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Abstract. In this paper we study symplectic representations of groups of the form
(A o B) o C, where A, B are finite cyclic groups of coprime orders, and C is an infinite
cyclic group.

Introduction

The goal of the paper is to study symplectic representations of semidirect products G
of the form G = (AoB) o C, where A, B are finite cyclic groups of coprime orders and
C is an infinite cyclic group. Representations in question occur naturally in connection
with elliptic curves over the field Q of rational numbers and, more generally, with abelian
varieties over finite extensions of Q. We now briefly explain the connection. Let E be an
elliptic curve over Q, i.e., E is given by an equation

(0.1) y2 = x3 + ax+ b,

where a, b ∈ Z and 4a3 +27b2 6= 0. One says that E has good reduction at a prime number
p, if, roughly speaking, after reducing a, b modulo p one still gets an elliptic curve, i.e.,
the resulting curve is smooth over the finite field Fp of p elements. One can also consider
E as an elliptic curve over the field Qp of p-adic numbers, i.e., given a fixed algebraic

closure Qp of Qp in this case E consists of all points P = (x, y) ∈ Qp×Qp satisfying (0.1).
It is known that there is a structure of an abelian group on E. Also, the Galois group
Gal(Qp/Qp) acts on E via

σ · (x, y) = (σ(x), σ(y)), ∀σ ∈ Gal(Qp/Qp), (x, y) ∈ E,
and the action preserves the group structure on E. Let l ∈ Z be a prime number different
from p and let Eln , n ∈ N, denote the set of points P ∈ E satisfying ln · P = 0 (with
respect to the group structure on E written additively). We have group homomorphisms

Eln+1 −→ Eln , P 7→ l · P, P ∈ Eln+1 ,

and hence we can form the inverse limit Tl = lim←−nEln . The group Gal(Qp/Qp) acts on Tl
via its action on E. Moreover, Tl is a module over the ring Zl of l-adic integers, so that Tl
is a Gal(Qp/Qp)-module over Zl. This gives a continuous (with respect to the standard

topology on Ql and the profinite topology on Gal(Qp/Qp)) two-dimensional representation

ρ of Gal(Qp/Qp) on Vl = Tl ⊗Zl Ql (via the trivial action of Gal(Qp/Qp) on Ql and the
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action of Gal(Qp/Qp) on Tl described above). One prefers to work with representations
over C and there exist embeddings of Ql into C. However, given an embedding ı : Ql ↪→ C,
the representation of Gal(Qp/Qp) on Vl ⊗ı C is no longer continuous in general. It turns
out that there is a big class of elliptic curves (namely, those with good reduction over a
finite extension of Qp) such that the restriction of the representation of Gal(Qp/Qp) on
Vl⊗ı C to a subgroup is continuous. The subgroup in question is the so-called Weil group
W(Qp/Qp) of Qp, which is a semidirect product of the Galois group I = Gal(Qp/Qunr

p ) of

an extension Qunr
p ⊂ Qp of Qp with an infinite cyclic group generated by a special element

Φ ∈ Gal(Qp/Qp). (More precisely, Qunr
p is generated by all roots of unity of orders not

divisible by p and Φ induces the action of the Frobenius x 7→ xp, x ∈ Fp, under the

decomposition map Gal(Qp/Qp) −→ Gal(Fp/Fp).) It turns out that for elliptic curves
with good reduction over a finite extension of Qp the image of I under ρ is finite, so that
the restriction of ρ to I can be considered as a representation of the Galois group of a
finite Galois extension K of Qunr

p . It is known that Gal(K/Qunr
p ) is a semidirect product

of a p-group with a finite cyclic group of order not divisible by p. In particular, if K is
tamely ramified, i.e., the degree of K over Qunr

p is not divisible by p, then Gal(K/Qunr
p )

is a finite cyclic group.
The situation can be generalized to an abelian variety A of dimension g (which is a

higher dimensional analogue of an elliptic curve) over a finite extension of Q. Assume for
simplicity that A is defined over Q. In the case of an abelian variety with good reduction
over a finite extension of Qp one obtains a 2g-dimensional complex representation ρ = ρp
of a semidirect product G of the form G = (AoB)oC, where A is a p-group, B is a finite
cyclic group of an order not divisible by p, and C is an infinite cyclic group. Moreover,
there is a one-dimensional representation ω = ωp such that ρ⊗ ω is symplectic.

One of the main themes in arithmetic algebraic geometry is to study L- and ε-functions
attached to algebraic varieties, in particular to an abelian variety A over Q. Inseparable
from the theory of L- and ε-functions is the notion of a root number—the ratio of an
ε-function and its absolute value. The importance of studying root numbers lies in the
fact that according to several famous conjectures in number theory they are believed to
have deep connections to the arithmetic of the subject in question; for example, they may
predict the existence of rational solutions to systems of polynomial equations. Moreover,
root numbers are much easier to compute than L- and ε-functions. By definition, the
root number of A is the product of root numbers W (ρp) attached to representations ρp of

Gal(Qp/Qp) over Ql, where p runs over all prime numbers and the twist of ρp by ωp does
not change W (ρp).

Our motivation comes from the question of calculating root numbers of A. For that
one needs to understand representation ρp of Gal(Qp/Qp) over Ql for an arbitrary prime
number p. An important and the most difficult part of the case of a general abelian
variety is the case of an abelian variety with good reduction over a finite extension of Qp.
The simple case when K is tamely ramified, i.e., the p-part A of Gal(K/Qunr

p ) is trivial,
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was addressed in [3]. We now focus on a case when A is a cyclic group. Our main result
is Proposition 3.2, which gives a description of symplectic representations of G.

The paper is organized as follows. In Section 1 we show that without loss of generality
we can assume that C is finite (Lemma 1.1) and recall the Mackey method of small
subgroups (Theorem 1.2). In Section 2 we consider the case when A is a finite abelian
group and C is finite with all the other assumptions onG remaining the same (Lemma 2.1).
Here we use Theorem 1.2 describing representations of a finite group G via representations
of a fixed normal subgroup. Finally, in Section 3 we specialize to the case when A is cyclic
(Proposition 3.2).

1. Representation theoretic facts

Lemma 1.1. Let C = 〈c〉 be an infinite cyclic group generated by an element c and let
E be a finite group. Let G = E o C be a semi-direct product, where C acts on E via
a homomorphism α : C −→ Aut(E), and let Kerα = 〈cl〉 for some l ∈ N. Then every
irreducible representation λ of G has the following form:

λ = λ0 ⊗ φ,

where λ0 is an irreducible representation of G trivial on 〈cl〉 and φ is a one-dimensional
representation of G. In particular, every symplectic irreducible representation of G has
finite image.

Proof. Since cl is contained in the center of G and λ is an irreducible complex repre-
sentation, by Schur’s lemma λ(cl) acts as multiplication by a scalar a ∈ C×. Define a
one-dimensional representation φ of G as follows: φ is trivial on E and φ(c) equals an l-th
root of a. Then λ0 = λ⊗ φ−1 is trivial on 〈cl〉 and λ = λ0 ⊗ φ.

Assume now that λ is symplectic. Then λ and its contragredient representation have
the same character, which implies that for any g ∈ G we have

φ(g) · trλ0(g) = φ(g)−1 · trλ0(g−1).

Taking into account that λ0 is trivial on 〈cl〉, the above equation for g = cl gives φ(c2l) = 1,
i.e., λ can be considered as an irreducible symplectic representation of the finite group
H = G/〈c2l〉 ∼= E o C/〈c2l〉. �

Let G be a finite group and let N ⊆ G be a normal subgroup. The group G acts on
the set N̂ of isomorphism classes of complex irreducible representations σ of N in the
following way: if σ : N −→ GLm(C), then gσ : N −→ GLm(C) is given by

gσ(n) = σ(g−1ng), g ∈ G, n ∈ N.

For σ ∈ N̂ we denote by Gσ the stabilizer of σ in G, i.e.,

Gσ = {g ∈ G | gσ ∼= σ} .
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Theorem 1.2 (Mackey method of small subgroups (cf. [1], p. 153, Thm. 6.2)). Let σ ∈ N̂
and let τ ∈ Ĝσ be an irreducible component of IndGσN σ. Then IndGGσ τ is an irreducible
representation of G. Moreover, any irreducible representation of G can be obtained in this
way. More precisely, let λ ∈ Ĝ and let σ ∈ N̂ be an irreducible component of ResGN λ.

Then there exists an irreducible component τ ∈ Ĝσ of IndGσN σ such that λ ∼= IndGGσ τ .

Proof. Let us show first that IndGGσ τ is irreducible or, equivalently, 〈IndGGσ τ, IndGGσ τ〉 = 1,
where 〈· , ·〉 denotes the inner product of representations. Using the Frobenius reciprocity
theorem we have 〈IndGGσ τ, IndGGσ τ〉 = 〈τ,ResGGσ

(
IndGGσ τ

)
〉 and we need to show that τ

appears only once in the decomposition of µ = ResGGσ
(
IndGGσ τ

)
into irreducibles. Let W

and V denote representation spaces of µ and τ , respectively, and assume thatW = V n⊕V ′,
where n ≥ 2 and V ′ is a C[Gσ]-submodule of W .

Let s be the index [G : Gσ] of Gσ in G and let h1, . . . , hs ∈ G denote a set of left coset
representatives of Gσ in G with h1 = 1. Then W = h1V ⊕ · · · ⊕ hsV and

(1.1) h1V ⊕ · · · ⊕ hsV = V n ⊕ V ′, n ≥ 2.

Let U be a representation space of σ and let g1, . . . , gt ∈ Gσ be a set of left coset represen-
tatives of N in Gσ. Then IndGσN σ = g1U ⊕ · · · ⊕ gtU . Note that each giU is an N -module
and it follows from the definition of Gσ that as N -modules all giU are isomorphic to each
other. Since τ is a subrepresentation of IndGσN σ, this implies ResGσN τ ∼= σr for some r ≥ 1.
Thus from (1.1) we get h1U

r ⊕ · · · ⊕ hsU r ∼= U rn ⊕ V ′, where each hjU is an N -module
and this is an isomorphism of N -modules. Since n ≥ 2 and h1 = 1, by the uniqueness
of decomposition of a module into simple modules we conclude that there exists hk 6= 1
such that hkU ∼= U and hence hk ∈ Gσ. This contradicts the assumptions that hk is a
representative of Gσ in G and hk 6= 1.

Assume now that λ ∈ Ĝ and σ ∈ N̂ is an irreducible component of ResGN λ. Then by the
Frobenious reciprocity theorem 〈ResGGσ λ, IndGσN σ〉 = 〈ResGN λ, σ〉 6= 0 and hence ResGGσ λ

and IndGσN σ have a common irreducible component τ ∈ Ĝσ. By the previous paragraph
IndGGσ τ is irreducible and 〈IndGGσ τ, λ〉 = 〈τ,ResGGσ λ〉 6= 0. Since λ is irreducible, this

implies λ ∼= IndGGσ τ . �

2. The case when A is abelian.

Lemma 2.1. Let A be a finite abelian group of order e, let B = 〈b〉 be a finite cyclic
group of order k prime to e, and let C = 〈c〉 be a finite cyclic group. Let E = A o B be
a semi-direct product with B acting on A and let G = E o C be a semi-direct product,
where C acts on E. Let ψ1 be a (one-dimensional) representation of A, let Γ = Ao 〈bx〉
denote the stabilizer of ψ1 in E, and let ψ2 be a (one-dimensional) representation of 〈bx〉.
Then both ψ1 and ψ2 can be extended to representations of Γ and denote φ = ψ1⊗ψ2 ∈ Γ̂.
Let E o 〈cs〉 be the stabilizer of IndEΓ φ in G. Then there exist i and a one-dimensional
representation µ of F = 〈A, bx, csbi〉 such that

• csbiφ = φ,
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• ResFΓ µ = φ,
• σ = IndGF µ is irreducible, and

• |csbi| = |cs|, where csbi denotes the image of csbi in F/Γ or, equivalently,

[E o 〈cs〉 : F ] = x.

Moreover, every irreducible representation σ of G can be obtained in this way.

Proof. Note that since k is prime to e, A is normal in G. Let λ be an irreducible repre-
sentation of E = AoB. Using Theorem 1.2, λ can be constructed from one-dimensional
representation ψ1 of A in the following way. Let Γ denote the stabilizer of ψ1 in E.
Then Γ = Ao 〈bx〉 for some non-negative integer x < k and let ψ2 be a one-dimensional
representation of 〈bx〉. Then ψ1 and ψ2 can be extended to representations of Γ via

ψ1(bxva) = ψ1(a), a ∈ A,
ψ2(bxva) = ψ2(bxv),

and λ = IndEΓ (ψ1 ⊗ ψ2) ([4], p. 62, Prop. 25). Let φ = ψ1 ⊗ ψ2 and let Gλ denote
the stabilizer of λ in G. Then Gλ = E o 〈cs〉 for some s, i.e., csλ ∼= λ or, equivalently,
〈csλ, λ〉 = 1. Note that Γ is normal in G and {1, b, . . . , bx−1} is a system of representatives
for the left cosets of Γ in E. Hence

ResEΓ (csλ) ∼= csφ⊕ csbφ⊕ · · · ⊕ csbx−1φ

and by the Frobenius reciprocity theorem we have

1 = 〈csλ, λ〉 = 〈ResEΓ (csλ), φ〉 =
x−1∑
i=0

〈csbiφ, φ〉.

This implies that there exists i such that csbi is in the stabilizer of φ in Gλ. Denote by F
the stabilizer of φ in Gλ. Thus 〈A, bx, csbi〉 ⊆ F and it is easy to check that the reverse
inclusion also holds. Consequently, F = 〈A, bx, csbi〉 and as a result F/Γ is cyclic. We will
make use of the following lemma:

Lemma 2.2 ([2], p. 97, Exc. (6.17)). Let N be a normal subgroup of a finite group G

such that G/N is cyclic. If σ ∈ N̂ and Gσ = G, then σ can be extended to an irreducible
representation of G.

Proof. Assume σ : N −→ GLm(C) and let c ∈ G be a preimage of a generator of G/N
under the quotient map, so that G = 〈N, c〉. Since Gσ = G, we have cσ ∼= σ. In other
words, there exists φ ∈ GLm(C) such that

(2.1) σ(c−1nc) = φ−1σ(n)φ, ∀n ∈ N.

Let k be the order of c in G/N , i.e., k is the smallest positive integer satisfying ck ∈ N .
Then σ(ck)φ−k commutes with σ(n) for any n ∈ N and since σ is irreducible, by Schur’s
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lemma σ(ck)φ−k = λI, where λ ∈ C and I ∈ GLm(C) is the identity matrix. Denote by
λ1/k ∈ C an arbitrary k-th root of λ. Define σ̃ : G −→ GLm(C) as

σ̃(n) = σ(n), ∀n ∈ N,
σ̃(c) = λ1/kφ.

In particular, we have σ̃(c)k = σ(ck). Since N is normal in G, every g ∈ G can be written
(not necessarily in a unique way) as g = ncs, where n ∈ N and s ∈ Z. We define

σ̃(g) = σ̃(n)σ̃(c)s.

We now check that σ̃ is a well-defined representation of G. First, we show that σ̃(g) does
not depend on the choice of n and s. Suppose g = n′ct for n′ ∈ N , t ∈ Z, so that cs−t ∈ N
and hence s− t is divisible by k by the choice of k. We have

σ̃(n−1n′) = σ(n−1n′) = σ(cs−t) = σ(ck)
s−t
k = σ̃(c)s−t,

which implies σ̃(ncs) = σ̃(n′ct). Second, we check that σ̃ : G −→ GLm(C) is a homomor-
phism. Let g1 = n1c

a, g2 = n2c
b ∈ G, where n1, n2 ∈ N and a, b ∈ Z. We have

σ̃(g1g2) = σ̃(n1c
an2c

−acb+a) =(2.2)

= σ(n1c
an2c

−a)σ̃(c)b+a = σ(n1)σ(can2c
−a)(λ1/k)b+aφb+a,

where σ(can2c
−a) = φaσ(n2)φ−a by (2.1). Thus (2.2) becomes

σ̃(g1g2) = (λ1/k)b+aσ(n1)φaσ(n2)φb = σ̃(g1)σ̃(g2).

Clearly, σ̃ is irreducible and extends σ. �

By Lemma 2.2 there exists a one-dimensional representation µ of F such that ResFΓ µ =
φ and µ is an irreducible component of IndFΓ φ. First, applying Theorem 1.2 to Gλ with

a normal subgroup Γ, φ ∈ Γ̂, and an irreducible component µ of IndFΓ φ, we conclude
that IndGλF µ is irreducible. Second, applying Theorem 1.2 to G with a normal subgroup

E, λ ∈ Ê, and an irreducible component IndGλF µ of IndGλE λ, we conclude that IndGF µ =

IndGGλ IndGλF µ is also irreducible.

Conversely, let σ ∈ Ĝ and let λ be an irreducible component of ResGE σ. Then in the
notation of the proof used above, λ = IndEΓφ and it is enough to show that there exists an

extension µ of φ to F such that σ ∼= IndGF µ. Note that by Lemma 2.2 there exists λ̃ ∈ Ĝλ

that extends λ and hence every irreducible component of IndGλE λ has the form λ̃ ⊗ ψ,
where ψ is a one-dimensional representation of 〈cs〉 considered as a representation of Gλ

via inflection. By Theorem 1.2, without loss of generality we can assume that σ ∼= IndGGλ λ̃.

Now we will use Theorem 1.2 applied to Gλ with the normal subgroup Γ and λ̃. Namely,
note that every irreducible component of ResGλΓ λ̃ has the form bjφ and every irreducible
component of IndFΓ φ has the form µ⊗ κ, where κ is a one-dimensional representation of

〈csbi〉 considered as a representation of F via inflection. By Theorem 1.2, without loss

of generality we can assume that λ̃ is obtained from φ and µ via λ̃ ∼= IndGλF µ and hence
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σ ∼= IndGF µ. Moreover, it follows that x = dim λ̃ = [Gλ : F ], hence [F : Γ] = [Gλ : E] and

|csbi| = |cs|. �

Remark 2.3. Note that if A is cyclic, then F is normal in G (see the subsection below).
This is not true for a general abelian A. For example, let A ∼= Z/2Z× Z/2Z, B ∼= Z/3Z,
and C ∼= Z/2Z. Denote by a1, a2 generators of A with the group operation written
multiplicatively and define

c−1bc = b2,

b−1a1b = a2, b−1a2b = a1a2,

c−1a1c = a1, c−1a2c = a1a2,

ψ1(a1) = 1, ψ1(a2) = −1.

It is easy to check that G = (A o B) o C is well defined, Γ = A and cψ1 = ψ1. Thus
F = 〈A, c〉 and F is not normal in G. Indeed, bcb−1 = cb 6∈ F .

3. The case when A is cyclic.

In what follows we will write an action of a cyclic group 〈b〉 on a group A in the form
b−1ab, a ∈ A. Since B is cyclic, it is well defined, and it is more convenient for applications
to representations. Thus we multiply elements in a semi-direct product Ao 〈b〉 as follows

(a1, b1) · (a2, b2) = (b−1
2 a1b2 · a2, b1b2), a1, a2 ∈ A, b1, b2 ∈ 〈b〉.

Lemma 3.1. Let E = A o B, A = 〈a〉, B = 〈b〉, |a| = e, |b| = k, (e, k) = 1, and
b−1ab = am, where m ∈ (Z/eZ)× and mk ≡ 1 mod e. Then any automorphism θ of E is
defined by a triple (r, t, n) via

θ(a) = an, θ(b) = brat,

where n ∈ (Z/eZ)×, r ∈ (Z/kZ)×, t ∈ Z/eZ, mr ≡ m mod e, and

(3.1) t · (1 +m+m2 + · · ·+mk−1) ≡ 0 mod e.

Moreover, if θ1 = (r1, t1, n1) and θ2 = (r2, t2, n2), then θ1◦θ2 = (r1r2, t1 +t2n1, n1n2). Fur-
thermore, θ−1 = (r′,−n′t, n′) with n′ ≡ n−1 mod e, r′ ≡ r−1 mod k, and θs = (rs, αs, n

s)
with

(3.2) αs = t
s−1∑
j=0

nj.

Proof. Indeed, note that
1 = θ(b)k = (brat)k = atu,

where u = 1 +mr +m2r + · · ·+m(k−1)r ≡ 1 +m+m2 + · · ·+mk−1 mod e, which implies
(3.1). Let y denote the order of m in (Z/eZ)×. Then y divides both k and r − 1, and
from (3.1) we get

(3.3) t · (1 +m+m2 + · · ·+mk−1) ≡ t · (1 +m+m2 + · · ·+my−1)
k

y
≡ 0 mod e.
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Since (e, k) = 1, we conclude that t · (1 + m + m2 + · · · + my−1) ≡ 0 mod e and hence
t · (1 + m + m2 + · · · + mr−1) ≡ t mod e for any r satisfying mr ≡ m mod e. To get
formulas for θ1 ◦ θ2 and θ−1 note that

(3.4) θ1 ◦ θ2(b) = br1r2au+t2n1 ,

where u = t1(1 +mr1 +m2r1 + · · ·+m(r2−1)r1) ≡ t1(1 +m+m2 + · · ·+mr2−1) ≡ t1 mod e.
Using (3.4), formula (3.2) can be easily proved by induction. �

Proposition 3.2. Let A = 〈a〉 be a finite cyclic group of order e, let B = 〈b〉 be a finite
cyclic group of order k prime to e, and let C = 〈c〉 be a finite cyclic group. Let E = AoB
be a semi-direct product with B acting on A via b−1ab = am for some m ∈ (Z/eZ)× and
let G = EoC be a semi-direct product, where C acts on E via c−1ac = an, n ∈ (Z/eZ)×,
c−1bc = brat, r ∈ (Z/kZ)×, t ∈ Z/eZ. Let ψ1 be a (one-dimensional) representation of
A, let Γ = A o 〈bx〉 denote the stabilizer of ψ1 in E, and let ψ2 be a (one-dimensional)
representation of 〈bx〉. Then both ψ1 and ψ2 can be extended to representations of Γ and

denote φ = ψ1 ⊗ ψ2 ∈ Γ̂. Let E o 〈cs〉 be the stabilizer of IndEΓ φ in G. Then there exist
a unique i ∈ {0, 1, . . . , x− 1} and a one-dimensional representation µ of F = 〈A, bx, csbi〉
such that

• csbiφ = φ,
• ResFΓ µ = φ, and
• σ = IndGF µ is irreducible.

If, in addition, σ is symplectic, then there exist g ∈ {0, 1, . . . , s−1} and j ∈ {0, 1, . . . , x−1}
such that µ = µcgbj , (cgbj)2 ∈ F , and µ((cgbj)2) = −1. Moreover, every irreducible
symplectic representation σ of G can be obtained in this way.

Proof. We assume the results of Lemma 2.1 and Lemma 3.1. Note that mk ≡ 1 mod e
and mr ≡ m mod e. Then ψ1(a) is an e-th root of unity of order d in C× and x = |m|
in (Z/dZ)×. Since d divides e, from mr ≡ m mod e we have r ≡ 1 mod x. This implies
that the group F = 〈A, bx, csbi〉 is normal. Indeed, since A is normal in G, it is enough
to show that F/A is normal in G/A. Denoting the images of a, b, and c in G/A again by
a, b, and c, respectively, we have

c−1 · bx · c = brx,

b · csbi · b−1 = csbi · brs−1,

c−1 · csbi · c = csbi · bi(r−1).

Thus by Lemma 2.1 every irreducible representation of G is induced by a one-dimensional
representation from a normal subgroup. Proposition 3.2 then follows from Lemma 3.3
below, which characterizes symplectic irreducible representations of a finite group induced
by one-dimensional representations from normal subgroups. �

Lemma 3.3. Let G be a finite group with a normal subgroup F and let σ = IndGF µ be an
irreducible representation of G induced by a one-dimensional representation µ of F . For
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g ∈ G let µg denote the one-dimensional representation of F given by

µg(f) = µ(g−1fg), f ∈ F.

Let µ denote the contragredient representation of µ. Then σ is symplectic if and only if
there exists t ∈ G such that µ = µt, t

2 ∈ F , and µ(t2) = −1.

Proof. Let χ denote the character of σ. By Proposition 39 on p. 109 in [4], σ is symplectic
if and only if

(3.5)
1

|G|
·
∑
y∈G

χ(y2) = −1.

Let T denote a system of representatives of F in G. Note that ResGF σ =
⊕

t∈T µt and
χ(g) = 0 if g 6∈ F . Thus∑

y∈G

χ(y2) =
∑
t∈T
t2∈F

∑
f∈F

χ(t2 · t−1ft · f) =
∑
t∈T
t2∈F

∑
f∈F

∑
t′∈T

µt′(t
2)µt′(t

−1ft)µt′(f),

where
∑

f∈F µt′(t
−1ft)µt′(f) = |F | · 〈µ(t′)−1tt′ , µ〉. Hence

(3.6)
1

|G|
·
∑
y∈G

χ(y2) =
|F |
|G|
·
∑
t∈T
t2∈F

∑
t′∈T

µt′(t
2)〈µ(t′)−1tt′ , µ〉.

This implies that if σ is symplectic, then there exists t0 ∈ G such that t0
2 ∈ F and

µ = µt0 . Since σ is irreducible, all µt’s are pairwise distinct and hence from (3.5) and
(3.6) we get

−1 =
1

|G|
·
∑
y∈G

χ(y2) =
|F |
|G|
·
∑
t∈T
t2∈F

∑
t′∈T

µt′(t
2)〈µ(t′)−1tt′ , µ〉 = µ(t0

2),

which implies that the conditions in Lemma 3.3 are necessary and it follows from the
proof that they are also sufficient. �

Remark 3.4. By Proposition 39 on p. 109 in [4], σ is orthogonal if and only if

1

|G|
·
∑
y∈G

χ(y2) = 1.

Thus it follows from the proof of Lemma 3.3 that σ is orthogonal if and only if there
exists t ∈ G such that µ = µt, t

2 ∈ F , and µ(t2) = 1. In particular, if σ is orthogonal,
then either µ is real-valued or the order of G/F is even.
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