z).

Therefore, for the rest of the paper we assume P # (). Denote
P =P (A) = {peP, haZz"(modp)},

where hy € Z[x] denotes the characteristic polynomial of A. The case P’ = () has been
settled as well.

Lemma 2.7. [S22| Lemma 3.10] Let A, B € M,,(Z) be non-singular and let ha, hp € Z[z]
be their respective characteristic polynomials. Assume that for any prime p € N that
divides det A we have

ha = 2" (mod p).
Then G4 = Gp (with T = 1,,) if and only if det A, det B have the same prime divisors
and for any prime p € Z that divides det B we have hg = ™ (mod p).
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Therefore, for the rest of the paper we assume P’ # ().

Remark 2.8. By Proposition , for non-singular A, B € M, (Z), if G4 = Gp, then
P(A) = P(B), P'(A) = P'(B), and t,(A) = t,(B) for any prime p € N. The converse
is not true (see e.g., [S22, Example 1], where non-singular A, B € My(Z) share the same
characteristic polynomial, but G 4 is not isomorphic to Gg).
Corollary 2.9.
Ga= [)(R"NGay,).
peP!
Proof. Follows from Corollary [2.4] since
Gap= Q, for any p € P\P’

by Proposition [2.5] O

The following lemma provides an explicit basis for the decomposition of @A,p as in
(2.3). Let t, = t,(A) denote the multiplicity of zero in the reduction of the characteristic
polynomial of A modulo p, 0 <¢, <n. Let

Z(p™) = Qp/Zy

denote the Priifer p-group.

Lemma 2.10. Let A € M,,(Z) be non-singular. For anyp € P there exists W, € GL,,(Z,)
such that

_ Ay x
(2.4) W, AW, = ( 01 A2> :

where Ay € My, (Zy), Ay € GLyn—¢,(Z,y), and Ay has characteristic polynomial hy € Z,|x]
with

(2.5) hy = 2 (mod p).

Let W, = (wpl . an), where Wy, ..., Wy, € Z. Then

(2.6) Dy(A) = Spang, (Wpi,..., Wp,) = Q,
(2.7) R,(A) = Spang (Wyi, 1, -, Wpn) = Zy7".
In particular,

(2.8) Gap/Zl = L(p™)".

Proof. One can show that for an irreducible polynomial x € Z,[z] of degree n, either
p does not divide x(0) or x = 2" (mod p) (see, e.g., the proof of [S22) Prop. 3.8]).
Therefore, the existence of W, € GL,,(Z,) satisfying and follows from Theorem
below. Moreover, the proof of Theorem gives an algorithm to construct W,,. Let

A=W, 1AW,, A € M,(Z,), and

Gi= {A—kx\ X €L, ke Z} = Qe & ©Qpey, D Lper, 1 B -+ D Zyen,
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i.e., with respect to the standard basis {ey, ..., e,} of Qy,
Gi= @Zp D Zz—tp

(this follows, e.g., from Proposition applied to A; and A,). Since W, € GL,(Z,),
we have EAJ, = W,(G ;) and {Wpey, ..., Wye,} is a free Z,-basis of Z;, wy,; = Wye;,
1 <i < n. Hence, (2.6) — (2.8) follow. O

3. MINIMAX GROUPS

Definition 3.1. [GMS1] A torsion-free abelian group G of rank n is called a minimax group
if there exists a free subgroup H of G of rank n such that

l
G/H =Pz,
=1

where py, po, ..., p; € N are distinct primes and tq,s,...,%, € N.

Let A € M, (Z) be non-singular. We show that G 4 defined by ({2.1)) is a minimax group
in the lemma below. Let hy € Z[z] denote the characteristic polynomial of A.

Lemma 3.2. G4 is a minimax group. Namely,

l
Ga/Z" = P L),
=1

where p1,pa, ..., p € N are all distinct prime divisors of det A, and t; is the multiplicity
of zero in the reduction of ha modulo p;, 0 <t; <n, 1 <i<I.

Proof. Let p € N be prime, and let z = 29 + 21 € Q,, where z; € Z, and zp € Q is
a “fractional” part of z. It is well-known that the correspondence ¢,(x) = x¢ induces a
well-defined injective homomorphism ¢, : Q,/Z, — Q/Z and that ¢ = P, ¢, is a group
isomorphism

¢:@¢p:@(@p/zp%(@/z

Let
v Pz QT
p
be the natural isomorphism induced by ¢. It restricts to an isomorphism
’QDA . @@A@/Zz L) GA/Zn
p

Indeed, recall that A has integer entries and therefore, multiplication by A’ commutes
with ¢ for any non-negative integer i. Furthermore, u € G4, (resp., v € G4) if and only
if Abu e Z! (vesp., A*v € Z") for some k € NU{0}. Finally, G4,/Z? is trivial for any p
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that does not divide det A by Proposition [2.5] Therefore, 14 is an isomorphism between
the following groups

!
(3.1) Va: @ Cap/Z) =5 GaJT"

i=1
Combined with (2.8), this proves the lemma. O

Using Lemma and isomorphism 4 in (3.1]), one can now write down (infinitely
many) group generators of G4 (c.f., [GMS&I]).

Lemma 3.3. Let A € M,,(Z) be non-singular. For each p € P’, let
Wp = (Wp1 an)
be as in Lemma W), € ZZ, 1< j5<n. Then

(3.2) Ga=<eq,....e,,q e, ....q ey, p "Wy, ...,0 Wy, >,

. . _ _ ko (K k) .
i.e., G4 is generated over 7 by e1,...,e,, ¢ °e1,...,q °e,, and p sz(n-), where wl(n-) 18

the (k — 1)-st partial sum of the standard p-adic expansion of wy;, k,s € N, 1 <i <t
qgeP\P,peP.

Proof. Let hy € Z[x] denote the characteristic polynomial of A. Let ¢ € P\P’, i.e., ¢ € N
is a prime such that

ha =2" (mod q), t,=n.
By Proposition , we have EA,q = Q. Then EA,Q is generated over Z, by e, ..., ey,
q °e1,...,q °e,, where s € N, i.e., in our notation,

—0o0

(3.3) Gag= Spany_(ei,...,e,,q e, ...,q Te,).
For p € P', by (2.6), 2.7), G, is generated over Z, by ey, ..., e,, p~*w,;, where k € N,

1.€.,
(3.4) Gap= Spang, (€1,...,€n, D “Wpi, ..., P Wy ).

Applying isomorphism 14 in (3.1) to the generators of G4, in (3.3) and (3.4)), we get
B2). .

Generators of G4 in are written in terms of the standard basis {es,...,e,} and
vectors {wpi,...,Wp,}, p € P'. In what follows, we show the existence of a free basis
{fi,....£,} of Z" (that does not depend on p) and p-adic integers oy,;; € Z, with 1 <i <1,
t,+1 < j <n,pe P, that determine generators of G4. It is often useful to extend
constants from Q to a number field K, a finite extension of Q, i.e., to consider G 4 ®z Ok,
where Ok denotes the ring of integers of K (see Remark below). Therefore, we start
with a preliminary result, which holds over K.
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Lemma 3.4. Let S be a finite set of primes in N, let K be a number field, and n € N.
For each p € S let p be a prime ideal of Ok above p and let V, denote a non-zero
proper subspace of K, where K, is the completion of K with respect to p, dimV, = ¢,
0 <t, <n. There exzsts a basis {f1,...,£,} of Z™ such that for any p € S there are
api; € Op, 1 <1< t, < j < n, such that

j=tp+1
is a K,-basis of V,,. (Here, O, denotes the ring of integers of K,.)
Proof. 1t is a straightforward generalization of [GM8Il, p. 194, Lemma 1] from Q to a
number field. We repeat their argument in order to use later in specific examples. The
argument does not depend on the choice of prime ideals p. Therefore, for simplicity, we
denote O, = O,, K, = K,,, V,, =V}, and so on.
For a fixed p € S let ypi1,...,yp, be a K,-basis of V,. Let (7) be the maximal ideal of

O,. Let
=2
k=1

where V”y;fi € K,. By multiplying or dividing by positive powers of 7 if necessary, with-
out loss of generality, we can assume that V’y]’,fi € O, and for Vi there is a unit among
711,2», e Let {f1,... £,} be an ordered basis of Z" obtained by permuting elements in
the standard basis {ey,...,e,}, so that

(3.6) Z fe, 0 €O

Here O denotes the set of all units in O,. Now we show that, without loss of generality,
we can assume 5;1 € Oy for any g € S other than p. Indeed, denote by I' the set of all
primes ¢ € S such that d;, € O;. By (3.6), I' # 0 and let

(3.7) t=]]»

Let s € S\T, i.e., 61, € O, is not a unit. By assumption, there is j € {2,...,n} such that
6/, € OF. Consider f] = f; — tf; and f] = f; for any ¢ # j, 1 <4 < n. Then, with respect
to the new basis {f],...,f'} of Z", we have

pl—z 1fkv 1601:

for any p € I' and p = s. We now add s to I and change ¢ in (3.7)) to ts. Repeating the
process for the remaining elements in S\I', we obtain a basis {f],...,f’} of Z" such that
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for any p € § we have

k en 1 X 2 n )
Ypi = E ifk, 61 €0y, €6, €0y 1<y,
k=1

By dividing y,1 by €, without loss of generality, ;; = 1. Let ' = {p € S, t, > 2}. For

pl>
any p € & and 2 <i < tp, let ¥, = ypi — €, Yp1. Then

Ypi € Spang (£5,...,£)), 2<i<t, peS.

Applying induction to vectors y,;, 2 < i < t,, p € S, we get a free Z-basis {gs,...,8n}
of Spany (£, ... £") such that

. ; tpt1 n :

Voi=8i+ > phg i €0, 2<i<t,
j=tp+1

Spanop (S’p?a s >S’ptp) = Span(ﬂp (S’p?a s 7$’ptp)7 p S S,~

Finally, for any p € § let

S’pl = f{/+2ﬂ§1gk7 M?yla"'aﬂ;ﬁl € Opa

k=2
tp n

~ _ k & _en ~7

Yp1 = Yp1 — E P Yok = 11 + E 18-
k=2 j=tp+1

Hence, with respect to the Z-basis {f]',g2,...,8n}, Xpi = ¥pi, 1 < i <t,, p € S, have the
form (3.5)). O

In the next lemma we apply Lemma to divisible parts of @A,p and more generally,
to the divisible parts of G4, ®z, Op. The result is a free basis {fi,... ,f,} of Z" and
numbers a,;; € Z,, p € P'(A), that produce generators of G4 over Z.

Lemma 3.5. Let A € M,,(Z) be non-singular and let K be a number field. There ezists
a basis {f1,...,£,} of Z" such that for any p € P'(A) and a prime ideal p of Ok above p
there are ay; € Op, 1 € {1,...,t,}, g € {t, +1,...,n}, such that

(3.8) aA,p ®z, Op = Spang, (Xp1s - -+ Xpt, ) © Spanop(ftpﬂ, B,
(39) Xpi = fz + Z Oépijfj, 1 S 1 S tp.
J=tp+l

Moreover, all o,y belong to Z,, they do not depend on K, p above p, and are uniquely
defined for a fized ordered basis {f1,...,f,}. Furthermore,

(310) GA =< f17 s 7fna q_oofla s 7q_oo nap_ooxpi >, q < P\Pl7 1 S [ S 7(;p‘
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Proof. By Lemma , Gap = Dy(A) @ R,(A), where as Z,-modules, D,(A) = 3
R,(A) = Zy~". Denote

ap = aA,:o ®z, Opa
Dy = Dy(A) ®z, Oy,
Ry, = Ry(A) ®z, Oy.

Then G, = D, ® R,, where as Oy-modules, D, = K;;”, R, = Oy ~'We apply Lemma
to S =P'(A), K, and V, = D,. Then there exists a basis {f;,...,f,} of Z" such that for
any p € P'(A), D, = Spany (Xp1, - - -, Xpt, ), and x,;'s are given by (3-5). We only need to
show G, C D, ® Spanop(ftpﬂ, ..., f,). Indeed, by (2.7), for any u € Ry,

u = Z O Wy = Zﬁzf —Z%Xpri— Z rYl 2

Z:tp+1 1= tp+1
where all o; € O, by definition of Ry, and all 5; € O,, since all w;,; € Z. Finally, all
v; € O, by definition of x,;. This proves ({3.8).

We now show that for any K, all oy;; € Z,. By enlarging K if necessary, without loss
of generality, we assume K is Galois over Q. Let p € P’(A) be arbitrary. By above,
3-3). hold. For any o € Gal(K,/Q,), we have o(G,) = Gy, 0(R,) = R,, and
o(Dy) = Spang, (o(x;;)), where

7 (%p:) f+2 o(ag)fj, 1<i<t,
J=tp+1

since A, fi,...,f, are defined over Z. By the uniqueness of the divisible part, we have
Spany, (0(x,:)) = Spany, (x,;) and hence o(ay;) = ay; for any i, 5. Si_nce api; € O,
this implies ,;; € Z, and hence x,;; € Z, for all p,i,j. Furthermore, G4, consists of
elements in G, invariant under the action of Gal(K,/Q,). Hence,

Gap= Spang, (Xp1, - - - Xpt,) © Spang, (fi,41,...,£).
On the other hand, if (3.8), (3.9)) hold for K = Q, and the same basis fj, ..., f,, then

a = Span@ (X;;la cey pt )EB SpanZ (ftp+1: s 7fn>7
_f+z a £, 1<i<t,
j=tp+1

for some a,;; € Z,, a priori, different from ay,;; € Z,. As above, by the uniqueness of the

divisible part, we have ay;; = oz;n-j for all p,4, 7. This shows that a,,;’s do not depend on
K and p’s.
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For each p € P'(A) let wyy, ..., Wy, be as in Lemma- By (2.6 . ), AWp1s -0 Wiy, } 1S
a Qp-basis of D,(A). By Lemma applied to § = P'(A) K Q, and V, = D »(A), we
get Spang (Wp1, ..., Wy, ) = Span@p (Xpt, - -, Xp, ). Thus, ) follows from B.2). O
Definition 3.6. [GMSI1] Let {f;,....f,} and o € Z, be as in Lemma[3.5] The set
M(A;fl,...,fn) = {Oépij GZp|p€73/, 1 Sigtp<j §n}
is called the characteristic of G 4 relative to the ordered basis {fj,...,f,}.
Remark 3.7. To calculate a characteristic of G4 in practice, one can start with a basis
W, = {Wp1,..., Wy, } of the divisible part D,(A), and then apply the procedure in the
proof of Lemmal[3.4/for § = P'(A), K = Q, V;, = D,(A) (see Lemma for the definition
of W,). In turn, to find W,, one can use the procedure described in the proof of Theorem

[9.1] below.

Our ultimate goal is to characterize when G4 = Gp for non-singular A, B € M,,(Z).
In the next lemma we show that by conjugating A by a matrix in GL,(Z) corresponding
to {f1,...,f,}, without loss of generality, we can assume that the characteristics of both
G, Gp are given with respect to the standard basis {ey, ..., e,}.

Lemma 3.8. Let A € M,,(Z) be non-singular and let M (A;fy, ... f,) be the characteristic
of G 4 relative to a free Z-basis {f1,...,£,} of Z". Let {gi,...,8n} be another free Z-basis
of Z" and let S € GL,(Z) be a change-of-basis matriz: Stf; = g;, 1 < i < n. Then
S(Ga) = Gsas-1, P'(A) =P (SAS™Y), t,(A) = t,(SAS™Y), and
M(SAS g, ..,g.) = M(A;fy, ... f,).
Proof. Follows easily from the definition ({2.1)) of G4 and Lemma . O
Lemma 3.9. Let A € M, (Z) be non-singular and let
M(A;fy, .. f) ={ap|lpe P 1<i<t,<j<n}
be the characteristic of Ga relative to a free basis {f1,....£.} of Z". For b € Q" let
b=>%"_, bfy, b1,...,b, € Q. Then b € Ga,, for p € P' if and only if
tp
(3.11) bj =Y biwi; € Ly, t,+ 1< j<n.
i=1

Moreover, b € G o if and only if by, ..., b, € R and (3.11)) holds for any p € P'.

Proof. 1t follows easily from [GMS8Il p. 195, Lemma 2]. We repeat the argument adapted
to our case. Since {f},...,f,} is a free Z-basis of Z", it follows from Corollary - 2.9| that
b € G4 if and only if bl,.. b, € R and b € GAp for any p € P’. Since Z; C Gy, by
Lemma , {%p1, - Xpt, s ft,,+1, ..., £, } is a basis of Q) as a Q,-vector space Thus,

(3.12) b= Zbkfk—Zyzxme Z yifi, oy, yn € Q.

j=tp+1
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Hence, by Lemma applied to K = Q, b € G4, if and only if Yty+1s - - Yn € Zyp. Com-

paring coefficients in (3.12)) and using (3.5)), each y; = b; and each y; = b; — Zﬁil biaij,
hence (3.11]). 0

We are interested in studying isomorphism classes of groups G4, i.e., when G4 = Gp
for non-singular A, B € M,,(Z). If n = 1, we have A, B € Z and G4 = Gp if and only if
A, B have the same prime divisors in Z. Therefore, for the rest of the paper we assume
n > 2.

The next result is a criterion for G4, G to be isomorphic. It is based on the facts
that any isomorphism ¢ between G4 and Gp is induced by a matrix T € GL,(Q) ([S22,
Lemma 3.1]), ¢ induces a Z,-module isomorphism between @A,p and @Byp for any prime

p € N, and, therefore, ¢ restricts to an isomorphism between the divisible parts D,(A),
D,(B) (see (2.6]) for the definition).

Let A, B € M, (Z) be non-singular. Define

R(A) =7 {%} - {% ‘ zheZ}, N=detA
By Lemma [3.8], without loss of generality, we can assume that we have the characteristics
of G4, G with respect to the same standard basis {e1,...,e,}, i.e.,
(3.13) M(A;eq,....e,) = {apj(A)|[peP'(A), 1 <i<t,(A) <j<n},
(3.14) M(B;ey,...,e,) ={au(B)|pe P (B), 1 <i<t,(B)<j<n}.
We say that T' € GL,(Q) satisfies the condition (A, B,p), p € P'(B), if
j — th column (’ylj e ’ynj) of T satisfies

Theorem 3.10. Let A, B € M,,(Z) be non-singular and let Ga,Gg have characteristics
(13-13), (3.14), respectively. For T € GL,(Q) we have T(G4) = Gp if and only if
P=PA) = P(B),
P-P(4) = P(B)

(4) = R(B),

(A) = 4(B), YpeP,
T € GL,(R), T(D,(A)) = Dy(B), and T (resp., T™') satisfies the condition (A, B, p)
(resp., (B, A,p)) for any p € P'.
Proof. By Corollary [2.4) T(G4) = G if and only if for any prime p € N

T(Ga,) =Gpy.

In particular, using Proposition 2.5] if T(G4) = G, then P(A) = P(B), P'(A) = P'(B),
tp(A) = t,(B), and hence R(A) = R(B). Also, T € GL,(R) by [S22, Lemma 3.4].
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By Lemma [3.5] applied to K = Q,

(3.15) Gap = Dy(A) @ Spang, (€41, --,€.),
(316) aB,p = DP(B) S¥ Spaan (et2+1a SR 7en)7
where t; = 1,(A), ty = t,(B), and D,(A) = Qi', D,(B) = Q}? as Z,-modules. There-

fore, T' defines a Z,-module isomorphism from aA,p to @B,p if and only if t = t; = to,
T(D,(A)) = D,(B), and with respect to the decompositions and (3.16), 7" has the
form

~ T =

T = (0 T2> . T e GL(Qy), Th € GL,—+(Z,).
Note that T, € GL,_+(Z,) if and only if Te; € @B,p and T 'e; € @A,p for any j €
{t+1,...,n}, which is equivalent to the conditions (A, B, p), (B, A, p) for columns of T,
T, respectively, by Lemma [3.9] O

4. GENERALIZED EIGENVECTORS

Let A, B € M,,(Z) be non-singular. Using Theorem [3.10} one can already check whether
G4 = G and also find such isomorphisms if they exist. In this section, we make Theorem
3.10| even more practical by describing the Z,-divisible part D,(A) of G4 ®z Z, in terms
of generalized eigenvectors of A.

Throughout the text, Q denotes a fixed algebraic closure of Q. Let K C Q be a finite
extension of Q that contains all the eigenvalues of A. Let Ok denote the ring of integers of
K. Throughout the paper, A1, ..., A, € Ok denote (not necessarily distinct) eigenvalues
of A and {uy,...,u,} denotes a Jordan canonical basis of A. Without loss of generality,
we can assume that each u; € (Og)", i = 1,...,n. For a prime p € N let p be a prime
ideal of O above p and let X4, denote the span over K of vectors in {uy,...,u,}
corresponding to eigenvalues divisible by p. Note that

dln’lK _)(,47]3 = tp(A),

where t, = t,(A) denotes the multiplicity of zero in the reduction hs modulo p of the
characteristic polynomial hy of A, 0 < t, < n. Indeed, dimg X4, is the number of
eigenvalues (with multiplicities) of A divisible by p. One can write hy = (x—A;) - - (x—\,,)
over O. Considering the reduction hs of hy modulo p, we see that the number of
eigenvalues of A divisible by p is equal to the multiplicity ¢, of zero in h4. Equivalently,
Xa, is generated over K by generalized A-eigenvectors of A for any eigenvalue A of A
divisible by p.

Lemma 4.1. Let A € M,(Z) be non-singular. Let p € N be prime and let p be a prime
ideal of Ok above p. Let O, denote the ring of integers of K,, the completion of K with
respect to p. Then, considered as subsets of K',

Dp(A) ®z, Op = Xap @k Ky,
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i.e., upon the extension of constants from Z, to Oy, the divisible part of G a,, is generated
over Ky by generalized eigenvectors of A (considered as elements of K;' via the embedding
K — K,,) corresponding to eigenvalues divisible by p.

Proof. Let (m) C O, denote the prime ideal of O,. Via K — K,, we have \,...,\, € O,
and without loss of generality, we can assume Ai,..., A, € (7), A,41,.--, A0 € (Op)*.
Thus, Y = X4 ,®xk K, is generated over K, by generalized eigenvectors of A corresponding
toN,1=1,...,t,. Let

Z=GCGap®z, 0= {Ax|x€0}, kel}, O} CZCK].
Using Lemma [2.10, we have
Z = aA,p ®z, Op = (DP<A) Dz, OP) b (RP(A) Qz, OP) ’
where, as Oy-modules,
Dy(A) @z, 0y 2 Ky, Ry(A) @z, Oy = Op ™.

We first prove Y C Z, by showing Spang, (u) C Z for any generalized eigenvector u
corresponding to A;, ¢ = 1,...,¢,. The proof is by induction on the rank of u. Without
loss of generality, we can assume u € Op. If ranku = 1, then u is an eigenvector of
A corresponding to A; and hence \;*u = A™*u € Z for any k € Z. Since \; = 7°f
for € N, 8 € (0,)*, and Z is an Op-module, we have Spany, (u) C Z. Assume now
ranku = m, m > 1. Then, (A—\;Id)™u = 0, where Id denotes the n x n-identity matrix,
and v = (A — A;Id)u is of rank m — 1. By induction on m, Spany (v) C Z. We have
v = Au — \;u and hence

(4.1) MFEATY = N Fu - A\ AT e, ke Z

From (4.1)), we can show /\i_ku € Z by induction on k£ > 0. Indeed, for £k = 0, we have
u € Z, since u € OF. Assume A ¥ u e Z0 Then A1\ Da) = A7M 14 e Z,
since Z is A”'-invariant. Analogously, \;*A~!'v € Z, since \;*v € Z by induction on
the rank. Thus, A\;*u € Z by (&1). As before, it shows Spang, (u) € Z. Here u is a
generalized eigenvector of an arbitrary rank corresponding to an eigenvalue of A divisible
by p and hence Y C Z. Finally, since Y is a divisible O,-module, it is contained inside
the divisible part of Z, i.e., Y C D,(A) ®z, O,. Since both have the same dimension ¢,
over K,, they coincide and the claim follows. O

Remark 4.2. Note that we cannot claim that the reduced part R,(A)®z, O, of G 4,®z, O,
is generated by generalized eigenvectors of A over O,, since in general, {uy,...,u,} is not
a free basis of Oy. Equivalently, the matrix (u1 o un) might not be in GL,,(O,).

Combining Lemma [£.1] with Theorem [3.10] we get a criterion for G4 = G in terms of
generalized eigenvectors of A and B.
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Theorem 4.3. Let A, B € M,,(Z) be non-singular, let K C Q be any finite extension of
Q that contains the eigenvalues of both A and B, and let G5, G have characteristics

(3-13), (3.14), respectively. For T € GL,(Q) we have T(G4) = Gp if and only if
=P(4) = P(B),

P'(A) = PI(B),
R=R(4) = R(B),
ty(A) = 1p(B), VpeP,
T € GL,(R), for any p € P" and a prime ideal p of Ok above p we have

T(Xap) = Xpp,

and T (resp., T™1) satisfies the condition (A, B, p) (resp., (B, A,p)) for any p € P'.

Proof. We have T'(D,(A)) = D,(B) if and only if T'(D,(A) ®z, O,) = Dy(B) @z, O,, since
T is defined over Q. By Lemma , D,(A) ®z, O, = X4, @k K, for any prime ideal p of
Ok above p. Finally, (X4, @k K,) = Xp, @k K, if and only if T(X4,) = Xp,, since
T is defined over Q. Thus, the theorem follows from Theorem [3.10] O

Remark 4.4. We find Theorem more practical than Theorem [3.10, The difference
between the two is that to find a characteristic of G4 using Theorem for each p
one finds a possibly different matrix W, and then modifies the rows according to the
procedure described in Lemma[3.4) to get a basis {fi,...,f,} (see Remark[3.7). Whereas,
in Theorem [1.3] we can start with a Jordan canonical basis of A (which does not depend
on p) and then modify it using the same procedure (see Example |8 below). By Lemma
m (and, possibly, Lemma, up to an isomorphism of GG 4, both ways produce the same
characteristic.

P
7)/

5. REDUCIBLE CHARACTERISTIC POLYNOMIALS

Let A,B € M,(Z) be non-singular with G4, Gp defined by (2.1). In this section
we explore necessary conditions for G4 = Gpg, when at least one of the characteristic
polynomials of A, B is reducible in Z][t].

5.1. Irreducible isomorphisms. We start by introducing the notion of an irreducible
isomorphism between G4 and Gp. Let K C Q denote a finite Galois extension of Q that
contains all the eigenvalues of A and B and let G = Gal(K/Q). For an eigenvalue A € K
of A let K(A,)\) denote the generalized A-eigenspace of A. By definition, K(A,\) is
generated over K by all generalized eigenvectors of A corresponding to A or, equivalently,
by vectors in a Jordan canonical basis of A corresponding to A. Let hy € Z[t] denote
the characteristic polynomial of A. Assume hy = fg for non-constant f,g € Z[t]. By
Theorem below, there exists S € GL,(Z) such that

-1 A/ *
SAS —(o )
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where A’, A” are matrices with integer coefficients of appropriate sizes such that the
characteristic polynomial of A" (resp., A”) is f (resp., g). We have a natural embedding
Ga — Ggag-1 induced by x +— (X 0), where x € Q™, n; = deg f, and 0 is the zero
vector in Q" "!. There is an exact sequence

(5.1) O—>GA/—>GA—>GAH—>0,
since S(G4) = Ggag-1. We denote G4 = Gy, Gar = G|,

Definition 5.1. We say that an isomorphism 7" : G4 — Gp is reducible if there exist
S, L € GL,(Z) and non-constant f,g, f’,¢" € Z[t| such that hy = fg, hg = f'¢/,

_ A % _ B x
SAS™H = (o A,,), LBL™' = (o B,,),
ha = f, hg = f', deg f = deg f’, and LTS '(G;) = G. Otherwise, we say that T is
wrreducible.

Clearly, if the characteristic polynomial of A or B is irreducible, then an isomorphism
T : G4 — Gp is irreducible. The converse is not true in general. For instance,

2 1 4 1 1 2
=) =) =00
where both characteristic polynomials hu, hp are reducible, but 7" : G4 — Gp is
an irreducible isomorphism. Indeed, any S, L, T € GLy(Q) satisfying the conditions in
Definition have to be upper-triangular. However, for R = Z [%] any T € GLy(R) is
an isomorphism between G4 and Gp by Corollary and Proposition [2.5]

Note that LTS™(G;) = G if and only if

(5.2) T (Z K(A, A)) => K(B,p),

where A € Q (resp., 4 € Q) runs through all the roots of f (resp., f). Also, LT'S™}(G;) =
Gy implies LTS (G,) = G,. Thus, if T is reducible, then G; = Gy, G, = Gy. In
other words, if hy = fg and there is a reducible isomorphism G4 = Gp, then Gy = Gy,
Gy = Gy for some f', ¢ € Z[t] such that hg = f'¢g’. The converse is not true in general.

20 2 4
1=(55) #=(05)
Here, in the notation of Definition 5.1 f(t) = f/(t) = t — 2, g(t) = ¢'(t) = t — 5,

Ga = Gy ® Gy, where Gy = {£ | k,n € Z}, G, = {& | k,n € Z}. Using Theoremm
together with Lemma 4.1, one can show G4 % Gp, hence the sequence

Ezxample 1. Let

0 —Gp —Gp— Gy —0
does not split. This is also an example when G; = Gy, G, = Gy, but G4 2 Gp.
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5.2. Splitting sequences. There is a case, however, when sequence (|5.1]) splits, namely,
when det A” = £1. Then, G 4» = Z* is a free Z-module, A” € M (Z). More precisely, let
A € M,,(Z) be non-singular with characteristic polynomial hs € Z[t]. Let hy = fg, where
f,g € Z[t] are non-constant, f = fify--- fs, fi(0) # %1 for each irreducible component
fi € Z]t) of f,1 < i <s, g(0) ==+1. Then G, = Z*, k = k(A) = degg, and hence the
sequence

0 —Gf— Gy — Gy —0
splits, i.e.,
(5.3) Ga=2 G2,

Lemma 5.2. Let A, B € M,,(Z) be non-singular with corresponding characteristic poly-
nomials ha, hp € Z[t]. Then

GA%JGB < k(A):]f(B), Gngf/,
where hg = f'q’, r(0) # £1 for each irreducible component r € Z[t] of f', and ¢'(0) = £1.

Proof. Clearly, the conditions are sufficient by (/5.3]). We now show that they are necessary.
Assume G4 = Gg. By (5.3)), without loss of generality, we can assume that

GA:Gf@Zk(A), GB:Gf/@Zk(B)

By Lemma below, G is dense in Q" *A) | Therefore, the closure G4 of G4 in Q™ with
its usual topology is

aA — @n—k(A) ® Zk(A)
and, analogously, for B
EB — ank(B) D Zk(B)

An isomorphism between G4 and Gp is induced by a linear isomorphism 7' € GL,(Q) of
Q" [S22, Lemma 3.1] such that T(G4) = Gp. Thus, T(GA) = Gp, hence k(A) = k(B),
T(Qn*) = Qv B and therefore T(G) = G O]

Remark 5.3. By Lemma [5.2, without loss of generality, for the rest of the section we can
assume that r(0) # %1 for any irreducible component r € Z[t] of h,, and the same holds
for hp.

5.3. Properties of irreducible isomorphisms. We now explore necessary conditions
for an isomorphism between G4 and G to be irreducible. For any p € P’(A) let h,h Ap €
Z[t] be such that hy = hhy,, p does not divide A(0), and p divides 7(0) for any irreducible
component r € Z[t] of ha,. Also, let S4, denote the set of distinct roots of ha, (not
counting multiplicities). For a prime ideal p of the ring of integers Ok of K above p, let

Xap = Z 0(Xayp) = ZXA,U(P)’

oelG oeG
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where the second equality holds, since A is defined over Q, G = Gal(K/Q), and X4, is
defined in Section [d} Equivalently,

Xap= Y K(AN), Sap={\€Ok|hap(}) =0},

)\GSA,p

since G acts transitively on the roots of an irreducible component r € Z[t] of hs. Note
that
dim X4, =degha,, o(Xa,) =Xa, forany oeG.

Moreover, for pi,...,px € P'(A) denote recursively

Xaprpe = Xapropeoy N Xap, = Z K(A,N),

)\ESA,plﬂ - N SAka

where the second equality holds, since generalized eigenvectors corresponding to distinct
eigenvalues are linearly independent. We write hy = hy---hs, where each h; = 7",

u; € N, r; € Z[t] is irreducible, and h;, h; have no common roots in Q for i # j. In this

notation,
hap = H hiy  hap..p, = H hi,
plhi(0) p1- P |hi(0)
where py, ..., py are assumed to be distinct. Then, dim X4 ,,.., = deghap,...p,. We now

assume B € M, (Z) is non-singular and T(G4) = Gp for some T" € GL,(Q). Then, by
Theorem we have P’ = P'(A) = P'(B) and T(Xay,) = Xp,. Since T, A, B are all
defined over Q, for any o € G we have

T(Xaow) =To(Xap) = o(T(Xap)) = 0(Xpp) = Xpow),
and hence T'(X4,) = Xpp. This implies the following lemma.

Lemma 5.4. Let A, B € M,(Z) be non-singular and let T(G4) = Gg, T € GL,(Q).
Then P' = P'(A) = P'(B) and for any k € N with distinct py,...,pxr € P’,

T(Xapi-p) = XBprpy
In particular,
deghap,...p, = deghpp,...p, -
Ezample 2. Let A, B € M5(Z) be non-singular with characteristic polynomials
ha=(t+t+2)#*+t+6), hg=+4)(t>+t+3).
Then P’ = P'(A) = P'(B) = {2,3}, t2(A) = to(B) = 2, t3(A) = t3(B) = 1. However,
has=ha, hpp=1>+4,
so that deg ha o # deg hp o and hence G4 % G'p by Lemma .
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Corollary 5.5. If an isomorphism T : Go — Gp s irreducible, then for all the irre-
ducible components fi,..., fr € Z[t] (resp., ¢1,...,gs € Z[t]) of the characteristic polyno-
mial of A (resp., of B), all f1(0), ..., fx(0) (resp., g1(0),...,9s(0)) have the same prime
divisors (in 7).

Proof. Assume T(G4) = Gg, T € GL,(Q). By Theorem 1.3, P’ = P'(A) = P'(B). In the
above notation, for p € P’ and the characteristic polynomial h4 (resp., hp) of A (resp., B)
let o, h, hayp, hsp € Z[t] be such that hy = hha,, hp = hhg,, p does not divide 2(0)h(0),
and p d1V1des r(0) for any irreducible component r € Z[t] of haphp,. It follows from
Lemma , (5-2), and the paragraph preceding Definition [5.1]that LT'S™ (G}, up) = Ghg,
for some L, S € GL,(Z). Since T is irreducible, h is constant. Since p € P’ is arbitrary, we
conclude that for all the irreducible components fi, ..., fix € Z[t] of ha, f1(0),..., fx(0)
have the same prime divisors (in Z). By symmetry, the same holds for B. OJ

5.4. Galois action. We explore the action of the Galois group Gal(K/Q) on eigenvalues
of non-singular A, B € M (Z) when G4 = Gp. Let A, B have characteristic polynomials
ha = h{'---hi*, hp = rl ---rP respectively, where a1,...,ax, B1,...,8; € N, and
hi,...,hy € Z[t] (vesp., 71,...,75 € Z[t]) are distinct and irreducible. Let K C Q be a
finite Galois extension of Q that contains all the eigenvalues of A and B. Let ¥ C K
(resp., 3’ C K) denote the set of all distinct eigenvalues of A (resp., B) with cardinality
denoted by |X|, and let ¥ = 3 U+ --UXg (resp., X' = ¥ U---UXL), where each X; (resp.,
¥%) is the set of all (distinct) roots of h; (vesp., r;), i € {1,...,k}, j € {1,...,s}. Thus,

k s
n=Y S| => BI¥, ni(A) =S, n;(B) =],
i=1 =1

where n;(A) (resp., n;(B)) is the number of distinct roots of h; (resp., 7).

Let T : G4 — Gp be an isomorphism. By Theorem 1.3} R = R(A) = R(B),
P =P(A) =P(B), P =P(A) =P(B), and t, = t,(A) = t,(B) for any prime p € P.
By assumption, P’ # () and for any p € P’ we have 1 < ¢, <n — 1. For a subset M of ¥
(resp., M’ of ') we denote

Us = @PKAN), M=MU-- UM,
AeM

Vie = @ K(B.p), M =Mu---UM,
peM’

where each M; (resp., M) is a subset of X; (vesp., ¥), and K(A,A) (resp., K(B,p))
denotes the generalized A-eigenspace of A (resp., generalized p-eigenspace of B). Denote

k s
M| =D ailMil, M| = B;|Mj)|.
i=1 j=1
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By Theorem , we have T'(X4,) = Xp, for a prime ideal p of Ok above p, i.e., in the
above notation there exist M C 3, M’ C ¥’ such that

(5.4) T(Um) =V, =M =|IM]|, tpi(A) = |Mi], 1p;(B) = [Mj].

Here, t,;(A) (vesp., t,;(B)) is the number of distinct roots of h; (resp., r;) divisible by
p. Equivalently, t,;(A) (resp., t,;(B)) is the multiplicity of zero in the reduction of h;
(resp., r;) modulo p.

Lemma 5.6. Assume T : G4 —> Gp is an irreducible isomorphism. Let S C X be
a non-empty subset of ¥ of the smallest cardinality with the property that there exists
S X with

TWUs)=Vsg, S=5U---US, S'=85U---US.,

where each S (resp., S}) is a subset of ¥; (resp., ¥5). Then, S; # 0, S # 0 for any
ie{l,....k}, je{l1,...,s}. Moreover, ||S||=||5||, for any i, p € P’,

(a) ||S]] divides n, t,,

(b) |S;| divides n;(A), t,:(A),

(C) ni(4) _ n_

\Sz’(IA) lISl17
tp,i t
d) = —
(d) 1S 1

and, similarly, for B.

Proof. By (p.4), S exists and 1 < ||S|| < n. Assume T is irreducible and there exists

S;i=10,eq9,5 =-=5==0,54,...,5 are non-empty, l € N, 1 <[ < k — 1,
f=h byt J={j18; #0}, J#0,and f' = [T, rfj. From the definition of S, S’,
we have
(5.5) T (@ K(A, A)) =P K(B, ).

AES pes’

By applying any o € Gal(K/Q) to (5.5) and using the transitivity of the Galois action
on roots of irreducible polynomials with rational coefficients, we see that

T B rKAN|= P KBup.

A€e{roots of f} pe{roots of f'}

By the dimension count, this implies deg [ = deg f < n and ([5.2)) holds. This contradicts
the assumption that 7" is irreducible. Thus, all S; # () and, analogously, all S} # 0.

The Galois group G = Gal(K/Q) acts on ¥ by acting on each ¥, i.e., 0(%;) = %; for
any 1 € {1,...,k}, 0 € G. Note that for any P,R C ¥, P/, R’ C ¥’ and ¢ € G we have
(5.6) UpNUr=Upnr, Ve NVp =Vpnp,

(57) U(Up) = Ug(p), O’(Vp/) = Vg(p/).



A NUMBER THEORETIC CLASSIFICATION OF TOROIDAL SOLENOIDS 21

Let N C X, N’ C ¥/ satisfy
(5.8) T(Uy) = V.

Let 0 € G be arbitrary. Applying o to and using properties , , we have
T(Us(ny) = Vanry, since T € GL,(Q). Hence, T(Usno(n)) = Vo). Since S is the
smallest with this property, either S N o(N) = S or S N o(N) = (. Equivalently,
o(S) N N =oa(S) or 6(S) N N = 0. In particular, taking N = 7(S) for an arbitrary
T € G, either o(S) = 7(S) or o(S) N 7(S) = 0. Let

i € {1,...,k}. Then for any 0 € G, we have either o(S;) N N; = o(S;) for all i or
a(S;) N N; = 0 for all i. Analogously, for any 0,7 € G, we have either o(S;) = 7(5;)
for all i or o(S;) N 7(S;) = 0 for all i. Moreover, since each h; is irreducible, G acts
transitively on 3;. This implies that each N; is a disjoint union of orbits o(S;) of S;,
o € G and, furthermore, there exists a subset H C G depending on N such that

(5.9) Ni=|]o(S), [Ni|=[H|-|Si| forall i.
oc€EH

Clearly, (5.8)) holds for N = ¥ and also for N = M by (5.4). Thus, by (5.9), there exists
H,, H, C G such that

k k
ni(A) = [H[Si], n = > alSi =Hi| > ailS| = [Hy| - ||S]],
=1 i=1

k k
tos(A) = [Ha||Sil, t, = ) oul M| = |Hal Y oulSi| = |Hal - [|]]-
=1

i=1
Hence, (a), (b), (¢), and (d) hold. By symmetry, we have analogous formulas for B. [

We now use Lemma in a special case when the greatest common divisor (n,t,) of
n and t, is one, e.g., when t, = 1, or t, = n — 1, or n is prime. The conclusion is that an
irreducible isomorphism 7" between G4, G implies that both characteristic polynomials
ha, hp are irreducible and T takes any eigenvector of A to an eigenvector of B.

Proposition 5.7. Let A,B € M,(Z) be non-singular. Assume there exists a prime
p € P'(A) with (n,t,(A)) =1. If T' € GL,(Q) is an irreducible isomorphism from G4 to
G, then both ha, hp are irreducible in Z[t], and there exist eigenvalues N\, € Q of A, B,
respectively, such that K = Q(\) = Q(u). Moreover, A and p have the same prime ideal

divisors in O, and for an eigenvector u € (Q)" of A, T(u) is an eigenvector of B.

Proof. By Lemma [5.6 ||S|| = 1 and each S; is non-empty. Hence k = oy = 1, |51 =1
and h, is irreducible. By symmetry, hp is irreducible and T' takes an eigenvector of A
to an eigenvector of B. Assume Au = Au, Bv = uv for some A\, u € Q. Without loss of

generality, we can assume u € Q(\)". From Tu = v we have BTu = Bv = uTu. Since
B, T are defined over Q, this implies 1 € Q(\) and hence Q(u) = Q(\).



22 MARIA SABITOVA

We now show the existence of eigenvalues of A, B sharing the same prime ideal divisors
in the ring of integers Ok of K. The argument is the same as in the proof of [S22
Proposition 4.1]. We repeat it for the sake of completeness. By the previous paragraph,
there exist 1 € Ok and an eigenvector u € O} corresponding to an eigenvalue A € Oy
of A such that T'(u) is an eigenvector of B corresponding to u. Since T(G4) = Gp, by
definition of groups G4, Gp, for any m € N we have

(5.10) BT = P,A™, k, € NU{0}, P, € M,(Z).

Let T = ;1" for some | € Z — {0} and non-singular 7" € M,(Z). Let p be a prime ideal
of Ok that divides A. By above, B(Tu) = u(Tu). Hence, multiplying (5.10)) by u, we get

(5.11) pfmTu = B*Tu = P,A™a = P,A\™u, VYm € N.

Here Tu # 0, Tu does not depend on m, and p divides A. This implies that p divides u
(e.g., this follows from the existence and uniqueness of decomposition of non-zero ideals
into prime ideals in the Dedekind domain Ok). Analogously, it follows from that
all prime (ideal) divisors of A also divide p (in Ok). Repeating the same argument with
A replaced by B and A replaced by pu, we see that all prime divisors of p also divide .
Thus, A and p have the same prime divisors. Il

Ezxample 3. We demonstrate how Lemma [5.6[ can be used to describe irreducible iso-
morphisms when 2 < n < 4. If n = 2,3, then any irreducible isomorphism between
Ga,Gp implies ha, hp are irreducible by Proposition 5.7, Let n = 4 and assume there
is an irreducible isomorphism between G4, Gp. Using properties (a)-(d) in Lemma
and Proposition 5.7, one can show that either h, is irreducible or hy = hihs, where
hi, he € Z[t] are irreducible of degree 2 and, analogously, for hg. In particular, e.g., one
cannot have hy = fi fo, where fi, fo € Z[t], f1 is linear, and f, is irreducible of degree 3.

6. IRREDUCIBLE CHARACTERISTIC POLYNOMIALS, IDEAL CLASSES

We first show that in the case of irreducible characteristic polynomials ha, hp, it is
enough to assume that T takes an eigenvector of A to an eigenvector of B for T(G4) = Gp.

Lemma 6.1. Let A, B € M,(Z) be non-singular and let Ga,Gp have characteristics
, , respectively. Assume the characteristic polynomials of A, B are irreducible.
Assume there exist eigenvalues A\, € Ok corresponding to eigenvectors u,v.€ K™ of
A, B, respectively, such that \, i have the same prime ideal divisors in the ring of integers
of K. Then P = P(A) = P(B), P = P'(A) = P'(B), and R = R(A) = R(B).
If T € GL,(R), T(u) = v, and T (resp., T~') satisfies the condition (A, B,p) (resp.,
(B, A,p)) for any p € P, then T(G4) = Gp.

Proof. By enlarging K if necessary, without loss of generality, we can assume that K is
Galois over Q. For any 0 € Gal(K/Q), o()\) and o(u) have the same prime ideal divisors.
Thus, since Gal(K/Q) acts transitively on roots of irreducible polynomials hs, hp € Z[t],
we have t,(A) = t,(B), P(A) = P(B), P’ = P'(A) = P'(B), and hence R(A) = R(B).
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Furthermore, for p € P’, a prime ideal p of Ok above p, and o € Gal(K/Q), o(u)
(resp., o(v)) is an eigenvector of A (resp., B) corresponding to o(A) (resp., o(u)) and
T(o(u)) = o(v), since A, B, T are defined over Q. Thus, T'(X4,) = Xp, and the lemma
follows from Theorem [4.3] O

Remark 6.2. We know that when G, = G and n > 4, not every isomorphism between
G4 and Gp takes an eigenvector of A to an eigenvector of B (see Example below).
Also, in general, if n > 2, G4 = (G, and the characteristic polynomial of A is irreducible,
then not necessarily the characteristic polynomial of B is also irreducible (see Example

below).

We now recall generalized ideal classes introduced in [S22]. Let A, B € M,(Z) be
non-singular and let A\ € Q be an eigenvalue of A corresponding to an eigenvector
u= (u1 Uy ... un)t € Q(A\)™ of A. For the rest of this section we assume that the
characteristic polynomials of A, B are irreducible. Denote

]Z(Aa )\) - {mlul + e +mnun|m17‘ coy My € Z} - Q(/\)7
IR(A,N) = Iz(AN) ®2R CQ(N), R=TR(A),

where R is given by (2.2)). Since Au = Au and A has integer entries, Iz(A, \) is a Z[\]-
module and I (A, \) is an R[A]-module. Let € Q be an eigenvalue of B, and let K be a
number field with ring of integers O such that A\, u € Ok. Assume R = R(A) = R(B)
(which is a necessary condition for G4 = Gg). There exists T' € GL, (R) such that T'(u)
is an eigenvector of B corresponding to p if and only if

IR(Aa)‘) :y]R(B7M)7 RS va

denoted by [Ir(A,\)] = [Ir(B,p)]. We know that [Ir(A,\)] = [Ir(B,p)] is among
sufficient conditions for G4 = Gp for any n > 2 (Lemma above). In [S22] Theorem
6.6] we prove that this is also a necessary condition when n = 2. Proposition below
extends the result to an arbitrary n under an additional assumption that there exists ¢,
coprime with n (denoted by (n,t,) = 1). In fact, the proposition shows more, namely,
than any isomorphism takes an eigenvector of A to an eigenvector of B. It turns out that
[Ir(A,\)] = [Ir(B, p)] is not a necessary condition for G4 = G for an arbitrary n (see
Example [10| below, where the condition (n,t,) = 1 does not hold). The next proposition
is a direct consequence of Proposition [5.7], since if the characteristic polynomial of A is
irreducible, then clearly, any isomorphism between G 4, G is irreducible.

Proposition 6.3. Let A, B € M,,(Z) be non-singular. Assume the characteristic poly-
nomial of A is irreducible and there exists a prime p € P'(A) with (n,t,(A)) = 1. Let
K C Q be a finite extension of Q that contains the eigenvalues of both A and B. If
T € GL,(Q) is an isomorphism from G4 to Gg (equivalently, T(G4) = Gp), then there
exist eigenvectors u,v € K™ corresponding to eigenvalues A\, u € Ok of A, B, respectively,
such that T'(u) = v, and A, p have the same prime ideal divisors in Of.
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Combining Proposition [6.3| with Lemma [6.1] and Theorem [4.3] we get the following nec-
essary and sufficient criterion for G4 = G under the additional condition in Proposition

6.3l

Proposition 6.4. Let A, B € M,,(Z) be non-singular with irreducible characteristic poly-
nomials and let G4, Gg have characteristics (3.13), (3.14)), respectively. Assume there
exists a prime p with (t,(A),n) = 1. Let K C Q be a finite extension of Q that contains
the eigenvalues of both A and B. Then T € GL,(Q) is an isomorphism from G 4 to Gp if
and only if there exist eigenvalues A\, u € Ok corresponding to eigenvectors u,v € K" of
A, B, respectively, such that \, u have the same prime ideal divisors in Ok, T € GL,(R),
T(u) = v, and T (resp., T~') satisfies the condition (A, B,p) (resp., (B, A,p)) for any
peP.

In the case n = 2, to decide whether G4 and GG are isomorphic, we can omit conditions
(A7 B7p)7 (B7 A7p)’

Proposition 6.5. [S22] Theorem 6.6] Let A, B € My(Z) be non-singular. Assume the
characteristic polynomial of A is irreducible and P'(A) # 0. Then G4 = Gp if and only
if there exist eigenvalues A\, uw € Ok of A, B, respectively, such that X\, p have the same
prime ideal divisors in Ok and

[IR(Aa )‘)] = [IR(Bv M)L R = R(A)

Proposition |6.5| can be generalized to an arbitrary n under an additional condition,
which automatically holds when n = 2. Namely, ¢, =n — 1 for any p € P".

Lemma 6.6. Let A, B € M, (Z) be non-singular with irreducible characteristic polyno-
mials, P'(A) # 0, and t,(A) = n —1 for any p € P'(A). Then Ga = Gg if and only
if there exist eigenvalues A\, u € Ok of A, B, respectively, such that X\, p have the same
prime ideal divisors in Ok and

Proof. By Proposition [6.4] it is enough to show the sufficient part. As in the proof of
Lemma [6.1}, we have

P =P(A)=P(B), P'=P'(A) =P'(B), R=R(A) =R(B),

and t, = t,(A) = t,(B) for any prime p € N. Note that [Ig(A, )] = [Ir(B, 1)] is equiva-
lent to the existence of T' € GL,(R) such that T'(u) is an eigenvector of B corresponding
to p for an eigenvector u of A corresponding to A. As in the proofs of Theorem and
Lemma [6.1], such 7" induces an isomorphism between the divisible parts D,(A) and D,(B)
of EA,,, and aB,zn respectively, for any p. Under the assumption ¢, =n — 1, p € P’, the
reduced parts R,(A) and R,(B) of G, and Gp,, respectively, are free Z,-modules of
rank 1. Hence, there exists k € Z such that for 7" = p*T we have

(6.1) T/(RP(A)) C Dp(B) ® Ry(B) and (T,)_I(RP(B» C Dp(A) ® RP(A)'
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Indeed, as follows from and (3.16), T'(e,) = a + ye, for some a € D,(B) and
y € Q. Let y = p~*u for some k € Z and u € Zy. Then T'(e,) = pFa + ue,, where
p*a € D,(B) and hence T'(e,,) € Gp,, since G, = D,(B)®Zye,. Clearly, T" still induces
an isomorphism between D,(A), D,(B), and T" € GL,(R), since p € P'. Moreover, for a
prime ¢ distinct from p, ¢7" also satisfies , since ¢ € Z,. Since P’ is finite, it shows

that there exists a € R* such that aT' € GL,(R) is an isomorphism from G4, to Gp,
for any p € P’ and hence aT is an isomorphism from G4 to G by Corollary 2.9 O
7. EXAMPLES

Ezxample 4. One of the easiest examples is when P’ = (). Let

(08 - (1)

Both A and B have the same characteristic polynomial 22 — 8, irreducible over Q, so that
A and B are conjugate over Q and have the same eigenvalues. There is only one prime
p = 2 that divides det A and it also divides Tr A = 0. Hence, by Lemma [3.3]

GA = GB =< e, ey, 2_0061,2_0062 > .
In general, if hy = 2" (mod p) for any prime p that divides det A, then
Ga=<p e |ic{l1,2,....,n}, p|det A, ke NU{0} > .

Example 5. In this and the next examples we show how Theorem |3.10| can be effectively
used in the case when the characteristic polynomials are not irreducible. Let

88 —68 —192 304
A= (34 —14)  B= (—144 248> '

Here A has eigenvalues 20,54 and B has eigenvalues —40, 96. Let

A =20=2%.5,
Ao =54 =233
py = —40 = —2° . 5,
o =96 = 2° - 3.
Thus,
P = P(A)=7PB) =1{23,5},
P = P(A)=7P(B)=1{35,
ts = t3(A) =t3(B) =1,
ts = t5(A) =t5(B) =1,

R = R(A) =R(B) = {n2"3'5™ | k,l,m,n € Z}.
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We have
A O _ 1 2
A=S5 (0 )\2) S 1’ S = <1 1) = (ul u2) c GL2(Z)
Thus, in the notation of Lemma , W5 =W5(A) =5, W3 =W3(A) = (u2 ul), and
GA =< uy, Uy, 2_00111, 2_00112, 5_00111, 3_00112 > .
Also,
GA =< e, ey, 2_0061, 2_0082, 5_00(61 + 62), 3_00(81 + 2_182) >,
since 2 € Z;. Thus,
M(A;er,er) = {az2(A) = 1, az2(4) = 27"}

is the characteristic of G4 with respect to {e;,e}. Similarly, we find a characteristic of
Gpg. One can show that

0 _ 2 19
B:P(’%l )P 17 P:(l 18>:(V1 V2)€M2(Z).

2

Note that det P = 17 € Z) for any p € P’ = {3,5}. Thus, in the notation of Lemma
W5 =Ws(B) =P, Wy =W;3(B) = (VQ V1)7 and
Gp = <ep,e9,2 %e;,27 ey, 5 vy, 3 Pvy >=
= <epe2 e, 2 ey, 5 (e; +2ey), 3 (e + %eg) >,
since 2 € Z:, 19 € Z;. Thus,
M(B;e;,ep) = {a512(B) =271 a39(B) = %}

is the characteristic of G g with respect to {e1, e2}. Using Theorem [3.10} one can show that
G 4 is not isomorphic to Gp. Namely, one can show that if 7" € GLy(Q) and T'(w;) = m;v;,
i = 1,2, for some my,ms € Q, then T ¢ GLy(R).

Example 6. Let
87 —67 —192 304
¢= (33 —13)  B= (—144 248) ’

where C' has eigenvalues \; = 20, A\ = 54, and B is the same as in Example b, We claim
that G¢ = Gg. Indeed,

A O _ 1 —67
C == S (01 )\2> S 17 S = (1 _33> = (W1 WQ) c MQ(Z)

We have P = {2,3,5}, P = {3,5}, t3 = 1, t5 = 1. Since det S = 34 € Z for any p € P,
by Lemma[3.3] W5 = W;5(C) = S, Wy = W3(C) = (w2 w1), and

GC = < ep,e,, 2_0061, 2_0082, 5_OOW1, 3_OOW2 >=

33
= < eq,e,, 270061, 270082, 5700(6‘1 + eg), 3700(81 —+ ﬁeg) >,
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since 67 € Z3 . Thus,

33
M(Ce,e) = {04512(0) =1, a32(C) = ﬁ}

is the characteristic of G¢ with respect to {e;,e2}. Using Theorem one can find
T € GLy(R) such that T'(v;) = m;w;, m; € Q, i = 1,2. For example,

_ 5 —9 _ X
T_(3 _5), detT =2 € R*,

the conditions in Theorem [3.10|are satisfied and, hence, T' : Gg — G is an isomorphism.

There are several examples in [S22] when n = 2 and characteristic polynomials are
irreducible. We now look at higher-dimensional examples.

Example 7. In this and the next examples we show two ways to compute characteristics.
Let n =3, h=1t>+t>+ 2t +6, and

00 —6
A=|10 -2,
01 —1

a rational canonical form of h. Note that h € Z[t] is irreducible in Q[t]. We will compute
the characteristic of G4 with respect to the standard basis {e;, es, e3}. The calculation
is justified by the proof of Theorem [9.1]

We have det A = —6, P = P’ ={2,3}. Let p =2. Then
h=t*-(t+1)(mod 2), Gap=Q®Z, t,=2,

by Proposition 2.5 above. As follows from the proof of Lemma 3.5 to determine a
characteristic of G4, we need to find generators of the divisible part D,(A) of G 4,, i.e.,
a Zy-submodule of G4, isomorphic to Q2. By Hensel’s lemma, h = (t — A)g(t), where
A € Z and g € Zy[t] is of degree 2. One can show that g is irreducible over Q,. Let
o € Q, be aroot of g. Let u(a) € Z,[a]® denote an eigenvector of A corresponding to a.
We can take

—6 1 —6 0
ula)=|ala+1)| =C <a> , C 6A =X | € Maxa(Z,).
Q 0 1

We then look for a Smith normal form of C:

6 0 1 0 0
c=Ulo x|, v=[-2x' 1 0] eCLi(Z,).
0 0 0 —Al1
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The first two columns uy;, uye of U give us generators of D, (A):

1 0
w=|-A"'], up= 1
0 2!

Analogously, for p = 3 we have
h=t - +t+2)(mod3), Gap=Q,®Z, t,=1,

by Proposition above. By Hensel’s lemma, h has a root v € pZ,. As a generator of
D,(A), we can take an eigenvector us; = u(7y) of A corresponding to 7. By Lemma ,

—00 —00 —00
Ga =< e, e2 ™ uy, 27 Uy, 3" Fug > .

We now change the system {u;;} so that it has the form ([3.5)) with respect to {e;, es, e3}.
For x5 = w91 + )\711122, X992 = U299, X371 = (—1/6)1,131, we have

Xy = e1— A ’es, p=2,

Xpp = e —A'es, p=2

x31 = e — (1/2)(v/3)(v +1)ex — (1/2)(v/3)es, p=3.
Note that in x31, 2 is a unit in Zz and 3 divides 7 in Zs, so that 1/2,v/3 € Zs. Therefore,

M(A; €1, €y, 93) = {042137 (923, (U312, CY313},

where

a3 = =A% agie = —(1/2)(7/3)(y + 1),
a3 = —A1, sz = —(1/2)(7/3)

is the characteristic of G4 with respect to {eq, ez, e3}.

Ezxample 8. In this example we show another way to calculate a characteristic. We use
Remark @ above that a characteristic can be calculated over an extension of @Q, for
each prime p. We find a characteristic of G4¢, where A is from Example m and A! is
the transpose of A. Note that if § is an eigenvalue of A, then v(J) = ‘1 0 (52)t is an
eigenvector of A’ corresponding to 6. We use the notation of Example [7, For p = 2, let
a1, a2 € Q, be (distinct) roots of g. By Lemma , v(a), v(ae) are generators of the
divisible part of G 4, over the ring of integers of a finite extension of Q, that contains
a1, o, We now change {v(a;), v(az)} so that it has the form (3.5)). Namely, let

Voy = o i o (v(ag) = v(aq)) = (0 1 g+ Oéz)ta

Vo1 = V(Ozl) — (X1 V99 = (1 0 —ozlag)t.
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Since i, as, A are roots of h and h = t3 +t2 + 2t + 6, we have a; + s + A = —1 and
a1 = —6. Recall \ € Z;. Hence,

Vo = e +6)leg,
vy = e — (A+1)es,
v = Vv(y) = e+ e+’
Therefore, M (A% ey, e, e3) = {03, Ahgs, 1o, A13}, Where
Ay = 6A7Y 310 =7,
Unoy = —(A+1), ajz = v
is the characteristic of G 4« with respect to the basis {e;, es, e3}.

Ezample 9. Using Examples [7] and [§] we show G4 = Ga:. Let

00 —6 6 1
A=|10 —2|, u=[60+1]|, v=[0],
01 -1 5 52

where u, v are eigenvectors of A, A!, respectively, corresponding to an eigenvalue §. Thus,
R = R(A) =R(A") ={n2*3" | n,k, 1€ Z},
IR(‘A? 6) = SpanR(_67 5a 5(6 + 1)) = SpanR(L 67 52)7

since 6 € R*, and
Iz (A", 8) = Spang(1,4,0%) = Ir(A,5).
We obtain 7' € GL3(R) by expressing coordinates of u in terms of coordinates of v:

6 0 0 ~1/6 0 0
T=10 11|, 7'= 0o o0 1
0 10 0 1 -1

Note that we were able to compute the characteristics of both G4, G 4+ with respect to
the standard basis, without having to change the basis (or, equivalently, conjugate A,
At by matrices in GL3(Z)). Therefore, T (resp., T~!) satisfies the condition (A, B,p)
(resp., (B, A,p)) for any p € P’, since 2nd and 3rd columns of both T, T~! consist of
integers. Since T' € GL3(R), characteristics of both A, A* are with respect to the standard
basis, and A, A! share the same eigenvalues, by Proposition , T : Gy — G4 is an
isomorphism.

Ezample 10. Assume A, B € M, (Z) have irreducible characteristic polynomials. By
Proposition [6.4] if G4 = Gp, then [Ix(A,\)] = [Ix(B, pt)] under some additional con-
ditions on A. In this example we show that this is not true in general. More pre-
cisely, A, B € My(Z) share the same irreducible characteristic polynomial, G4 = Gp,
but [Ir(A,\)] # [Ir(B,u)]. In particular, it shows that even when the characteristic
polynomials of A, B are irreducible and G4 = G g, not every isomorphism between G4



30 MARIA SABITOVA

and Gp takes an eigenvector of A to an eigenvector of B (unlike e.g., the case of a prime
dimension n). Here n =4 and t, = 2, so that the condition (¢,,n) = 1 in Proposition
does not hold.

Let h(t) = t* — 2t3 4 21t? — 20t + 5, irreducible over @, and let A € Q be a root of A.
By [LMEDB]|, O = Z[)\], K is Galois over Q, Gal(K/Q) = (Z/27Z)?, and the ideal class
group of K is non-trivial. Thus, there exists an ideal .J; of Z[A] such that its ideal class
[/1] is not trivial, i.e., there is no x € K such that J; = 2Z[\]. By [SAGE], we can take
Ji to be the ideal of Z[\] generated by 7 and A3 — A\? + 20\ — 4 over Z[)], denoted by
Jy = (7,23 = A2 + 20\ — 4). One can also find a Z-basis of Ji, e.g., J; = Z]wy, wa, w3, wy],
where

W = 7,
wy = 2)\% — 3N\ + 41\ — 16,
ws = A — AT 420\ — 4,
wy = —2X\° +3\% — 40\ +25.
Since [J1] is non-trivial, by Latimer-MacDuffee-Taussky Theorem [T49], matrices A, B

corresponding to (1) = Z[\] and J;, respectively, are not conjugated by a matrix from
GL4(Z). We find A, B from the condition that

u=(1 X N )\3)t, v=(w1 wy wsy wy)

are eigenvectors of A, B, respectively, corresponding to A. Thus,

t

0 1 0 0 -9 7 0 7
0 0 1 0 6 4 1 4
A=1v o o 1" B=|5 41 4
~5 20 —21 2 8 5 1 6

Both A, B have characteristic polynomial h(t) = t*—2t3+21¢>—20t+5, det A = det B = 5,
P =P ={5},t5 =2, and [Iz(A,N)] # [1z(B, \)]. We show [Ir(A, \)] # [Ir(B, \)], where
R = {% |m, k € Z}. Equivalently, we show that there is no x € K such that
(71) l‘(Iz(A,)\) X7z, R) = Iz(B,)\) X7, R,
where

IZz(AN) = Z[1,\ 0N = (1),

[Z<B, )\) = Z[wl,WQ,WQ,w;g] = Jl.
We also demonstrate how the standard methods of working with fractional ideals of Ok
(such as the prime ideal factorization and divisibility properties) can be used in the case
of the ring R. This suggests the practicality of using generalized ideal classes. Assume
there exists z € K satisfying (7.1). Then 5z € J; for some k € NU {0}. In particular,
y = 5%z € Z[\. Then y € J; implies that J; divides the ideal (y) = yZ[\] of Z[)]
generated by vy, i.e., (y) = J;2 for an (integral) ideal A C Z[A] of Z[\]. Note that 2 is not
principal (i.e., % # xZ[A] for any x € K), since the class of J; is non-trivial. Analogously,
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(7.1) implies 5'J; C (y) and hence 5'J; = (y)2' for an (integral) ideal " C Z[)\] of Z[\].
Combining the two equalities, we get

5tJ1 = (y)Ql’ = JlQlQl'.

Cancelling J;, this implies (5%) = A’. Using [SAGE], we can check that all the prime
ideal divisors of the ideal (5) are principal, hence 2 is principal and so is J;, which is
a contradiction. This shows [Ir(A,\)] # [Ir(B,\)]. Nonetheless, we show next that
G = Gp.

By [SAGE], (5) = pip3, where py, py are prime ideals of Z[)\], p1 = (A), and there exists
g € Gal(K/Q) of order 2 such that g(p;) = p;, ¢ = 1,2. In the notation of Theorem
M3 X4p, = Spang(u,g(u)), Xpp, = Spang(v,g(v)). We look for fi, fo € K such that
fiv+ fag(v) € R[A]. Using the action of g, the condition is equivalent to the existence
of T e GLy(R) with T'(Xa,,) = Xpy,, namely, fiv + fog(v) = T(u). Note that any
element in K can be written as Q-linear combination of 1, A\, A, A3, since K = Q(\) of
degree 4 over Q. In other words, for any fi, fo € K there is L € GL4(Q) such that
fiv + fag(v) = L(u). The goal is to find fi, f» € K so that both L, L™ have coefficients
in R, i.e., the denominators of coefficients of both L, L™! are powers of 5. It turns out
that such fq, fo exist, namely,

39 29 739 5
Iy C I i) W
350 175" T30t T 1w
61 ., 46 ., 1261 27
350A B 175A 350 A 14’

fi =
fo =

and fiv + fog(v) = T'(u) with

—21 40 -3 2
_72 M1 117 1

— 5 5 5 5 = ——

T=¢ 7 g g detT=-— T € GL4(R).
—20 40 -3 2

We use Theorem to show that 7" is an isomorphism from G4 to Gg, i.e., T(G4) = Gp.
First, we find characteristics of G4, Gg. We apply the process described in the proof of
Lemma [3.4] to vectors u, g(u). We have

w= (1A X X)L g = (1 g g() g(A)".
where

g(\) = —4X* + 617 — 81\ + 40,
g(\?) = —4X’ +5X* — 80\ + 20,
g(\*) = T75X* — 114A\* + 1520\ — 770.
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Applying column operations on (u g(u)) corresponding to multiplications by matrices
from GL4(Z5), we arrive at

<10 -5  —=26+10

t
_ 3 2
0 1 9140 35+40>, § = —2X% + 3)2 — 40\ + 20.

Therefore,
M(Asey, ... eq) = {asi3(A), as1a(A), asa3(A), asaa(A) },

where

04513(14) = —57 &514(14) = —20 + ]_0,

06523(14) =20 + 40, 06524(14) =30 + 40.
Note that K, is an extension of Q5 of degree 2 and Gal(K,, /Q5) is generated by g. Since
d € Z[)], under an embedding K — K,,, 0 becomes an element of the ring of integers of
K,,. Since § = A - g()), d is an integral element of Q5 and therefore, 6 € Zs. Therefore,

all the elements as;;(A) in M(A;eq, ..., e4) belong to Zs. To find a characteristic of G,
we repeat the above process for vectors v, g(v). We arrive at

(1 0 2(1—46) 2(6+5

t
01 5 0 >>, § = —2X% + 3\2 — 40\ + 20,

and
M(B§ €1,... 764) = {04513(3)7 04514(3), 06523(3), 04524(3)}a
where

ais(B) = %(1 _46), as(B) = %(5 +5),
04523(3) = 5, 04524(8) = 0.

Note that all as;;(B) € Zs. We can now check the condition (A, B,5) for T in Theorem
It holds, because a(B)s23 = 0, a(B)s4 = 0 are both divisible by 5 in Zs (by the
choice of py, A is divisible by p; in O,,). Since T~! has integer coefficients, the condition
(B, A,5) holds automatically. In Theorem [£.3] the conditions

P(A)=P(B) = {5}, R=TR(A)=R(B),

P'(A) =P'(B) = {5}, ts5(A)=1t5(B) =2
hold automatically, since A, B share the same eigenvalues. Also, Gal(K/Q) acts tran-
sitively on the prime ideals p;,ps above 5, so there exists ¢ € Gal(K/Q) such that
g'(p1) = po. By above, T'(Xap,) = Xpp,, T € GL4y(R), and applying ¢, we get
T(Xap,) = Xpp,- By Theorem G4 = Gp, but [Ir(A,\)] # [Ir(B, )], even though
the characteristic polynomials of A, B are irreducible over QQ.

Example 11. The motivation behind this example is the following question. Assume the
characteristic polynomial of A is irreducible and G4 = Gp. Is necessarily the character-
istic polynomial of B also irreducible? This is true for n = 2 (see [S22, Remark 4.2]) and
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it turns out that this is not true for an arbitrary n. In our example, n =4, A, C € My(Z)
have the same irreducible characteristic polynomial h(t) = t* + t* + 9, and G4 = Gc.
Let B = C%. Then the minimal polynomial of B is t? 4+t + 9, so that the characteristic
polynomial of B is (£?+t+9)?, not irreducible. However, G = G = G 4. More precisely,

0 1 0 O 0 1 -1 0

0 0 1 O 9 0o 2 1
A= 0o 0 0 1} ¢= 9 o 1 11}

-9 0 -1 0 -18 -9 7 -1

where det A = det C' =9, P = P' = {3}, and t3 = 2. By Hensel’s lemma, there exists a
root A € Q of h such that X\ € Z3 under Q(\) = Q(\),, where p is a prime ideal of the
ring of integers of Q(A) above 3. One can show that

Ga=Go=<e, ..., e 3 " (e; +Nes3),3 > (es + Ney) > .
(For example, we can apply the process described in the proof of Lemmato eigenvectors
w=(1 £2 X £, vi=(1 EA+A2 N2 2832 -9) =12

of A, C, respectively, corresponding to £X.) Thus, Ggp = G¢ = G4, the characteristic
polynomial of A is irreducible, and the characteristic polynomial of B is not irreducible.

8. APPLICATIONS

8.1. Z"-odometers. In this section we generalize our results in [S22] on application of
groups G 4 to Z*-odometers to the n-dimensional case. By definition, a Z"-odometer is a
dynamical system consisting of a topological space X and an action of the group Z" on
X (by homeomorphisms). There is a way to construct a Z"-odometer out of a subgroup
H of Q" that contains Z" |[GPS19, p. 914]. Namely, the associated odometer Yy is the

Pontryagin dual of the quotient H/Z", i.e., Yy = H/Z". The action of Z" on Yy is given
as follows. Let p denote the embedding
p: HIZ" = Q"/7" — T, T"=R"/Z".
Identifying Pontryagin dual Tn of T" with 7', we have the induced map
52" — Yy = H/T"

The action of Z™ on Yy is given by p. Let A € M, (Z) be non-singular. Applying the
process to the group H = G4, we get the associated Z"-odometer Y ,. For simplicity, we
denote Y, by Y.

In the next lemma we analyze when G4 is dense in Q". The result generalizes the
case n = 2 [S22, Lemma 8.4]. Let A € M,(Z) be non-singular and let hy € Zt] be
the characteristic polynomial of A. Let hy = hihy---hg, where hy,... hy € Z[t] are
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irreducible of degrees n;,...,n,, respectively. By Theorem below, there exists S €
GL,(Z) such that

Al % e %

0 A, --- x
(8.1) SAS™! = : :2 ]

0 0 --- A,

where each A; € M,,,(Z) has characteristic polynomial h;, i € {1,2,...,s}.

Lemma 8.1. G4 is dense in Q™ if and only if A; & GL,,(Z) for all i € {1,2,...,s}.
Equivalently, G 4 is dense in Q" if and only if det A; # £1 for alli € {1,2,...,s} if and
only if h;(0) # £1 for alli € {1,2,...,s}.

Proof. As in the proof of Lemma 8.4 in [S22], G4 is dense in Q™ if and only if
(8.2) Ay e Z" foranyi €N, yeZ",

implies y = 0. We first show that if there exists A; € GL,,(Z), then G4 is not dense.
Indeed, without loss of generality, we can assume that A itself has the block upper-
triangular form (8.1) and that A; € GL,,(Z). Then for any y, € Z™ and i € N,
Al'yo € Z™, so that there exists non-zero y = (yo O)t € 7" satisfying , and G4 is
not dense.

We are now left to show that if G4 is not dense, then there exists A; € GL,,(Z). We
first consider the case when h 4 is irreducible. Assume ( 4 is not dense, hence there exists
y # 0 satisfying . Note that A is diagonalizable with eigenvectors uy,...,u, € C",
linearly independent over C, corresponding to eigenvectors Aq, ..., A\, € C, respectively.
Let M = (u; ... u,) € GL,(C). Let K be a finite Galois extension of Q that contains
all the eigenvalues of A and let Ok denote its ring of integers. Without loss of generality,
we can assume that M € M, (Ok), so that det M € O — {0}. Let y € Z" satisfy ,
Y =2 ¢u, c1y.. ., ¢ € K, not all are zeroes. Then implies

Ay = M- (A7 e)gt . eNy) ez

Thus, multiplying the last formula (on the left) by the adjoint matrix M € M, (Og) of
M, we have

(8.3) det Mcj)\j_i € Ok forany i € Nand j € {1,2,...,s}.

Since there exists ¢; # 0 for some k € {1,...,n} and det M # 0, we have \; € OF, i.e.,
Ak is a unit in Og. Indeed, otherwise there exists a prime ideal p of Ok dividing Ay.
Then, writing, ¢x = Y /0k, Yk, Ok € Ok — {0}, from for j = k we get that non-zero
det M~ € Ok (which does not depend on 4) is divisible by arbitrary powers p’, i € N,
which is impossible. Since h, is irreducible by assumption, Gal(Q/Q) acts transitively
on the set of eigenvalues of A. Thus, since there is one eigenvalue \; € Oj, all the

eigenvalues of A are units in O and their product A\ Ay - -+ A\, = det A is a unit in 7Z, i.e.,
det A= =+1 and A € GL,(Z).
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We now assume that h, is not irreducible. We need to show that if G4 is not dense,
then there exists A; € GL,,(Z). Equivalently, if all A, ¢ GL,,(Z), then G4 is dense.
Assume all A; ¢ GL,,(Z). We prove that this implies that G4 is dense by induction on
the number of irreducible components of h4; the base of the induction (the case of one
irreducible component) is considered in the preceding paragraph. Let hs = hyihg, where
hy, he € Z[t] are monic polynomials of degrees ny,ny € N, respectively. By Theorem
below, there exists 7" € GL,(Z) such that

-1 __ Al *
(8.4) TAT ' = (0 A2> ,

where each A; € M, (Z) has characteristic polynomial h;, ¢ = 1,2. Without loss of
generality, we can assume that A itself has the block triangular form (8.4). Clearly,
C ¢ GL(Z) for any “irreducible” block C' of A;, Ay. Then, by induction, G4, is dense
in Q™, ¢ = 1,2. Namely, if y € Z" satisfies and y = (y1 yg)t, y; € 4", 1 =1,2,
then Ay'y, € Z" for all i € N, and hence y, = 0 by induction. Then, implies
Ay, € Z™ for all i € N, and hence y; = 0 by induction as well. Thus, y = 0 and G4
is dense in Q".

The other two equivalent formulations follow from the facts that A € M,,(Z) belongs
to GL,,(Z) if and only if det A = £1 and if h € Z[t] is the characteristic polynomial of A,
then det A = (—1)"h(0). O

Lemma 8.2. Let A, B € M,,(Z) be non-singular such that G 4 (resp., Gg) is dense in Q"

(see Lemma[B.1)). Then Z™-actions Ya, Yg are orbit equivalent if and only if det A, det B
have the same prime divisors.

Proof. Follows from |GPS19, Theorem 1.5] and [S22, Lemma 8.5]. O

In [GPS19, Theorem 1.5], the authors give a characterization of various equivalences
of Z?-odometers Yy in terms of the corresponding groups H. In our subsequent paper,
we extend their results to the n-dimensional case of Z"-odometers and apply them for
odometers of the form Y, defined by non-singular matrices A € M,,(Z).

9. SIMILARITY TO A BLOCK-TRIANGULAR MATRIX OVER PID

In this section we give a proof of the fact that a matrix A over a principal ideal domain
R with field of fractions of characteristic zero is similar over R to a block-triangular
matrix. This is proved in [N72, p. 50, Thm. II1.12] for R = Z and the same proof works
for a general principal ideal domain (PID) with field of fractions of characteristic zero. In
particular, when R = Z,, the case of our interest. We repeat the proof here with a slight
modification, which is useful in calculating examples.
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Theorem 9.1. Let R be a PID with field of fractions of characteristic zero. For any
A € M, (R) there exists S € GL,,(R) such that

Ay % oo %
sagro | 0 42 ,
0 0 - Ay
where each Ay is a square matrixz with irreducible characteristic polynomial, i € {1,2,...,t},

1<t <n.

Proof. Let F' denote the field of fractions of R and let hy € R[t] denote the characteristic
polynomial of A. If hy is irreducible, there is nothing to prove. Assume h, is not
irreducible, i.e., ha = hihg, where hq, hy € RJt] are monic, and h; is irreducible of degree
k, 1 <k <n. Let F denote a fixed algebraic closure of F, let & € F be a root of hy, and
let L = F(«). Then L is a finite separable extension of F' of degree k. It is well-known

that L is the field of fractions of R[a]. Let u € (F')™ be an eigenvector of A corresponding
to . Without loss of generality, we can assume that u € R[a]|™. Then

u=Cw, w=(1 a ... o/“*l)t
for some C' € M,,xx(R). Also, there exists B € My (R) such that aw = Bw. Then
Au = ACw = aCw = CBw

and hence AC' = CB, since entries of AC' — CB belong to R and 1,q,...,a* ! is a basis
of L over F. Since R is a PID, matrix C has a Smith normal form, i.e., there exist
Ay A € R—{0}, U € GL,(R), and V € GL,(R) such that

A O
c-vmv, 7= (4 1)

where T € M,,«x(R), A = diag(Ay, ..., \;) is a non-singular diagonal matrix, and r < k.
We write
A A
—1 _ 1 A2
U AU = ( A A4> ,

where A; € M, (R), and Ay, A3, A, are matrices over R of appropriate sizes. It follows
from AC = CB that

Ay A\ (A O (A O
(9.1) (A3 A4> <0 0) - (O 0) vB.
Thus, A3A = 0 and since A is non-singular, we have A3 = 0. We now show that « is an
eigenvalue of A; and hence k£ = r. Indeed, multiplying (9.1) by w on the right, we get

A A\ (A O (A O B A O
(9.2) (A3 A4) (O O)Vw—(o O)VBw—Oz(O O)Vw,
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since Bw = aw. Let v € M,y1(L) denote the first r entries of Vw € My (L) and let
w = Av. Note that v is non-zero, since w is a basis and V is non-singular. Also, w is
non-zero, since A = diag(Aq, ..., \,) is non-singular. Then (9.2)) implies

Aiw = aw.

Since w is non-zero, « is an eigenvalue of A;. Hence, & = r, h; is the characteristic
polynomial of Ay, and hs is the characteristic polynomial of A4. Applying the induction
process on n, the statement of the theorem holds for Ay € M,,_(R) and therefore, holds
for A. OJ
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