CHANGE OF ROOT NUMBERS OF ELLIPTIC CURVES UNDER EXTENSION OF SCALARS

MARIA SABITOVA

Abstract

In this paper we study how the root number attached to an elliptic curve E over a finite field extension K of \mathbb{Q}_{3} changes when E is considered as an elliptic curve over a finite Galois extension F of K via extension of scalars. The main result is a formula relating the root number $W(E / F)$ attached to $E \times_{K} F$ to the root number $W(E / K)$ attached to E.

Introduction

Let K be a finite field extension of \mathbb{Q}_{p} with a fixed algebraic closure \bar{K} and let $F \subset \bar{K}$ be a finite field extension of K. The main goal of the paper is to relate the root number $W(E / K)$ attached to an elliptic curve E over K to the root number $W(E / F)$ attached to elliptic curve $E \times_{K} F$ over F obtained from E via extension of scalars.

Explicit formulas for $W(E / K)$ in terms of the coefficients of an arbitrary generalized Weierstrass equation of E have been obtained by D. Rohrlich [6] in the case when E has potential multiplicative reduction over K and under the additional assumption $p \geq 5$ in the case when E has potential good reduction over K. Thus Rohrlich's formulas can be used to calculate $W(E / F)$ using an arbitrary Weierstrass equation of E over K. In the case $p=3$ formulas for $W(E / K)$ were obtained by S. Kobayashi [4] in terms of the coefficients of a minimal Weierstrass equation of E over K, so in order to apply Kobayashi's formulas to calculate $W(E / F)$ one needs to find a minimal Weierstrass equation of E over F. Our motivation is to calculate $W(E / F)$ using a Weierstrass equation of E over K. The cases $p=2$ or $3, E$ has potential good reduction over K, and F is an arbitrary finite field extension of K still remain untreated in full generality. We answer the question when $p=3$ under an additional assumption that F is Galois over K.

Assume E has potential good reduction over K and $F \subset \bar{K}$ is a finite field extension of K. By definition, the root number $W(E / K)$ is the root number of representation σ_{E} of the Weil group $\mathcal{W}(\bar{K} / K)$ of K attached to E. It is known that σ_{E} is a two-dimensional semisimple representation of $\mathcal{W}(\bar{K} / K)$. If σ_{E} is not irreducible, then one can easily deduce from well-known formulas that

$$
W(E / F)=W(E / K)^{[F: K]}
$$

Date: July 2, 2013.
Supported by NSF grant DMS-0901230 and by grants 60091-40 41, 64620-00 42 from The City University of New York PSC-CUNY Research Award Program.
(see e.g., [6], p. 128).
If σ_{E} is irreducible and p is odd (i.e., $p \neq 2$), then σ_{E} is induced by a multiplicative character of a quadratic extension $H \subset \bar{K}$ of K. Moreover, E has the Kodaira-Néron type $I I I, I I I^{*}, I I, I V, I V^{*}$, or $I I^{*}$ (see Proposition 1.6 below). Furthermore,

- $H=K(\sqrt{-1})$ if E is of type $I I I$ or $I I I^{*}$,
- $H=K\left(\Delta^{1 / 2}\right)$ if E is of type $I I, I V, I V^{*}$, or $I I^{*}$, where Δ is a discriminant of E. The main results of the paper together with easy cases, which we include for the sake of completeness, can be summarized in the following

Theorem. Let $F \subset \bar{K}$ be a finite field extension of K with ramification index e (F / K) over K. Suppose p is odd, E has potential good reduction over K, and σ_{E} is irreducible.

- If $H \subseteq F$, then

$$
W(E / F)=\left(\frac{-1}{\hat{K}}\right)^{\delta}, \quad \delta= \begin{cases}\frac{[F: K]}{2}, & \text { if } H / K \text { ramified } \\ 0, & \text { if } H / K \text { unramified },\end{cases}
$$

where \hat{K} denotes the residue field of K and $\left(\frac{x}{\hat{K}}\right)$ is the quadratic residue symbol of $x \in \hat{K}$ (Lemma 2.1 below).

- If $H \nsubseteq F, p \geq 5$, then

$$
W(E / F)=(-1)^{\alpha+[F: K]} W(E / K)^{[F: K]},
$$

where

$$
\alpha=\left\{\begin{array}{lc}
0, & \text { if } \varepsilon \mid e(F / K) \\
1, & \text { otherwise }
\end{array}\right.
$$

and ε denotes the ramification index of a minimal extension of K over which E has good reduction (Lemma 2.2 below).

- If $H \nsubseteq F, p=3, F$ is Galois over K, and $e(H / K)=1$, then

$$
W(E / F)=(-1)^{1+[F: K]} W(E / K)^{[F: K]}
$$

(Proposition 3.1 below).

- If $H \nsubseteq F, p=3, F$ is Galois over $K, e(H / K)=2$, and $e(F / K)$ is even, then

$$
W(E / F)=(-1)^{1+\frac{e(F / K)}{2} f\left(F / \mathbb{Q}_{3}\right)}
$$

where $f\left(F / \mathbb{Q}_{3}\right)$ is the residual degree of F over \mathbb{Q}_{3} (Proposition 4.1 below).

- If $H \nsubseteq F, p=3, F$ is Galois over $K, e(H / K)=2$, and $e(F / K)$ is odd, then

$$
W(E / F)=(-1)^{1+[F: K]+a f\left(F / \mathbb{Q}_{3}\right)} W(E / K)^{[F: K]}
$$

where

$$
a=\left\{\begin{array}{ll}
\frac{e_{t}-1}{2}, & \text { if } e_{t} \equiv 1 \bmod 3 \\
\frac{e_{t}+1}{2}, & \text { if } e_{t} \equiv 2 \bmod 3
\end{array}= \begin{cases}\text { odd, }, & \text { if } e_{t} \equiv 5 \text { or } 7 \bmod 12 \\
\text { even, } & \text { if } e_{t} \equiv 1 \text { or } 11 \bmod 12,\end{cases}\right.
$$

and e_{t} denotes the ramification index of the maximal tamely ramified extension of K contained in F (Theorem 4.3 below).

The paper is organized in the following way: Section 1 contains a list of general facts and notation used in the paper. Section 2 contains general formulas for $W(E / F)$ and the cases $H \subseteq F$ and $p \geq 5$. Section 3 treats the case when H is unramified over K, whereas Sections 4 and 5 treat the case when H is ramified over K. Finally, Section 6 contains specific examples showing that our formula for $W(E / F)$ becomes more complicated without the assumption that F is Galois over K.

1. Notation and general facts

1.1. The base field and characters. In what follows K is a local non-archimedean field of characteristic zero with ring of integers \mathcal{O}_{K}, maximal ideal $\mathfrak{p}_{K} \subset \mathcal{O}_{K}$, a uniformizer ϖ_{K}, and residue field \hat{K} of characteristic p and cardinality q. Equivalently, K is a finite field extension of \mathbb{Q}_{p}. Let \bar{K} be a fixed algebraic closure of K and we fix a valuation on K satisfying $\operatorname{val}_{K} \varpi_{K}=1$. We denote by $\mathfrak{D}\left(K / \mathbb{Q}_{p}\right)$ the absolute different of K. If $F \subset \bar{K}$ is a finite field extension of K, then $e(F / K)$ and $f(F / K)$ denote the ramification index and the residual degree of F over K, respectively.

We call a continuous non-trivial homomorphism $\psi: K \longrightarrow \mathbb{C}^{\times}$of absolute value 1 an (additive) character of K and we call a continuous homomorphism $\mu: K^{\times} \longrightarrow \mathbb{C}^{\times} a$ (multiplicative) character of K^{\times}. For an additive character ψ of K we denote by $n(\psi)$ the largest integer n such that ψ is trivial on $\varpi_{K}^{-n} \mathcal{O}_{K}$.

Let $\Phi_{K} \in \operatorname{Gal}(\bar{K} / K)$ be a preimage of the (arithmetic) Frobenius automorphism of the absolute Galois group of the residue field of K under the decomposition map, so that Φ_{K} is an arithmetic Frobenius of $\operatorname{Gal}(\bar{K} / K)$. We will call Φ_{K} simply a Frobenius of $\operatorname{Gal}(\bar{K} / K)$. By definition, the Weil group $\mathcal{W}(\bar{K} / K)$ (also denoted by \mathcal{W}_{K}) of K is a subgroup of $\operatorname{Gal}(\bar{K} / K)$ equal to $\operatorname{Gal}\left(\bar{K} / K^{u n r}\right) \rtimes\left\langle\Phi_{K}\right\rangle$, where $K^{u n r} \subset \bar{K}$ denotes the maximal unramified extension of K contained in $\bar{K},\left\langle\Phi_{K}\right\rangle$ denotes the infinite cyclic group generated by Φ_{K}, and $I_{K}=\operatorname{Gal}\left(\bar{K} / K^{u n r}\right)$ is the inertia group of K. Throughout the paper we will identify one-dimensional complex continuous representations of $\mathcal{W}(\bar{K} / K)$ with characters of K^{\times}via the local class field theory assuming that a uniformizer ϖ_{K} of K corresponds to an arithmetic Frobenius Φ_{K} of $\operatorname{Gal}(\bar{K} / K)$. We also denote by $\chi_{H / K}$ the quadratic character of K^{\times}with kernel $N_{H / K}\left(H^{\times}\right)$or, equivalently, $\chi_{H / K}$ is the onedimensional representation of $\mathcal{W}(\bar{K} / K)$ of order 2 with kernel $\mathcal{W}(\bar{K} / H)$.

Lemma 1.1. Let P be a local non-archimedean field of characteristic zero and let Q be a ramified quadratic extension of P. Suppose μ is a character of Q^{\times}such that $\left.\mu\right|_{P^{\times}}=\chi_{Q / P}$. Then either $a(\mu)=1$ or $a(\mu)$ is positive and even.

Proof. Since $a(\mu) \neq 0$, assume $a(\mu)=2 m+1$ for some $m \neq 0$. Since Q is ramified over P, $\mathcal{O}_{Q}=\mathcal{O}_{P}\left[\varpi_{Q}\right]$ for a uniformizer ϖ_{Q} of Q such that $\varpi_{Q}^{2} \in \mathcal{O}_{P}$. Let $y=1+x \varpi_{Q}^{2 m}, x \in \mathcal{O}_{Q}$.

Then $x=a+b \varpi_{Q}$ for $a, b \in \mathcal{O}_{P}, y=1+a \varpi_{Q}^{2 m}+b \varpi_{Q}^{2 m+1}$, and $\mu(y)=\chi_{Q / P}\left(1+a \varpi_{Q}^{2 m}\right)=1$, since $a\left(\chi_{Q / P}\right)=1$. Thus μ is trivial on $1+\mathfrak{p}_{Q}^{2 m}$, which contradicts $a(\mu)=2 m+1$.
Lemma 1.2. Let P be a local non-archimedean field of characteristic zero and let Q be a tamely ramified Galois extension of P. Let μ be a complex continuous one-dimensional representation of \mathcal{W}_{P} and let ν be the restriction of μ to $\mathcal{W}_{Q}\left(\right.$ denoted by $\left.\operatorname{Res}_{P}^{Q} \mu\right)$. If $a(\mu)>1$, then

$$
\begin{equation*}
a(\nu)=(a(\mu)-1) e_{t}+1 \tag{1.1}
\end{equation*}
$$

Proof. Let N be a finite Galois extension of P such that $\operatorname{Gal}\left(\bar{P} / N^{u n r}\right)$ is contained in the kernel of μ. Since $a(\mu)>1, a\left(\mu^{k}\right)=a(\mu)$ for any k not divisible by residual characteristic p of P. Thus without loss of generality we can assume that $A=\operatorname{Gal}\left(N^{u n r} / P^{u n r}\right)$ is a p-group and hence $N^{u n r} \cap Q^{u n r}=P^{u n r}$. Let $T=Q^{u n r} N^{u n r}, B=\operatorname{Gal}\left(T / P^{u n r}\right), C=\operatorname{Gal}\left(T / Q^{u n r}\right)$, where $C \cong A$. Then $a(\mu)=1+\frac{1}{e_{t}} \alpha$, where α depends on whether μ is trivial on the higher ramification groups B_{i} 's of $B, i \geq 1$. On the other hand, $a(\nu)=1+\beta$, where β depends on whether μ is trivial on the higher ramification groups C_{i} 's of $C, i \geq 1$. Since $C_{i}=C \cap B_{i}=B_{i}$, we have $\alpha=\beta$ and hence (1.1).

Lemma 1.3 ([8], p. 316, Prop. 1). Let P be a local non-archimedean field of characteristic zero and let Q be a quadratic extension of P. Assume μ is a complex continuous onedimensional representation of $\operatorname{Gal}(\bar{P} / Q)$. The representation of $\operatorname{Gal}(\bar{P} / P)$ induced by μ (denoted by $\operatorname{Ind}_{P}^{Q} \mu$) is irreducible and symplectic if and only if $\left.\mu\right|_{P \times}=\chi_{Q / P}$ and $\mu^{2} \neq 1_{Q}$. Also, a complex continuous finite-dimensional representation of $\mathrm{Gal}(\bar{P} / P)$ is dihedral (i.e., two-dimensional orthogonal and irreducible) if and only if it has the form $\operatorname{Ind}_{P}^{Q} \mu$ for a quadratic extension Q of P and a character μ of Q^{\times}satisfying $\left.\mu\right|_{P \times}=1_{P}$ and $\mu^{2} \neq 1_{Q}$.
1.2. Root numbers. Suppose $d x$ is a Haar measure on K, ψ is a (additive) character of K, π is a complex continuous finite-dimensional representation of $\mathcal{W}(\bar{K} / K)$, and $\epsilon(\pi, \psi, d x)$ is the corresponding epsilon factor. The root number W of π is defined as

$$
W(\pi, \psi)=\frac{\epsilon(\pi, \psi, d x)}{|\epsilon(\pi, \psi, d x)|}
$$

It follows from a property of the epsilon factors that the root number does not depend on the choice of $d x$ (see e.g., [7], Proposition on p. 143).

Given an elliptic curve E over K and a finite field extension $F \subset \bar{K}$ of K we are interested in calculating the root number $W(E / F)$ of elliptic curve $E \times_{K} F$ obtained from E via extension of scalars. Our goal is to express $W(E / F)$ in terms of $W(E / K)$ and F. We are particularly interested in the case when E has potential good reduction over K. Let l be a rational prime different from p, let $T_{l}(E)$ be the l-adic Tate module of E, and let σ_{E} denote the (2-dimensional) complex representation of $\mathcal{W}(\bar{K} / K)$ associated to the representation $\sigma_{E, l, l}$ of $\operatorname{Gal}(\bar{K} / K)$ on $\left(T_{l}(E) \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}\right)^{*} \otimes_{l} \mathbb{C}$, where \imath is an embedding of \mathbb{Q}_{l} into \mathbb{C}. It is known that the isomorphism class of $\sigma_{E, l, 2}$ does not depend on the choice
of l and \imath. Furthermore, σ_{E} is the restriction of $\sigma_{E, l, \imath}$ to $\mathcal{W}(\bar{K} / K)$. By definition,

$$
W(E / K)=W\left(\sigma_{E}\right)
$$

and hence $W(E / F)=W\left(\operatorname{Res}_{K}^{F} \sigma_{E}\right)$, where $\operatorname{Res}_{K}^{F} \sigma_{E}$ denotes the restriction of σ_{E} to $\mathcal{W}(\bar{K} / F)$. Let ω denote the unramified one-dimensional representation of $\mathcal{W}(\bar{K} / K)$ satisfying

$$
\omega\left(\Phi_{K}\right)=q .
$$

By properties of root numbers,

$$
W\left(\sigma_{E}\right)=W\left(\sigma_{E} \otimes \omega^{1 / 2}\right)=W(\sigma)
$$

where $\sigma=\sigma_{E} \otimes \omega^{1 / 2}$ is symplectic and hence $W(\sigma)$ does not depend on the choice of a character of K (see e.g., [7], Proposition on p. 150).

Lemma 1.4 ([8], p. 319, Prop. 3). Let P be a local non-archimedean field of characteristic zero and let Q be the unramified quadratic extension of P. Assume μ is a character of Q^{\times}such that $\left.\mu\right|_{P \times}=\chi_{Q / P}$. If ψ_{P} is a character of P and $\psi_{Q}=\psi_{P} \circ \operatorname{Tr}_{Q / P}$, then

$$
W\left(\mu, \psi_{Q}\right) W\left(\operatorname{Ind}_{P}^{Q} 1_{Q}, \psi_{P}\right)=W\left(\mu, \psi_{Q}\right) W\left(\chi_{Q / P}, \psi_{P}\right)=(-1)^{a(\mu)} \mu\left(u_{Q / P}\right)
$$

where $u_{Q / P} \in \mathcal{O}_{Q}^{\times}$is any element such that $Q=P\left(u_{Q / P}\right)$ and $u_{Q / P}^{2} \in P$.
Remark 1.5. Note that $\mu\left(u_{Q / P}\right)$ does not depend on the choice of $u_{Q / P}$. Indeed, let $v \in \mathcal{O}_{Q}^{\times}$ satisfy $v^{2} \in P$ and $Q=P(v)$. This implies $u_{Q / P}=\alpha v$ for $\alpha \in \mathcal{O}_{P}^{\times}$. Thus

$$
\mu\left(u_{Q / P}\right)=\mu(\alpha) \mu(v)=\chi_{Q / P}(\alpha) \mu(v)=\mu(v),
$$

since $\chi_{Q / P}$ is unramified.
1.3. Elliptic curves. Throughout this subsection we assume that E has potential good reduction over K. The next proposition due to S . Kobayashi provides a criterion of irreducibility of σ_{E} in terms of the Kodaira-Néron type and discriminant $\Delta \in K$ of a Weierstrass equation of E.

Proposition 1.6 ([4], p. 613, Prop. 3.2). Suppose p is odd.

- If E is of type I_{0} or I_{0}^{*}, then σ_{E} is not irreducible.
- If E is of type III or III*, then σ_{E} is irreducible if and only if $\left(\frac{-1}{\hat{K}}\right) \neq 1$.
- If E is of type $I I, I V, I V^{*}$, or $I I^{*}$, then σ_{E} is irreducible if and only if $\Delta^{1 / 2} \notin K$.

For the rest of this subsection we assume that $p=3, E$ has potential good reduction over K, and σ_{E} is irreducible. Let $\Delta \in K$ denote a fixed discriminant of E, let $\Delta^{1 / 4}$ be an arbitrary fixed 4-th root of $\Delta, N=K\left(\Delta^{1 / 4}, E[2]\right), H=K\left(\Delta^{1 / 2}\right), M=K(E[2])$, and $S=K\left(\Delta^{1 / 4}\right)$. It is known that $H \subset M, M$ is a finite Galois extension of K with $\operatorname{Gal}(M / K)$ being isomorphic to a subgroup of the symmetric group S_{3} on 3 letters, $N^{u n r}=K^{u n r}\left(\Delta^{1 / 4}, E[2]\right)$ is a finite Galois extension of $K^{u n r}$, and $N^{u n r}$ is the minimal extension of $K^{u n r}$ over which E has good reduction ([5], p. 362). In particular, σ_{E} is trivial on I_{N} by the criterion of Néron-Ogg-Shafarevič. Suppose σ_{E} is wildly ramified. Then H
is a quadratic extension of K and $\operatorname{Gal}(M / K) \cong S_{3}$. Moreover, if H is unramified over K, then $\operatorname{Gal}\left(N^{u n r} / K^{u n r}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$ or $\operatorname{Gal}\left(N^{u n r} / K^{u n r}\right) \cong \mathbb{Z} / 6 \mathbb{Z}, \operatorname{Gal}\left(S^{u n r} / K^{u n r}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$. Also, if H is ramified over K, then

$$
\operatorname{Gal}\left(N^{u n r} / K^{u n r}\right) \cong(\mathbb{Z} / 3 \mathbb{Z}) \rtimes(\mathbb{Z} / 4 \mathbb{Z})
$$

with the uniquely defined non-trivial action of $\mathbb{Z} / 4 \mathbb{Z}$ on $\mathbb{Z} / 3 \mathbb{Z}$, so that $\operatorname{Gal}\left(S^{u n r} / K^{u n r}\right) \cong$ $\mathbb{Z} / 4 \mathbb{Z}$ and $\operatorname{Gal}\left(N^{u n r} / S^{u n r}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$. Let $a \in \operatorname{Gal}\left(N^{u n r} / S^{u n r}\right)$ be an element of order 3 and let $b \in \operatorname{Gal}\left(N^{u n r} / K^{u n r}\right)$ be an element of order 4 that maps onto a generator of $\operatorname{Gal}\left(S^{u n r} / K^{u n r}\right)$ under the quotient map.

Lemma 1.7. Assume H is ramified over K and σ_{E} is wildly ramified. Then N is totally ramified over K and let $\Phi_{N} \in \operatorname{Gal}(\bar{K} / N)$ be a Frobenius considered as a Frobenius of $\operatorname{Gal}(\bar{K} / K)$. Then

$$
\mathcal{W}(\bar{K} / K) / I_{N} \cong(\langle a\rangle \rtimes\langle b\rangle) \rtimes\langle c\rangle,
$$

where $c=\Phi_{N},|a|=3,|b|=4, b^{-1} a b=a^{2}$, $a c=c a, c^{-1} b c=b^{r}$, and $r=(-1)^{f\left(K / \mathbb{Q}_{3}\right)}$. Moreover, there exist a root of unity η satisfying $\eta^{2}=(-1)^{f\left(K / \mathbb{Q}_{3}\right)}$, a primitive third root of unity ξ, and a one-dimensional complex representation ϕ of the subgroup

$$
\mathcal{W}(\bar{K} / H) / I_{N} \cong\left\langle a, b^{2}, c\right\rangle
$$

such that $\phi(a)=\xi, \phi\left(b^{2}\right)=-1, \phi(c)=\eta$, and $\sigma=\sigma_{E} \otimes \omega^{1 / 2}$ is induced by ϕ. Thus, in a suitable basis we have

$$
\sigma(a)=\left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{2}
\end{array}\right), \quad \sigma(b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \sigma(c)=\eta\left(\begin{array}{cc}
1 & 0 \\
0 & (-1)^{f\left(K / \mathbb{Q}_{3}\right)}
\end{array}\right)
$$

Proof. First, note that $\mathcal{W}(\bar{K} / K) / I_{N} \cong \operatorname{Gal}\left(N^{u n r} / K^{u n r}\right) \rtimes\left\langle\Phi_{N}\right\rangle$. It is easy to check that $\Phi_{N}^{-1} \circ a \circ \Phi_{N}=a$. Also, let $\xi_{4} \in \bar{K}$ be the forth-root of unity such that $b\left(\Delta^{1 / 4}\right)=\xi_{4} \Delta^{1 / 4}$. Then for $r=(-1)^{f\left(K / \mathbb{Q}_{3}\right)}$ we have

$$
\Phi_{N}^{-1} \circ b \circ \Phi_{N}\left(\Delta^{1 / 4}\right)=\Phi_{N}^{-1} \circ b\left(\Delta^{1 / 4}\right)=\Phi_{N}^{-1}\left(\xi_{4}\right) \Delta^{1 / 4}=\xi_{4}^{r} \Delta^{1 / 4}=b^{r}\left(\Delta^{1 / 4}\right)
$$

and hence $\Phi_{N}^{-1} \circ b \circ \Phi_{N} \circ b^{-r}=a^{t}$ for some $t \in\{0,1,2\}$. For x-coordinate α of a point in $E[2]$ we have $b^{1-r}(\alpha)=a^{t}(\alpha)$, since $\Phi_{N}(\alpha)=\alpha$. If $r=1$, then $t=0$. If $r=-1$, then $b^{2}(\alpha)=a^{t}(\alpha)$. Since the order of a is 3 and the order of b is 4 , we have $t=0$ in this case as well.

Denote $G=(\langle a\rangle \rtimes\langle b\rangle) \rtimes\langle c\rangle$. Note that σ can be considered as an irreducible symplectic representation of G. It is known that σ_{E} is induced by a character of H^{\times}(see e.g., [4], p. 613, Prop. 3.3(ii)). This implies that σ is also induced by a character ϕ of H^{\times}. Note that if $\phi(a)=1$, then σ_{E} is tame, which contradicts the assumption. Hence $\phi(a)$ is a primitive third root of unity ξ. It is well-known that a two-dimensional complex representation is symplectic if and only if its determinant is trivial. Calculating det σ, we conclude that $\phi\left(b^{2}\right)=-1$ and if $\phi(c)=\eta$, then $\eta^{2}=(-1)^{f\left(K / \mathbb{Q}_{3}\right)}$.

Lemma 1.8. Assume H is ramified over K and σ_{E} is wildly ramified. In the notation of Lemma 1.7 let θ be a character of H^{\times}given by $\theta(a)=1, \theta\left(b^{2}\right)=-1$, and $\theta(c)=\gamma$ for a root of unity γ satisfying $\gamma^{2}=(-1)^{f\left(H / \mathbb{Q}_{3}\right)}$. Then

$$
\left.\theta\right|_{K^{\times}}=\chi_{H / K},\left.\quad(\phi \otimes \theta)\right|_{K^{\times}}=1_{K}, \quad \text { and } \quad a(\theta)=1
$$

Proof. Interpreting the condition $\left.(\phi \otimes \theta)\right|_{K^{\times}}=1_{K}$ in terms of Weil groups via the local class field theory we need to show that $(\phi \otimes \theta) \circ \operatorname{tr}: \mathcal{W}(\bar{K} / K)^{a b} \longrightarrow \mathbb{C}^{\times}$is trivial, where $\operatorname{tr}: \mathcal{W}(\bar{K} / K)^{a b} \longrightarrow \mathcal{W}(\bar{K} / H)^{a b}$ is the transfer map. Let $G=\langle a, b, c\rangle$ and $\Gamma=\left\langle a, b^{2}, c\right\rangle$. Since ϕ is trivial on I_{N}, it is enough to show that $\phi \otimes \theta$ composed with the transfer map tr : $G^{a b} \longrightarrow \Gamma^{a b}$ is trivial (here both ϕ and θ are considered as one-dimensional representations of Γ). By calculating the transfer map explicitly and using the definition of ϕ given in Lemma 1.7 it is easy to verify that $\left.\theta\right|_{K^{\times}}=\left.\phi\right|_{K^{\times}}=\chi_{H / K}$. Since the restriction of θ to the inertia group I_{H} has order two, we have $a(\theta)=1$.

Lemma 1.9. Suppose σ_{E} is wildly ramified. Let F be a finite Galois extension of K contained in \bar{K} such that $F \cap H=K$ and let $L=F H$. Then $L^{u n r} \cap M^{u n r}=H^{u n r}$ and if $e(H / K)=2$, then in addition $L^{u n r} \cap N^{u n r}=H^{u n r}$.

Proof. Assume that $M^{u n r} \subseteq L^{u n r}$. Let F_{t} be the maximal tamely ramified extension of K contained in F and let $L_{t}=F_{t} H, T=L_{t} M$. Since $[M: H]=e(M / H)=$ 3, we have $L_{t} \cap M=H, L_{t}^{u n r} \cap M^{u n r}=H^{u n r}$, and $T^{u n r} \subseteq L^{u n r}$. The restriction map gives the surjection $f: \operatorname{Gal}\left(L^{u n r} / L_{t}^{u n r}\right) \rightarrow \operatorname{Gal}\left(T^{u n r} / L_{t}^{u n r}\right)$. Note that there are natural isomorphisms $\operatorname{Gal}\left(L^{u n r} / L_{t}^{u n r}\right) \cong \operatorname{Gal}\left(L / L_{t}\right)$ and $\operatorname{Gal}\left(T^{u n r} / L_{t}^{u n r}\right) \cong \operatorname{Gal}\left(T / L_{t}\right)$, which are induced by the restriction maps. These together with f give the surjection $g: \operatorname{Gal}\left(L / L_{t}\right) \rightarrow \operatorname{Gal}\left(T / L_{t}\right)$, which commutes with the natural action of $\operatorname{Gal}\left(\bar{K} / F_{t}\right)$. On the other hand, $\operatorname{Gal}\left(T / F_{t}\right) \cong \operatorname{Gal}\left(T / L_{t}\right) \rtimes \mathbb{Z} / 2 \mathbb{Z} \cong S_{3}$ and $\operatorname{Gal}\left(L / F_{t}\right) \cong \operatorname{Gal}\left(L / L_{t}\right) \times \mathbb{Z} / 2 \mathbb{Z}$. This implies that there exists an element j in $\operatorname{Gal}\left(\bar{K} / F_{t}\right)$ with $\left.j\right|_{L_{t}} \neq \mathrm{id}_{L_{t}}$ that acts trivially on $\operatorname{Gal}\left(L / L_{t}\right)$ and non-trivially on $\operatorname{Gal}\left(T / L_{t}\right)$. This gives a contradiction with the existence of g.

Assume now that $e(H / K)=2$ and $S^{u n r} \subseteq L^{u n r}$. Thus the restriction map gives the surjection

$$
h: \operatorname{Gal}\left(L^{u n r} / K^{u n r}\right) \rightarrow \operatorname{Gal}\left(S^{u n r} / K^{u n r}\right),
$$

where $\operatorname{Gal}\left(L^{u n r} / K^{u n r}\right) \cong \operatorname{Gal}\left(L^{u n r} / H^{u n r}\right) \times \mathbb{Z} / 2 \mathbb{Z}$ and $\operatorname{Gal}\left(S^{u n r} / K^{u n r}\right) \cong \mathbb{Z} / 4 \mathbb{Z}$. This is a contradiction, since h induces a surjection of the exact sequences

the first of which splits and the second does not.

2. Root numbers of elliptic curves

We keep the notation of Section 1. Suppose E has potential good reduction over K, σ_{E} is irreducible, and let $F \subset \bar{K}$ be a finite field extension of K. To calculate the root number $W(E / F)$ we will follow the approach of D . Rohrlich developed in [8]. Let π be a continuous complex finite-dimensional representation of $\operatorname{Gal}(\bar{K} / F)$ with real-valued character and let $\tau=\operatorname{Ind}_{K}^{F} \pi$ denote the representation of $\operatorname{Gal}(\bar{K} / K)$ induced by π. We will need the following formula ([8], p. 321):

$$
\begin{equation*}
W(E, \tau)=W\left(\sigma_{E} \otimes \tau\right)=W\left(\left(\operatorname{Res}_{K}^{F} \sigma_{E}\right) \otimes \pi\right) \frac{\operatorname{det} \tau(-1)}{\operatorname{det} \pi(-1)} \tag{2.1}
\end{equation*}
$$

Note that $\operatorname{Res}_{K}^{F} \sigma_{E}$ is the representation of $\mathcal{W}(\bar{K} / F)$ attached to E considered as an elliptic curve over F by extension of scalars, so that if $\pi=1_{F}$, then (2.1) implies

$$
W(E, \tau)=W(E / F) \operatorname{det} \tau(-1)
$$

Let ψ_{K} be an additive character of K. Since $\sigma=\operatorname{Ind}_{K}^{H} \phi$ (see Lemma 1.7 above), by the inductive properties of root numbers (see e.g., [8], p. 316, formula (1.4)) we have

$$
\begin{align*}
W(E / K) & =W(\sigma)=W\left(\operatorname{Ind}_{K}^{H} \phi, \psi_{K}\right)=W\left(\phi, \psi_{H}\right) W\left(\operatorname{Ind}_{K}^{H} 1_{H}, \psi_{K}\right)= \tag{2.2}\\
& =W\left(\phi, \psi_{H}\right) W\left(\chi_{H / K}, \psi_{K}\right)
\end{align*}
$$

where $\psi_{H}=\psi_{K} \circ \operatorname{Tr}_{H / K}$.
Lemma 2.1. Let $\tau=\operatorname{Ind}_{K}^{F} \pi$. If $H \subseteq F$, then

$$
W(E, \tau)=\left(\frac{-1}{\hat{K}}\right)^{\delta} \operatorname{det} \tau(-1), \quad \delta= \begin{cases}\frac{\operatorname{dim} \tau}{2}, & \text { if } H / K \text { ramified } \tag{2.3}\\ 0, & \text { if } H / K \text { unramified }\end{cases}
$$

where $\left(\frac{x}{\hat{K}}\right)$ is the quadratic residue symbol of $x \in \hat{K}$. In particular,

$$
W(E / F)=\left(\frac{-1}{\hat{K}}\right)^{\delta}, \quad \delta= \begin{cases}\frac{[F: K]}{2}, & \text { if } H / K \text { ramified } \\ 0, & \text { if } H / K \text { unramified } .\end{cases}
$$

Proof. The calculation is the same as on p. 321 in [8], which we repeat for the sake of completeness. Recall that $\sigma=\operatorname{Ind}_{K}^{H} \phi$. We have $\operatorname{Res}_{K}^{F} \sigma=\tilde{\phi} \oplus \tilde{\phi}^{-1}$ with $\tilde{\phi}=\operatorname{Res}_{H}^{F} \phi$, since σ is symplectic. Since π has real-valued character, using properties of root numbers we have

$$
W\left(\left(\operatorname{Res}_{K}^{F} \sigma\right) \otimes \pi\right)=\operatorname{det}(\pi \otimes \tilde{\phi})(-1)=\operatorname{det} \pi(-1) \phi(-1)^{[F: H] \operatorname{dim} \pi}
$$

where $\phi(-1)=\chi_{H / K}(-1)$ (by Lemma 1.3) and $\chi_{H / K}(-1)=\left(\frac{-1}{\hat{K}}\right)$ if H / K is ramified, $\chi_{H / K}(-1)=1$ if H / K is unramified. Hence (2.3) follows from (2.1).

For the rest of the paper we assume that $H \nsubseteq F$, i.e., $F \cap H=K$. Let $L=F H$, $\lambda=\operatorname{Res}_{H}^{L} \phi$, and let ψ_{F} be an additive character of F. Note that $\operatorname{Res}_{K}^{F} \sigma=\operatorname{Ind}_{F}^{L} \lambda$ and

$$
W(E / F)=W\left(\operatorname{Res}_{K}^{F} \sigma_{E}\right)=W\left(\operatorname{Res}_{K}^{F}\left(\sigma_{E} \otimes \omega^{1 / 2}\right)\right)=W\left(\operatorname{Res}_{K}^{F} \sigma\right),
$$

so that by (2.2) we have

$$
\begin{equation*}
W(E / F)=W\left(\lambda, \psi_{L}\right) W\left(\chi_{L / F}, \psi_{F}\right) \tag{2.4}
\end{equation*}
$$

where $\psi_{L}=\psi_{F} \circ \operatorname{Tr}_{L / F}$.
Lemma 2.2. Let ε denote the ramification index of a minimal extension of K over which E has good reduction. If $p \geq 5$, then

$$
W(E / F)=(-1)^{\alpha+[F: K]} W(E / K)^{[F: K]},
$$

where

$$
\alpha=\left\{\begin{array}{lr}
0, & \varepsilon \mid e(F / K) \\
1, & \text { otherwise }
\end{array}\right.
$$

Proof. It is known that if $p \geq 5$, then H is unramified over K and ϕ is tame, i.e., $a(\phi)=1$. Suppose $u_{H / K} \in \mathcal{O}_{H}^{\times}$satisfies $u_{H / K}^{2} \in \mathcal{O}_{K}$ and $H=K\left(u_{H / K}\right)$. Recall that $\sigma=\operatorname{Ind}_{K}^{H} \phi$ is symplectic and irreducible, hence $\left.\phi\right|_{K^{\times}}=\chi_{H / K}$ by Lemma 1.3. This implies $\left.\lambda\right|_{F \times}=\chi_{L / F}$, so that by Lemma 1.4 applied to ϕ, λ and (2.4), we have

$$
\begin{aligned}
W(E / K) & =(-1)^{a(\phi)} \phi\left(u_{H / K}\right) \\
W(E / F) & =(-1)^{a(\lambda)} \lambda\left(u_{H / K}\right)=(-1)^{a(\lambda)} \phi\left(u_{H / K}\right)^{[F: K]}
\end{aligned}
$$

Since $a(\phi)=1$, this implies $W(E / F)=(-1)^{a(\lambda)+[F: K]} W(E / K)^{[F: K]}$. Clearly, $a(\lambda) \leq 1$ and $a(\lambda)=0$ if and only if ε divides $e(F / K)$.

3. Case when H / K is unramified

We keep the notation of Section 1. In this section we assume that E has potential good reduction over K, σ_{E} is irreducible and wildly ramified, $p=3$, and H / K is unramified. Then $\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right)=\langle a\rangle$, where the order $|a|$ of a is 3 or 6 , and let ϕ be a onedimensional complex continuous representation of $\mathcal{W}(\bar{K} / H)$ such that $\operatorname{ker}\left(\left.\phi\right|_{I_{H}}\right)=I_{N}$, so that $\phi(a)$ is a primitive 3 rd root of unity if $|a|=3$ and $\phi(a)$ is a primitive 6th root of unity if $|a|=6$ (such ϕ exists because σ is induced by a character of H^{\times}and $\left.\operatorname{ker}\left(\left.\sigma_{E}\right|_{I_{K}}\right)=I_{N}\right)$.

Proposition 3.1. Assume that H is unramified over $K, \sigma=\operatorname{Ind}_{K}^{H} \phi$, and ϕ is wildly ramified. Suppose $u_{H / K} \in \mathcal{O}_{H}^{\times}$satisfies $u_{H / K}^{2} \in \mathcal{O}_{K}$ and $H=K\left(u_{H / K}\right)$. If F is a finite Galois extension of K and $\lambda=\operatorname{Res}_{K}^{F} \phi$, then

$$
\begin{equation*}
a(\lambda) \equiv(a(\phi)-1)[F: K]+1 \bmod 2 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
W(E / F)=(-1)^{1+(a(\phi)-1)[F: K]} \phi\left(u_{H / K}\right)^{[F: K]}=(-1)^{1+[F: K]} W(E / K)^{[F: K]} . \tag{3.2}
\end{equation*}
$$

Proof. Recall that $\sigma=\operatorname{Ind}_{K}^{H} \phi$ is symplectic and irreducible, hence $\left.\phi\right|_{K^{\times}}=\chi_{H / K}$ by Lemma 1.3. This implies $\left.\lambda\right|_{F^{\times}}=\chi_{L / F}$, so that by Lemma 1.4 applied to ϕ, λ and (2.4), we have

$$
\begin{aligned}
W(E / K) & =(-1)^{a(\phi)} \phi\left(u_{H / K}\right) \\
W(E / F) & =(-1)^{a(\lambda)} \lambda\left(u_{H / K}\right)=(-1)^{a(\lambda)} \phi\left(u_{H / K}\right)^{[F: K]}
\end{aligned}
$$

Thus (3.1) implies (3.2) and it is enough to prove (3.1). Assume now that $\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right) \cong$ $\mathbb{Z} / 3 \mathbb{Z}$, so that $N^{u n r}=M^{u n r}$. Denote $L=F H$. Note that by Lemma 1.9 we have $L^{u n r} \cap M^{u n r}=H^{u n r}$.

Let \tilde{F} be the maximal tamely ramified extension of K contained in F, let $\tilde{L}=\tilde{F} H$, and let λ_{t} be the restriction of ϕ to \tilde{L}. Denote $e_{t}=e(\tilde{L} / H)=e(\tilde{F} / K)$. By Lemma 1.2, since $a(\phi)>1$, we have $a\left(\lambda_{t}\right)=(a(\phi)-1) e_{t}+1$. Since $p=3$ and $f(F / K)$ is odd, we have $e_{t} \equiv[F: K] \bmod 2$, so that

$$
\begin{equation*}
a\left(\lambda_{t}\right) \equiv(a(\phi)-1)[F: K]+1 \bmod 2 . \tag{3.3}
\end{equation*}
$$

Assume now that F is a (totally ramified) Galois extension of \tilde{F} of degree 3. We will show that $a(\lambda) \equiv a\left(\lambda_{t}\right) \bmod 2$. Indeed, let $\tilde{T}=\tilde{L} M, T=L M$. Since $L \cap M=H$, we have the following diagram of field extensions:

Moreover, $\operatorname{Gal}(\tilde{T} / \tilde{F}) \cong S_{3}$ and λ_{t} is a faithful representation of $\operatorname{Gal}(\tilde{T} / \tilde{L})$. Let $G=$ $\operatorname{Gal}(T / \tilde{L}) \cong(\mathbb{Z} / 3 \mathbb{Z}) \times(\mathbb{Z} / 3 \mathbb{Z})$. Ramification groups of G have the form

$$
\begin{array}{r}
G=G_{0}=G_{1}=\cdots=G_{t} \supset G_{t+1}=\{1\} \quad \text { or } \\
G=G_{0}=G_{1}=\cdots=G_{t} \supset G_{t+1}=\cdots=G_{t+s} \supset G_{t+s+1}=\{1\}, \tag{3.4}
\end{array}
$$

where $G_{t+1} \cong \mathbb{Z} / 3 \mathbb{Z}$. It is easy to see that depending on the embedding of G_{t+1} into G we have either
(1) $a\left(\lambda_{t}\right)=a(\lambda)$, or
(2) $a\left(\lambda_{t}\right)=1+t+\frac{s}{3}, a(\lambda)=1+t+s$, or
(3) $a\left(\lambda_{t}\right)=1+t+\frac{s}{3}, a(\lambda)=1+t$.

Since $a\left(\lambda_{t}\right)$ is an integer, $a\left(\lambda_{t}\right) \equiv a(\lambda) \bmod 2$ in cases (1) and (2). Case (3) occurs when ramification groups of G have form (3.4) and G_{t+1} embeds diagonally into G. Assume that this is the case. Let a denote a generator of $\operatorname{Gal}(\tilde{T} / \tilde{L})$, let b denote a generator of $\operatorname{Gal}(L / \tilde{L})$. Then we can identify G with $\langle a\rangle \times\langle b\rangle$ via the natural isomorphism given by restrictions and without loss of generality we can assume that $G_{t+1}=\langle a b\rangle$. Let $c=\Phi_{\tilde{F}}$ be a Frobenius of \tilde{F}. Since $\operatorname{Gal}(\tilde{T} / \tilde{F}) \cong S_{3}$ and $\operatorname{Gal}(L / \tilde{F}) \cong \mathbb{Z} / 6 \mathbb{Z}$, we have $\operatorname{cac}^{-1}=a^{-1}$
and $c b c^{-1}=b$. Denote $\Gamma=\mathcal{W}_{\tilde{F}} / I_{T}$ and $\Lambda=\mathcal{W}_{\tilde{L}} / I_{T}$. Then

$$
\Gamma \cong(\langle a\rangle \times\langle b\rangle) \rtimes\langle c\rangle, \quad \Lambda \cong(\langle a\rangle \times\langle b\rangle) \times\left\langle c^{2}\right\rangle
$$

Let ψ denote a one-dimensional complex representation of Λ given by $\psi(a)=\xi$ for a primitive third root of unity $\xi, \psi(b)=\psi\left(c^{2}\right)=1$, let μ be a one-dimensional complex representation of Γ given by $\mu(a)=\mu(c)=1, \mu(b)=\xi$, and let $\rho=\operatorname{Ind}_{\Lambda}^{\Gamma} \psi=\operatorname{Ind}_{\tilde{F}}^{\tilde{L}} \psi$, so that

$$
\rho(a)=\left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array}\right), \quad \rho(b)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \rho(c)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then it is easy to check that on one hand, $a(\rho \otimes \mu)=2(t+1)+\frac{s}{3}$ and on the other hand,

$$
a(\rho \otimes \mu)=a\left(\operatorname{Ind}_{\tilde{F}}^{\tilde{L}}\left(\psi \otimes \operatorname{Res}_{\tilde{F}}^{\tilde{L}} \mu\right)\right)=2 a\left(\psi \otimes \operatorname{Res}_{\tilde{F}}^{\tilde{L}} \mu\right)
$$

which implies that s is even and hence $a\left(\lambda_{t}\right) \equiv a(\lambda) \bmod 2$ in case (3) as well.
Assume now that F is an arbitrary Galois extension of K. If F is tame over K, then (3.1) follows from (3.3). Otherwise, since $\operatorname{Gal}(F / \tilde{F})$ is a 3 -group, there exists a totally ramified Galois extension F^{\prime} of \tilde{F} contained in F such that F is a totally ramified Galois extension of F^{\prime} of degree 3. Note that $F^{\prime} \cap H=K$, because $F \cap H=K$, hence $\left[F^{\prime} H: F^{\prime}\right]=2$ and $e\left(F^{\prime} H / F^{\prime}\right)=1$. Also, $\left(F^{\prime} H\right)^{u n r} \cap M^{u n r}=H^{u n r}$, because $L^{u n r} \cap M^{u n r}=H^{u n r}$, so that $F^{\prime} H \cap M=H$ and $e\left(F^{\prime} M / F^{\prime} H\right)=3$. Finally, using the results above together with the induction on the degree of F over \tilde{F}, we get $a(\lambda) \equiv a\left(\lambda_{t}\right) \bmod 2$, which together with (3.3) proves (3.1) in the case when $\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$.

Assume now that $\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right) \cong \mathbb{Z} / 6 \mathbb{Z}$. Since $M^{u n r} \nsubseteq L^{u n r}$ by Lemma 1.9, λ is wildly ramified, hence $a\left(\lambda^{2}\right)=a(\lambda)$ and we can apply the results for the case $\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$ above. Thus

$$
a(\lambda) \equiv\left(a\left(\phi^{2}\right)-1\right)[F: K]+1 \bmod 2,
$$

where $a\left(\phi^{2}\right)=a(\phi)$, so that (3.1) follows.
Remark 3.2. Note that $\phi\left(u_{H / K}\right)$ does not depend on the choice of $u_{H / K}$. Indeed, recall that $\sigma=\operatorname{Ind}_{K}^{H} \phi$ is symplectic and irreducible, hence by Lemma 1.3 we have $\left.\phi\right|_{K^{\times}}=\chi_{H / K}$. Thus $\phi\left(u_{H / K}\right)$ does not depend on the choice of $u_{H / K}$ by Remark 1.5.

4. Case when H / K is Ramified

We keep the notation of Section 1. In this section we assume that E has potential good reduction over K, σ_{E} is irreducible and wildly ramified, $p=3$, and H / K is ramified. We distinguish two cases: $L=F H$ is unramified over F (equivalently, the ramification index $e(F / K)$ of F over K is even) and L is ramified over F (equivalently, $e(F / K)$ is odd). Proposition 4.1 below treats the first case and Theorem 4.3 below treats the second.
Proposition 4.1. Let H be ramified over K and let $\alpha \in \mathcal{O}_{H}$ satisfy $\alpha^{2} \in \mathcal{O}_{K}, \operatorname{val}_{H} \alpha=1$, and $H=K(\alpha)$. Let L be unramified over F (equivalently, $e(F / K)$ is even). Then

$$
\begin{equation*}
W(E / F)=(-1)^{a(\lambda)+\frac{e(F / K)}{2}} \phi(\alpha)^{[F: K]} \tag{4.1}
\end{equation*}
$$

Moreover, if F is Galois over K, then

$$
\begin{equation*}
a(\lambda) \equiv(a(\phi)-1) \frac{e(F / K)}{2}+1 \equiv \frac{e(F / K)}{2}+1 \bmod 2 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
W(E / F)=(-1)^{1+\frac{e(F / K)}{2} f\left(F / \mathbb{Q}_{3}\right)} \tag{4.3}
\end{equation*}
$$

Proof. Let ϖ_{F} be a uniformizer of F. Since $e(F / K)$ is even, we have $\alpha=u \varpi_{F}^{k}$ for $k=\frac{e(F / K)}{2}, u \in \mathcal{O}_{L}^{\times}, u^{2} \in \mathcal{O}_{F}^{\times}$, and $L=F(u)$. Recall that $\sigma=\operatorname{Ind}_{K}^{H} \phi$ is symplectic and irreducible, hence $\left.\phi\right|_{K^{\times}}=\chi_{H / K}$ by Lemma 1.3. This implies $\left.\lambda\right|_{F^{\times}}=\chi_{L / F}$, so that by Lemma 1.4 applied to λ and (2.4), we have

$$
W(E / F)=(-1)^{a(\lambda)} \cdot \lambda(u)
$$

Here $\lambda(u)=\lambda(\alpha) \lambda\left(\varpi_{F}\right)^{-k}$, where $\lambda\left(\varpi_{F}\right)=\chi_{L / F}\left(\varpi_{F}\right)=-1$ and (4.1) follows.
Let F_{t} be the maximal tamely ramified extension of K contained in F, let $L_{t}=F_{t} H$, and let λ_{t} be the restriction of ϕ to L_{t}. Since L_{t} is unramified over F_{t}, Proposition 3.1 implies

$$
a(\lambda) \equiv\left(a\left(\lambda_{t}\right)-1\right)\left[F: F_{t}\right]+1 \bmod 2
$$

Let $e_{t}=\frac{e\left(F_{t} / K\right)}{2}=e\left(L_{t} / H\right)$. Using Lemma 1.2 and taking into account that $a(\phi)$ is even (by Lemma 1.1), we have

$$
a\left(\lambda_{t}\right)=(a(\phi)-1) e_{t}+1 \equiv e_{t}+1 \bmod 2
$$

This implies (4.2).
Finally, from (4.1) and (4.2) we have

$$
W(E / F)=-\phi(\alpha)^{[F: K]}
$$

Also, $\phi\left(\alpha^{2}\right)=\chi_{H / K}(-1)=(-1)^{f\left(K / \mathbb{Q}_{3}\right)}$, since $\alpha^{2} \in K, \alpha \notin K$, and $\left.\phi\right|_{K^{\times}}=\chi_{H / K}$. Since [$F: K$] is even, we have

$$
\phi(\alpha)^{[F: K]}=\phi\left(\alpha^{2}\right)^{\frac{[F: K]}{2}}=(-1)^{f\left(K / \mathbb{Q}_{3} \frac{[F: K]}{2}\right.}=(-1)^{\frac{e(F / K)}{2} f\left(F / \mathbb{Q}_{3}\right)}
$$

and (4.3) follows.
Remark 4.2. Note that $\phi(\alpha)^{[F: K]}$ does not depend on the choice of α. Indeed, let $\beta \in \mathcal{O}_{H}$ satisfy $\beta^{2} \in \mathcal{O}_{K}, \operatorname{val}_{H} \alpha=1$, and $H=K(\beta)$. This implies that $\alpha=u \beta$ for $u \in \mathcal{O}_{K}^{\times}$. Since $[F: K]$ is even and $\left.\phi\right|_{K^{\times}}=\chi_{H / K}$ (by Lemma 1.3), we have

$$
\phi(u)^{[F: K]}=\phi\left(u^{2}\right)^{\frac{[F: K]}{2}}=\chi_{H / K}\left(u^{2}\right)^{\frac{[F: K]}{2}}=1,
$$

since $u^{2}=N_{H / K}(u)$ is in the kernel of $\chi_{H / K}$.

Theorem 4.3. Suppose $e(F / K)$ is odd and e_{t} is the ramification index of the maximal tamely ramified extension of K contained in F. Assume in addition that F is Galois over K. Then there exists $\alpha \in \mathcal{O}_{H}$ (that depends on E and does not depend on F) such that $H=K(\alpha), \alpha^{2} \in \mathcal{O}_{K}, \operatorname{val}_{H} \alpha=1$, and

$$
\begin{equation*}
W(E / F)=(-1)^{1+a f\left(F / \mathbb{Q}_{3}\right)} \eta^{[F: K]} \phi(\alpha)^{[F: K]} \tag{4.4}
\end{equation*}
$$

where η is given by Lemma 1.7 (it depends on E and does not depend on F) and

$$
a=\left\{\begin{array}{ll}
\frac{e_{t}-1}{2}, & \text { if } e_{t} \equiv 1 \bmod 3 \\
\frac{e_{t}+1}{2}, & \text { if } e_{t} \equiv 2 \bmod 3
\end{array}= \begin{cases}\text { odd }, & \text { if } e_{t} \equiv 5 \text { or } 7 \bmod 12 \\
\text { even, } & \text { if } e_{t} \equiv 1 \text { or } 11 \bmod 12 .\end{cases}\right.
$$

In particular,

$$
W(E / K)=-\eta \phi(\alpha)
$$

and

$$
W(E / F)=(-1)^{1+[F: K]+a f\left(F / \mathbb{Q}_{3}\right)} W(E / K)^{[F: K]} .
$$

Proof. Clearly, it is enough to prove (4.4). For that we will choose a special ψ_{F} and calculate separately $W\left(\chi_{L / F}, \psi_{F}\right)$ and $W\left(\lambda, \psi_{L}\right)$ in (2.4).

The root number $W\left(\chi_{L / F}, \psi_{F}\right)$. Let g be a generator of $\operatorname{Gal}(M / H)$ (recall that $M=K(E[2])$ and $\operatorname{Gal}(M / H) \cong \mathbb{Z} / 3 \mathbb{Z})$ and let A, B, C denote the x-coordinates of the 2-torsion points on E such that $g(A)=B, g(B)=C$. Let $\Delta^{1 / 2}$ denote a fixed quadratic root of Δ satisfying

$$
\Delta^{1 / 2}=(A-B)(B-C)(C-A)
$$

let $\Delta^{1 / 4}$ denote a fixed quadratic root of $\Delta^{1 / 2}$, and let $N=K\left(E[2], \Delta^{1 / 4}\right)$ with our choice of $\Delta^{1 / 4}$. We can extend g to an element of order 3 of $\operatorname{Gal}(N / H)$, then consider g as an element of $\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right)$ via the natural isomorphism $\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right) \cong \operatorname{Gal}(N / H)$ given by the restriction, and finally regard g as an element of $\mathcal{W}(\bar{K} / H) / I_{N}$ via the natural embedding $\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right) \hookrightarrow \mathcal{W}(\bar{K} / H) / I_{N}$. In particular, $g\left(\Delta^{1 / 4}\right)=\Delta^{1 / 4}$. Let ψ_{K} denote a character of K whose restriction to \mathcal{O}_{K} is given by

$$
\psi_{K}(x)=\phi(g)^{-\operatorname{Tr}_{\hat{K} / \mathbb{F}_{3}}(\bar{x})}, \quad x \in \mathcal{O}_{K},
$$

where \bar{x} denotes the image of x in \hat{K} under the quotient map.
Let $\sigma_{F}=\operatorname{Res}_{K}^{F} \sigma=\operatorname{Ind}_{F}^{L} \lambda$, so that σ_{F} is the analogue of σ for the elliptic curve over F obtained from E by extension of scalars. Denote $P=L M$ and $T=L N$. By Lemma 1.9, the natural restriction map

$$
\mu: \operatorname{Gal}\left(T^{u n r} / L^{u n r}\right) \longrightarrow \operatorname{Gal}\left(N^{u n r} / H^{u n r}\right)
$$

is an isomorphism. Hence σ_{F} is irreducible by Lemma 1.3. Let $\tilde{g} \in \operatorname{Gal}\left(T^{u n r} / L^{u n r}\right)$ be the preimage of g under μ. We consider \tilde{g} as an element of $\mathcal{W}(\bar{K} / L) / I_{T}$ via the natural embedding $\operatorname{Gal}\left(T^{u n r} / L^{u n r}\right) \hookrightarrow \mathcal{W}(\bar{K} / L) / I_{T}$. Thus $T=F\left(E[2], \Delta^{1 / 4}\right)$ with the above
choice of $\Delta^{1 / 4}, \tilde{g}$ fixes each element of $F^{u n r}, \tilde{g}(A)=B, \tilde{g}(B)=C, \tilde{g}\left(\Delta^{1 / 4}\right)=\Delta^{1 / 4}$, and $\lambda(\tilde{g})=\phi(g)$. Let ψ denote a character of F whose restriction to \mathcal{O}_{F} is given by

$$
\psi(x)=\phi(g)^{-\operatorname{Tr}_{\hat{F} / \mathbb{F}_{3}}(\bar{x})}, \quad x \in \mathcal{O}_{F},
$$

and let ψ_{F} be a character of F given by

$$
\psi_{F}(x)=\psi\left(e_{t} x\right)
$$

(Recall that e_{t} is the ramification index of the maximal tamely ramified extension F_{t} of K contained in F.) Let $\Phi_{T} \in \mathcal{W}(\bar{K} / T)$ be a Frobenius. Then by a property of root numbers (see e.g., [7], Proposition on p. 143) we have

$$
\begin{equation*}
W\left(\chi_{L / F}, \psi_{F}\right)=\chi_{L / F}\left(e_{t}\right) W\left(\chi_{L / F}, \psi\right) \tag{4.5}
\end{equation*}
$$

On the other hand, it follows from [4] that

$$
\begin{equation*}
W\left(\chi_{L / F}, \psi\right)=-\lambda\left(\Phi_{T}\right) \tag{4.6}
\end{equation*}
$$

Indeed, denote

$$
G=\sum_{u \in(\hat{F})^{\times}}\left(\frac{u}{\hat{F}}\right) \phi(g)^{-\operatorname{Tr}_{\hat{F} / \mathbb{F}_{3}}(u)},
$$

where $\left(\frac{u}{\hat{F}}\right)$ is the quadratic residue symbol of $u \in \hat{F}$. Using the definition of $W\left(\chi_{L / F}, \psi\right)$, one can check that

$$
\begin{equation*}
W\left(\chi_{L / F}, \psi\right)=C_{1} \cdot G \tag{4.7}
\end{equation*}
$$

where C_{1} is a real positive number. It follows from Proposition 5.7 on p. 618 in [4] that

$$
\begin{equation*}
G=-C_{2} \cdot \lambda\left(\Phi_{T}\right), \tag{4.8}
\end{equation*}
$$

where C_{2} is a real positive number (note that in [4] instead of λ the author uses a character of L^{\times}that induces $\left.\operatorname{Res}_{K}^{F} \sigma_{E}\right)$. Since both $W\left(\chi_{L / F}, \psi\right)$ and $\lambda\left(\Phi_{T}\right)$ are of absolute value 1, (4.7) and (4.8) imply (4.6). Finally, (4.5) and (4.6) give

$$
W\left(\chi_{L / F}, \psi_{F}\right)=-\chi_{L / F}\left(e_{t}\right) \lambda\left(\Phi_{T}\right)
$$

Note that since $\operatorname{Gal}\left(\bar{K} / T^{u n r}\right)$ is in the kernel of $\lambda, \lambda\left(\Phi_{T}\right)$ does not depend on the choice of Φ_{T}. Let $f=f(F / K)$. Note that $f=f(T / N)$, which follows from the assumptions that $e(H / K)=2, e(F / K)$ is odd, and ϕ is wildly ramified together with Lemma 1.9. Let $\Phi_{N} \in \operatorname{Gal}(\bar{K} / N)$ be a fixed Frobenius. There exists $d \in I_{N}$ such that $\Phi_{T}=\Phi_{N}^{f} d$, hence $\lambda\left(\Phi_{T}\right)=\phi\left(\Phi_{N}\right)^{f}=\eta^{f}$ and

$$
\begin{equation*}
W\left(\chi_{L / F}, \psi_{F}\right)=-\chi_{L / F}\left(e_{t}\right) \eta^{f} \tag{4.9}
\end{equation*}
$$

The root number $W\left(\lambda, \psi_{L}\right)$. Given $L_{t}=F_{t} H$ we define characters ψ_{H} and ψ_{L} of H and L, respectively, via

$$
\psi_{H}=\psi_{K} \circ \operatorname{Tr}_{H / K}, \quad \psi_{L}=\psi_{F} \circ \operatorname{Tr}_{L / F}
$$

Note that

$$
\begin{aligned}
& \psi_{F}(x)=\phi(g)^{-e_{t} \operatorname{Tr}_{\hat{F} / \mathbb{F}_{3}}(\bar{x})}, \quad x \in \mathcal{O}_{F}, \\
& \psi_{H}(x)=\phi(g)^{-2 \operatorname{Tr}_{\hat{H} / \mathbb{F}_{3}}(\bar{x})}, \quad x \in \mathcal{O}_{H}, \\
& \psi_{L}(x)=\phi(g)^{-2 e_{t} \operatorname{Tr}_{\hat{L} / \mathbb{F}_{3}}(\bar{x})}, \quad x \in \mathcal{O}_{L},
\end{aligned}
$$

so that $n\left(\psi_{K}\right)=n\left(\psi_{F}\right)=n\left(\psi_{H}\right)=n\left(\psi_{L}\right)=-1$ and

$$
\begin{aligned}
\psi_{L}(x) & =\psi_{H} \circ \operatorname{Tr}_{L_{t} / H}(x),
\end{aligned} \quad x \in \mathcal{O}_{L_{t}}, ~ 子, ~\left(x \in \mathcal{O}_{F_{t}} .\right.
$$

Clearly, Φ_{N} is a Frobenius of both $\operatorname{Gal}(\bar{K} / H)$ and $\operatorname{Gal}(\bar{K} / K)$. We fix uniformizers ϖ_{H} and ϖ_{K} of H and K, respectively, corresponding to Φ_{N} via the local class field theory. Analogously, we fix uniformizers ϖ_{L} and ϖ_{F} of L and F, respectively, corresponding to Φ_{T} via the local class field theory. In particular, we have

$$
\varpi_{K}=N_{H / K} \varpi_{H}, \quad \varpi_{F}=N_{L / F} \varpi_{L}
$$

Let $\tilde{\theta}=\operatorname{Res}_{H}^{L} \theta$, where θ is defined by Lemma 1.8. Then

$$
\tilde{\theta}\left(\varpi_{L}\right)=\theta\left(\varpi_{H}\right)^{f}=\gamma^{f}, \quad f=f(F / K)=f(L / H),
$$

and

$$
\tilde{\theta}\left(\varpi_{L}\right)^{2}=\gamma^{2 f}=(-1)^{f\left(L / \mathbb{Q}_{3}\right)} .
$$

Let $\alpha \in \mathcal{O}_{H}$ satisfy $H=K(\alpha), \alpha^{2} \in \mathcal{O}_{K}$, and $\operatorname{val}_{H} \alpha=1$, and let $e=e(F / K)$. By Lemma 1.9, λ is not tame and hence $a(\lambda)$ and $a(\phi)$ are even by Lemma 1.1. We denote $a(\lambda)=\kappa, a(\phi)=m$. To calculate $W\left(\lambda, \psi_{L}\right)$ we follow Rohrlich's approach, namely make use of the Fröhlich-Queyrut's formula as follows. Note that $L=F(\alpha)$. Since θ was chosen so that $\left.(\phi \otimes \theta)\right|_{K^{\times}}=1_{K}$, we have $\left.(\lambda \otimes \tilde{\theta})\right|_{F^{\times}}=1_{F}$ and hence

$$
W\left(\lambda \otimes \tilde{\theta}, \psi_{L}\right)=\lambda(\alpha) \tilde{\theta}(\alpha)=\phi(\alpha)^{[F: K]} \cdot \theta(\alpha)^{[F: K]}
$$

where the first equality follows from Theorem 3 on p. 130 in [2]. On the other hand, since $a(\tilde{\theta})=1$ and $n\left(\psi_{L}\right)=-1$, by the results on p. 546 in [1], we have

$$
W\left(\lambda \otimes \tilde{\theta}, \psi_{L}\right)=\tilde{\theta}(z)^{-1} W\left(\lambda, \psi_{L}\right)
$$

where $z \in L^{\times}$satisfies $\operatorname{val}_{L}(z)=1-\kappa$ and

$$
\begin{equation*}
\lambda(1+b)=\psi_{L}(z b), \quad \text { for any } b \in L \text { with } \operatorname{val}_{L}(b) \geq \kappa / 2 \tag{4.10}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
W\left(\lambda, \psi_{L}\right)=\phi(\alpha)^{[F: K]} \cdot \theta(\alpha)^{[F: K]} \cdot \tilde{\theta}(z) \tag{4.11}
\end{equation*}
$$

Let $y \in H^{\times}$with $\operatorname{val}_{H}(y)=1-m$ satisfy

$$
\begin{equation*}
\phi(1+a)=\psi_{H}(y a), \quad \text { for any } a \in H \text { with } \operatorname{val}_{H}(a) \geq m / 2 \tag{4.12}
\end{equation*}
$$

Lemma 4.4. We have

$$
\begin{equation*}
\tilde{\theta}(z)=\theta(y)^{e_{t} f} \tag{4.13}
\end{equation*}
$$

Proof. See Section 5 below.
Let $n=a(\phi) / 2=m / 2$. Note that $\phi^{-1}\left(1+\alpha \varpi_{K}^{n-1} b\right)$ is an additive character in $b \in \mathcal{O}_{K}$ and hence there exists $u \in K^{\times}$such that

$$
\phi^{-1}\left(1+\alpha \varpi_{K}^{n-1} b\right)=\psi_{K}(u b), \quad \forall b \in \mathcal{O}_{K} .
$$

Moreover, $\operatorname{val}_{K} u=0$, so that $u \in \mathcal{O}_{K}^{\times}$. Thus there exists $\alpha \in H$ depending on ϕ, ψ_{K}, and our choice of ϖ_{K} such that $H=K(\alpha), \alpha^{2} \in \mathcal{O}_{K}, \operatorname{val}_{H} \alpha=1$, and

$$
\begin{equation*}
\phi^{-1}\left(1+\alpha \varpi_{K}^{n-1} b\right)=\psi_{K}(b), \quad \forall b \in \mathcal{O}_{K} . \tag{4.14}
\end{equation*}
$$

In particular, it follows from our choices of ψ_{K} and ϖ_{K} that α in (4.14) depends on E and does not depend on F. Taking into account that $\operatorname{val}_{H}\left(\alpha \varpi_{K}^{n-1} b\right) \geq n$ for any $b \in \mathcal{O}_{K}$ and using (4.12) we get

$$
\psi_{H}(b)=\phi\left(1+\alpha \varpi_{K}^{n-1} b\right)=\psi_{H}\left(y \alpha \varpi_{K}^{n-1} b\right) .
$$

Hence $y \alpha \varpi_{K}^{n-1} \equiv 1 \bmod \mathfrak{p}_{H}\left(\right.$ since $\left.n\left(\psi_{H}\right)=-1\right)$ and $\theta(y)=\theta(\alpha)^{-1}$. This together with (4.11) and (4.13) yields

$$
\begin{equation*}
W\left(\lambda, \psi_{L}\right)=\phi(\alpha)^{[F: K]} \cdot \theta(\alpha)^{[F: K]-e_{t} f} \tag{4.15}
\end{equation*}
$$

We now prove (4.4). It follows from (2.4), (4.9), and (4.15) that

$$
\begin{equation*}
W(E / F)=-\eta^{f} \chi_{L / F}\left(e_{t}\right) \phi(\alpha)^{[F: K]} \theta(\alpha)^{[F: K]-e_{t} f} . \tag{4.16}
\end{equation*}
$$

Let $\alpha=u \varpi_{H}$ for some $u \in \mathcal{O}_{H}^{\times}$. Note that $\theta\left(\varpi_{H}\right)=\gamma,\left.\theta\right|_{\mathcal{O}_{H}^{\times}}$has order 2 , and $[F: K]-e_{t} f$ is even, so that

$$
\begin{equation*}
\theta(\alpha)^{[F: K]-e_{t} f}=\gamma^{[F: K]-e_{t} f} . \tag{4.17}
\end{equation*}
$$

Assume $f\left(F / \mathbb{Q}_{3}\right)$ is even. Then $\chi_{L / F}\left(e_{t}\right)=1$. Also, using Lemmas 1.7 and 1.8 , it is easy to check that $\gamma^{[F: K]-e_{t} f}=1$ and $\eta^{f}=\eta^{[F: K]}$, so that (4.4) follow from (4.16) together with (4.17).

Assume $f\left(F / \mathbb{Q}_{3}\right)$ is odd, so that both $f(F / K)$ and $f\left(K / \mathbb{Q}_{3}\right)$ are odd. Then $\eta^{2}=-1$ and we choose $\gamma=\eta$, which gives

$$
\eta^{f+[F: K]-e_{t} f}=(-1)^{\frac{e_{t}-1}{2}} \eta^{[F: K]} .
$$

Calculating $(-1)^{\frac{e_{t}-1}{2}}$ and $\chi_{L / F}\left(e_{t}\right)=\left(\frac{e_{t}}{3}\right)$ explicitly, we get (4.4).

5. Proof of Lemma 4.4

In this section we keep the notation and assumptions of the previous section. We consider three cases: 1) F is tamely ramified over K (equivalently, L is tamely ramified over H), 2) F is a totally ramified Galois extension of K of degree 3 (hence, L is a totally ramified Galois extension of H of degree 3), and 3) the general case.
L is tamely ramified over H. Note that in this case we have $L=L_{t}$ and hence $\psi_{L}=\psi_{H} \circ \operatorname{Tr}_{L / H}$ on \mathcal{O}_{L}. Since by assumption ϕ is not tame, by Lemma 1.2 we have $\kappa=(m-1) e_{t}+1$. This implies

$$
\operatorname{val}_{L} y=\operatorname{val}_{L} z=(1-m) e_{t} .
$$

For any $b \in L$ with $\operatorname{val}_{L}(b) \geq(m-1) e_{t}$ using (4.10) we have

$$
\begin{equation*}
\psi_{L}(z b)=\lambda(1+b)=\phi\left(\mathrm{N}_{L / H}(1+b)\right)=\phi\left(1+\operatorname{Tr}_{L / H}(b)+b^{\prime}\right), \quad b^{\prime} \in H \tag{5.1}
\end{equation*}
$$

where $\operatorname{val}_{L}\left(\operatorname{Tr}_{L / H}(b)\right) \geq m e_{t} / 2$ and $\operatorname{val}_{L}\left(b^{\prime}\right) \geq m e_{t}$. Thus

$$
\operatorname{val}_{H}\left(\operatorname{Tr}_{L / H}(b)\right) \geq m / 2, \quad \operatorname{val}_{H}\left(b^{\prime}\right) \geq a(\phi), \text { and } y b \in \mathcal{O}_{L},
$$

hence by (4.12)

$$
\begin{equation*}
\phi\left(1+\operatorname{Tr}_{L / H}(b)+b^{\prime}\right)=\psi_{H}\left(y \operatorname{Tr}_{L / H}(b)\right)=\psi_{H}\left(\operatorname{Tr}_{L / H}(y b)\right)=\psi_{L}(y b) . \tag{5.2}
\end{equation*}
$$

Therefore, comparing (5.1) and (5.2) we get $\psi_{L}(z b)=\psi_{L}(y b)$ or, equivalently,

$$
\psi_{L}((z-y) b)=1
$$

Since the last equation holds for all $b \in \mathfrak{p}_{L}^{(m-1) e_{t}}$, we conclude that

$$
\begin{equation*}
\operatorname{val}_{L}\left((z-y) \varpi_{L}^{(m-1) e_{t}}\right) \geq 1 \tag{5.3}
\end{equation*}
$$

Let $y=u \varpi_{L}^{\operatorname{val}_{L} y}, z=v \varpi_{L}^{\operatorname{val}_{L} y}$ for $u, v \in \mathcal{O}_{L}^{\times}$. Then (5.3) implies $u \equiv v \bmod \mathfrak{p}_{L}$ and hence

$$
\begin{equation*}
\tilde{\theta}(z)=\tilde{\theta}\left(\varpi_{L}\right)^{\operatorname{val}_{L} y} \cdot \tilde{\theta}(u)=\tilde{\theta}(y)=\theta(y)^{[L: H]} . \tag{5.4}
\end{equation*}
$$

L is a totally ramified Galois extension of H of degree 3 . Let $T=L N$. We first study the relation between $a(\phi)$ and $a(\lambda)$. In particular, we will show that $a(\lambda) \geq a(\phi)$. For that we analyze the higher ramification groups of $\operatorname{Gal}\left(T^{u n r} / H^{u n r}\right)$. Denote

$$
\begin{aligned}
P & =\operatorname{Gal}\left(N^{u n r} / H^{u n r}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \\
Q & =\operatorname{Gal}\left(L^{u n r} / H^{u n r}\right) \cong \mathbb{Z} / 3 \mathbb{Z}, \\
G & =\operatorname{Gal}\left(T^{u n r} / H^{u n r}\right), \\
C & =\operatorname{Gal}\left(T^{u n r} / L^{u n r}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}
\end{aligned}
$$

(here we used Lemma 1.9). The higher ramification groups of P are

$$
P=P_{0} \supset P_{1}=\cdots=P_{n} \supset P_{n+1}=\{1\},
$$

where $P_{1} \cong \mathbb{Z} / 3 \mathbb{Z}, n$ is even (as follows from the results on the action of inertia groups on higher ramification groups), $m=1+n / 2$, and since m is even, we have $n / 2$ is odd. Let $R=\operatorname{Gal}\left(L^{u n r} / K^{u n r}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. Then the higher ramification groups of R are

$$
R=R_{0} \supset R_{1}=\cdots=R_{\alpha} \supset R_{\alpha+1}=\{1\},
$$

where $R_{1} \cong \mathbb{Z} / 3 \mathbb{Z}$ and α is even. Then the higher ramification groups Q_{i} of Q have the form $Q_{i}=Q \cap R_{i}$, so that

$$
Q=Q_{0}=\cdots=Q_{\alpha} \supset Q_{\alpha+1}=\{1\}
$$

where α is even. Finally, the higher ramification groups of C are

$$
C=C_{0} \supset C_{1}=\cdots=C_{\delta} \supset C_{\delta+1}=\{1\},
$$

where $C_{1} \cong \mathbb{Z} / 3 \mathbb{Z}, \delta$ is even, $\kappa=1+\delta / 2$, and since κ is even, we have $\delta / 2$ is odd. Since $L^{u n r} \cap N^{u n r}=H^{u n r}$, the restriction maps give the isomorphism

$$
\mu: G \stackrel{\cong}{\cong} \operatorname{Gal}\left(N^{u n r} / H^{u n r}\right) \times \operatorname{Gal}\left(L^{u n r} / H^{u n r}\right),
$$

so that $G \cong \mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 3 \mathbb{Z})^{2}$ is an abelian group of order 18 . As a result, the higher ramification groups of G can have two forms:

$$
\begin{equation*}
G=G_{0} \supset G_{1}=\cdots=G_{t} \supset G_{t+1}=\{1\} \tag{5.5}
\end{equation*}
$$

where $G_{1} \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, t$ is even, or

$$
\begin{equation*}
G=G_{0} \supset G_{1}=\cdots=G_{t} \supset G_{t+1}=\cdots=G_{t+s} \supset G_{t+s+1}=\{1\} \tag{5.6}
\end{equation*}
$$

where $G_{1} \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, G_{t+1} \cong \mathbb{Z} / 3 \mathbb{Z}, t$ is even, and s is divisible by 6 . We will show, in particular, that (5.5) does not occur.

Assume that (5.5) holds. By comparing the higher ramification groups of G with the higher ramification groups of its quotients Q and P, it is not hard to see that in this case we have $\alpha=t / 2, n=t$, which is a contradiction, since by above α is even and $n / 2$ is odd.

Assume that (5.6) holds. There are three sub-cases depending on the embedding of $G_{t+1} \cong \mathbb{Z} / 3 \mathbb{Z}$ into $G_{t} \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. Let $S \subseteq N$ be a quadratic extension of H such that $S^{u n r} / H^{u n r}$ is the maximal tamely ramified subextension of $N^{u n r} / H^{u n r}$. Again, as in the previous paragraph, by comparing the higher ramification groups of G with the higher ramification groups of its subgroup C and quotients Q and P, it is not hard to see that

$$
\begin{array}{lllc}
\alpha=\frac{t}{2}+\frac{s}{6}, & n=t, & \delta=t, & \text { if } \mu\left(G_{t+1}\right)=\operatorname{Gal}\left(L^{u n r} / H^{u n r}\right), \\
\alpha=\frac{t}{2}, & n=t+\frac{s}{3}, & \delta=t+s, & \text { if } \mu\left(G_{t+1}\right)=\operatorname{Gal}\left(N^{u n r} / S^{u n r}\right), \tag{5.7}\\
\alpha=\frac{t}{2}+\frac{s}{6}, & n=t+\frac{s}{3}, & \delta=t, & \text { otherwise. }
\end{array}
$$

Thus, in the third sub-case in (5.7) we get $\alpha=n / 2$, which is a contradiction, since by above α is even and $n / 2$ is odd. Hence $\mu\left(G_{t+1}\right)=\operatorname{Gal}\left(L^{u n r} / H^{u n r}\right)$ or $\mu\left(G_{t+1}\right)=\operatorname{Gal}\left(N^{u n r} / S^{u n r}\right)$ and $a(\lambda) \geq a(\phi)$.

Remark 5.1. It turns out that both first two cases in (5.7) can occur. Explicit examples of elliptic curves over $K=\mathbb{Q}_{3}$ can be found in [3].

Note that since L is wildly ramified over H, by our choice $\psi_{H}=\psi_{L}$ on \mathcal{O}_{H}. Let $x \in L$ with $\operatorname{val}_{L}(x) \geq \kappa-1$. Then

$$
\begin{equation*}
\psi_{L}(z x)=\lambda(1+x)=\phi\left(\mathrm{N}_{L / H}(1+x)\right) . \tag{5.8}
\end{equation*}
$$

By Lemmas 4 and 5 on p. 83 in [9] we have

$$
\begin{align*}
\mathrm{N}_{L / H}(1+x) & \equiv 1+\operatorname{Tr}_{L / H}(x)+\mathrm{N}_{L / H}(x) & \bmod \mathfrak{p}_{H}^{l_{1}}, l_{1} & =\left[\frac{2}{3}(\kappa+\alpha)\right] \tag{5.9}\\
\operatorname{Tr}_{L / H}(x) & \equiv 0 \bmod \mathfrak{p}_{H}^{l_{2}}, & l_{2} & =\left[\frac{\kappa+2 \alpha+1}{3}\right]
\end{align*}
$$

(Here, for $r \in \mathbb{R}$ the symbol $[r]$ denotes the largest integer $\leq r$.) In both cases when $\mu\left(G_{t+1}\right)=\operatorname{Gal}\left(L^{u n r} / H^{u n r}\right)$ or $\mu\left(G_{t+1}\right)=\operatorname{Gal}\left(N^{u n r} / S^{u n r}\right)$, using formulas (5.7) and $a(\lambda)=$ $\kappa=1+\delta / 2, a(\phi)=m=1+n / 2$, it is easy to check that $l_{1} \geq m$. Let

$$
x=a \varpi_{L}^{\kappa-1}, z=w \varpi_{L}^{1-\kappa}, y=u \varpi_{L}^{3(1-m)}, \quad a \in \mathcal{O}_{L}, w, u \in \mathcal{O}_{L}^{\times} .
$$

Assume that $\mu\left(G_{t+1}\right)=\operatorname{Gal}\left(L^{u n r} / H^{u n r}\right)$. In this case we have $\kappa=m, l_{2} \geq m$, and $\operatorname{val}_{H} \mathrm{~N}_{L / H}(x) \geq \kappa-1=m-1 \geq m / 2$. Thus using (5.8) and (5.9) we get

$$
\begin{equation*}
\psi_{L}(z x)=\phi\left(1+\mathrm{N}_{L / H}(x)\right)=\psi_{L}\left(y \mathrm{~N}_{L / H}(x)\right) \tag{5.10}
\end{equation*}
$$

Note that the group $\operatorname{Gal}(L / H)$ coincides with its α-th ramification subgroup, where $\alpha \geq 1$, so that $g\left(\varpi_{L}\right) \varpi_{L}^{-1} \equiv 1 \bmod \mathfrak{p}_{L}$ for any $g \in \operatorname{Gal}(L / H)$. Then easy calculation shows that

$$
y \mathrm{~N}_{L / H}(x)=y \mathrm{~N}_{L / H}(a) \mathrm{N}_{L / H}\left(\varpi_{L}\right)^{\kappa-1} \equiv u a^{3} \bmod \mathfrak{p}_{L} .
$$

Thus, (5.10) implies $a w-u a^{3} \in \operatorname{ker} \psi_{L}$. Let $f=f\left(L / \mathbb{Q}_{3}\right)$. We have $u^{3^{f}} \equiv u \bmod \mathfrak{p}_{L}$ and

$$
u a^{3} \equiv u^{3^{f}} a^{3}-u^{3^{f-1}} a+u^{3^{f-1}} a \equiv u^{3^{f-1}} a \bmod \operatorname{ker} \psi_{L}
$$

since it follows from the definition of ψ_{L} that $u^{3^{f}} a^{3}-u^{3^{f-1}} a \in \operatorname{ker} \psi_{L}$. This implies $a \cdot\left(w-u^{3 f-1}\right) \in \operatorname{ker} \psi_{L}$ for all $a \in \mathcal{O}_{L}$ and hence $w \equiv u^{3^{f-1}} \bmod \mathfrak{p}_{L}\left(\right.$ because $\left.n\left(\psi_{L}\right)=-1\right)$. Since the restriction of $\tilde{\theta}$ to \mathcal{O}_{L}^{\times}has order 2, we have

$$
\tilde{\theta}(y)=\tilde{\theta}(u) \tilde{\theta}\left(\varpi_{L}\right)^{3(1-\kappa)}=\tilde{\theta}(w) \tilde{\theta}\left(\varpi_{L}\right)^{3(1-\kappa)}=\tilde{\theta}(w)^{3} \tilde{\theta}\left(\varpi_{L}\right)^{3(1-\kappa)}=\tilde{\theta}(z)^{3}
$$

On the other hand, $\tilde{\theta}(y)=\theta(y)^{3}$, since $y \in H^{\times}$. Finally, recall that $\theta(\beta)^{4}=1$ for any $\beta \in \mathcal{W}(\bar{K} / H)$, hence

$$
\begin{equation*}
\tilde{\theta}(z)=\theta(y) \tag{5.11}
\end{equation*}
$$

Assume now that $\mu\left(G_{t+1}\right)=\operatorname{Gal}\left(N^{u n r} / S^{u n r}\right)$. In this case $l_{2}=m-1 \geq m / 2$ and $\operatorname{val}_{H} \mathrm{~N}_{L / H}(x) \geq \kappa-1 \geq m$. Hence, using (5.8) and (5.9) we get

$$
\begin{equation*}
\psi_{L}(z x)=\phi\left(1+\operatorname{Tr}_{L / H}(x)\right)=\psi_{L}\left(y \operatorname{Tr}_{L / H}(x)\right) \tag{5.12}
\end{equation*}
$$

Note that without loss of generality we can assume $w \in \mathcal{O}_{H}^{\times}$. Indeed, since L is totally ramified over H, there exists $w_{0} \in \mathcal{O}_{H}^{\times}$such that $w-w_{0} \in \mathfrak{p}_{L}$. Then $\psi_{L}(z x)=$ $\psi_{L}\left(w_{0} \varpi_{L}^{1-\kappa} x\right)$ (because $\left.n\left(\psi_{L}\right)=-1\right)$ and $\tilde{\theta}(z)=\tilde{\theta}\left(w_{0} \varpi_{L}^{1-\kappa}\right)$ (because $a(\tilde{\theta})=1$). For any $a \in \mathcal{O}_{H}$ equation (5.12) yields

$$
a \cdot\left(w-y \operatorname{Tr}_{L / H}\left(\varpi_{L}^{\kappa-1}\right)\right) \in \mathcal{O}_{H} \cap \operatorname{ker} \psi_{L}
$$

and hence $w \equiv y \operatorname{Tr}_{L / H}\left(\varpi_{L}^{\kappa-1}\right) \bmod \mathfrak{p}_{H}$. Our next step is to calculate $y \operatorname{Tr}_{L / H}\left(\varpi_{L}^{\kappa-1}\right)$. Denote $\varpi_{L}=\varpi, \kappa-1=j$, and let g be a generator of $\operatorname{Gal}(L / H)$, so that

$$
\operatorname{Tr}_{L / H}\left(\varpi^{j}\right)=\varpi^{j}+g(\varpi)^{j}+g^{2}(\varpi)^{j} .
$$

Note that $\operatorname{val}_{L}(y)+j+2 \alpha=0$. We have $g(\varpi)=\varpi\left(1+c \varpi^{\alpha}\right)$ for some $c \in \mathcal{O}_{L}^{\times}$and $g(c) \equiv c \bmod \mathfrak{p}_{L}^{\alpha+1}$. Using this, it is easy to check that

$$
\begin{align*}
\operatorname{Tr}_{L / H}\left(\varpi^{j}\right) & =\varpi^{j}+\varpi^{j}\left(1+c \varpi^{\alpha}\right)^{j}+g(\varpi)^{j}\left(1+g(c) g(\varpi)^{\alpha}\right)^{j} \equiv \tag{5.13}\\
& \equiv \varpi^{j}\left(3+3 c j \varpi^{\alpha}+c^{2} j(\alpha+j) \varpi^{2 \alpha}\right) \bmod \mathfrak{p}_{L}^{j+2 \alpha+1}
\end{align*}
$$

Let $b=e\left(H / \mathbb{Q}_{3}\right)$. Then $e\left(N / \mathbb{Q}_{3}\right)=6 b$ and $e\left(L / \mathbb{Q}_{3}\right)=3 b$. It is known (see e.g., [9], p. 72, Exc. 3c) that

$$
n \leq \frac{1}{2} e\left(N / \mathbb{Q}_{3}\right) \quad \text { and } \quad \alpha \leq \frac{1}{2} e\left(L / \mathbb{Q}_{3}\right),
$$

which implies $t+\frac{s}{3} \leq 3 b$ and since $s \neq 0$, we conclude that $2 \alpha=t<3 b$. In other words, $\operatorname{val}_{L} 3>2 \alpha$ and it follows from (5.13) that

$$
y \operatorname{Tr}_{L / H}\left(\varpi^{j}\right) \equiv u c^{2} j(\alpha+j) \bmod \mathfrak{p}_{L}
$$

Recall that $j=\kappa-1=\frac{\delta}{2}=\frac{t}{2}+\frac{s}{2}, \alpha=\frac{t}{2}$ and since $s \equiv 0 \bmod 3$, we have

$$
w \equiv y \operatorname{Tr}_{L / H}\left(\varpi^{j}\right) \equiv 2 c^{2} t^{2} u \bmod \mathfrak{p}_{L} .
$$

Since w is a unit, we see that t is not divisible by 3 and since the restriction of $\tilde{\theta}$ to \mathcal{O}_{L}^{\times} has order 2, we have

$$
\tilde{\theta}(z)=\tilde{\theta}(w) \tilde{\theta}\left(\varpi_{L}\right)^{1-\kappa}=\theta(2) \tilde{\theta}(u) \tilde{\theta}\left(\varpi_{L}\right)^{1-\kappa} .
$$

Recall that $y=u \varpi_{L}^{3(1-m)}$. Also, $1-\kappa-3(1-m)=t$, where $t=2 \alpha$ and α is even, so t is divisible by 4 and hence

$$
\tilde{\theta}\left(\varpi_{L}\right)^{1-\kappa}=\tilde{\theta}\left(\varpi_{L}\right)^{3(1-m)} .
$$

Thus,

$$
\tilde{\theta}(z)=\theta(2) \tilde{\theta}(y)=\theta(2) \theta(y)^{3} .
$$

Writing $y \in H^{\times}$as the product of a unit in \mathcal{O}_{H}^{\times}and $\varpi_{H}^{\mathrm{val}_{H} y}$ and taking into account that $\theta(2)=(-1)^{f\left(H / \mathbb{Q}_{3}\right)}, \theta\left(\varpi_{H}\right)^{2}=(-1)^{f\left(H / \mathbb{Q}_{3}\right)}, \operatorname{val}_{H} y=1-m$ is odd, and the restriction of θ to \mathcal{O}_{H}^{\times}has order two, we get $\theta(2) \theta(y)^{2}=1$. Therefore,

$$
\begin{equation*}
\tilde{\theta}(z)=\theta(y) \tag{5.14}
\end{equation*}
$$

General case. We now assume that F is an arbitrary finite Galois extension of K. Let F_{t} be the maximal tamely ramified extension of K contained in F. Since the group $\operatorname{Gal}\left(F / F_{t}\right)$ is a p-group with $p=3$, it has a quotient that is a cyclic group of order 3, hence, there exists a finite Galois extension F_{1} of F_{t} contained in F with $\operatorname{Gal}\left(F_{1} / F_{t}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$. We put $L_{1}=F_{1} H, L_{t}=L_{0}$ and for each $i \in\{0,1\}$ denote $\phi_{i}=\operatorname{Res}_{H}^{L_{i}} \phi, \theta_{i}=\operatorname{Res}_{H}^{L_{i}} \theta$,
$\psi_{0}=\psi_{H} \circ \operatorname{Tr}_{L_{t} / H}$. Also, let ψ_{1} be a character of L_{1} such that $\psi_{1}=\psi_{L}$ on $\mathcal{O}_{L_{1}}$ and let $z_{i} \in L_{i}^{\times}$be the analogues of z for ϕ_{i}, i.e., we have

$$
\phi_{i}(1+a)=\psi_{i}\left(z_{i} a\right), \quad a \in L_{i}^{\times}, \operatorname{val}_{L_{i}}(a) \geq a\left(\phi_{i}\right) / 2 .
$$

(Note that ψ_{i} is non-trivial and $a\left(\phi_{i}\right)$ is even by Lemma 1.9 and Lemma 1.1.) Using the inductive hypothesis on the order of $\operatorname{Gal}\left(L / L_{t}\right) \cong \operatorname{Gal}\left(F / F_{t}\right)$ together with (5.11) and (5.14), we get

$$
\tilde{\theta}(z)=\theta_{1}\left(z_{1}\right)=\theta_{0}\left(z_{0}\right)
$$

Finally, using (5.4) we have

$$
\tilde{\theta}(z)=\theta_{0}\left(z_{0}\right)=\theta(y)^{\left[L_{t}: H\right]} .
$$

6. Example of a non-Galois F / K

We keep the notation of Section 1 and assume $p=3, E$ has potential good reduction over K, σ_{E} is irreducible and wildly ramified.
Lemma 6.1. Let H be unramified over K and let $u_{H / K} \in \mathcal{O}_{H}^{\times}$satisfy $u_{H / K}^{2} \in \mathcal{O}_{K}$ and $H=K\left(u_{H / K}\right)$. Suppose F is a degree 3 extension of K such that the Galois closure F^{g} of F over K is totally ramified over K. Then there exists $t \in \mathbb{N}$ such that

$$
W(E / F)=(-1)^{A} \phi\left(u_{H / K}\right)^{[F: K]}
$$

where

$$
A= \begin{cases}a(\phi), & \text { if } F / K \text { is Galois } \tag{6.1}\\ a(\phi)+t, & \text { if } F / K \text { is not Galois }\end{cases}
$$

In particular, if F is Galois over K, then $W(E / F)=W(E / K)$. If F is not Galois over K, then $W(E / F)=(-1)^{t} W(E / K)$ and both cases t is even and t is odd can occur.
Proof. The case when F is Galois over K is done in Proposition 3.1. Suppose F is not Galois over K, so that $\operatorname{Gal}\left(F^{g} / K\right) \cong S_{3}$. By Proposition 4 and its proof on p. 320 in [8] we have

$$
\begin{equation*}
W(E / F)=(-1)^{a(\sigma \otimes \tau) / 2-a(\tau)} \phi\left(u_{H / K}\right)^{[F: K]}, \tag{6.2}
\end{equation*}
$$

where $\tau=\operatorname{Ind}_{K}^{F} 1_{F}$. Let S / K be the maximal tamely ramified subextension of F^{g} / K, i.e., $[S: K]=2$. Let $T=F^{g} M, \tilde{H}=S H, \tilde{L}=F^{g} H$, and $\tilde{M}=S M$. By Lemma 1.9 above, M is not contained in \tilde{L} and hence we have the following diagrams of field extensions:

Let μ be a character of S^{\times}such that $\operatorname{ker} \mu=\operatorname{Gal}\left(\bar{K} / F^{g}\right)$, let $\tilde{\mu}=\operatorname{Res}_{S}^{\tilde{H}} \mu, \tilde{\phi}=\operatorname{Res}_{H}^{\tilde{H}} \phi$. Then $a(\tilde{\phi})=2 a(\phi)-1$ by Lemma 1.2 and hence $a(\tilde{\phi})$ is odd. Also, it is easy to check that $\left.\mu\right|_{K^{\times}}=1_{K}$ and hence $a(\mu)=a(\tilde{\mu})$ is even by Lemma 4 on p. 132 in [2]. Let $G=\operatorname{Gal}\left(T^{u n r} / H^{u n r}\right) \cong S_{3} \times \mathbb{Z} / 3 \mathbb{Z}$. Ramification groups of G have the form

$$
\begin{array}{r}
G=G_{0} \supset G_{1}=\cdots=G_{t} \supset G_{t+1}=\{1\} \quad \text { or } \\
G=G_{0} \supset G_{1}=\cdots=G_{t} \supset G_{t+1}=\cdots=G_{t+s} \supset G_{t+s+1}=\{1\}, \tag{6.4}
\end{array}
$$

where $G_{1}=\operatorname{Gal}\left(T^{u n r} / \tilde{H}^{u n r}\right) \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ and in (6.4) we have $G_{t+1} \cong \mathbb{Z} / 3 \mathbb{Z}$. It is easy to see that in case (6.3) and in case (6.4) with G_{t+1} embedded diagonally into G_{1}, we have $a(\tilde{\phi})=a(\tilde{\mu})$, which is a contradiction, since by above one number is odd and the other is even. Thus (6.3) does not occur and in (6.4) we have either $G_{t+1}=$ $\operatorname{Gal}\left(T^{u n r} / \tilde{L}^{u n r}\right)$ or $G_{t+1}=\operatorname{Gal}\left(T^{u n r} / \tilde{M}^{u n r}\right)$. If $G_{t+1}=\operatorname{Gal}\left(T^{u n r} / \tilde{L}^{u n r}\right)$, then we have $a(\tilde{\phi})=a(\tilde{\phi} \otimes \tilde{\mu})=1+t+\frac{s}{3}, a(\tilde{\mu})=1+t$. Since $a(\tilde{\phi})$ is odd and $a(\tilde{\mu})$ is even, we conclude that both t and $a(\tilde{\phi} \otimes \tilde{\mu})$ are odd. Analogously, if $G_{t+1}=\operatorname{Gal}\left(T^{u n r} / \tilde{M}^{u n r}\right)$, then $a(\tilde{\phi})=1+t, a(\tilde{\mu})=a(\tilde{\phi} \otimes \tilde{\mu})=1+t+\frac{s}{3}$, so that both t and $a(\tilde{\phi} \otimes \tilde{\mu})$ are even.

On the other hand, $\tau=\operatorname{Ind}_{K}^{F} 1_{F} \cong 1_{K}+\operatorname{Ind}_{K}^{S} \mu$ and using the inductive properties of function $a(-)$ one can see that

$$
a(\sigma \otimes \tau) / 2-a(\tau) \equiv a(\phi)+a(\tilde{\phi} \otimes \tilde{\mu}) \equiv a(\phi)+t \bmod 2,
$$

so that using (6.2) we have $A \equiv a(\phi)+t \bmod 2$ in (6.1).
We now show that both cases t is even and t is odd can occur. Let $K=\mathbb{Q}_{3}$ and let $B=\operatorname{Gal}\left(F^{g} / K\right) \cong S_{3}, C=\operatorname{Gal}(M / H) \cong \mathbb{Z} / 3 \mathbb{Z}$. Then the ramification groups of B and C are

$$
\begin{aligned}
& B=B_{0} \supset B_{1}=\cdots=B_{\alpha} \supset B_{\alpha+1}=\{1\}, \quad B_{1} \cong \mathbb{Z} / 3 \mathbb{Z} \\
& C=C_{0}=C_{1}=\cdots=C_{\beta} \supset C_{\beta+1}=\{1\} .
\end{aligned}
$$

Thus $a(\mu)=1+\alpha$ and $a(\phi)=1+\beta$. By the previous paragraph we also have two cases:
(1) $a(\mu)=1+t, a(\phi)=1+\frac{1}{2}\left(t+\frac{s}{3}\right)$ or
(2) $a(\mu)=1+t+\frac{s}{3}, a(\phi)=1+\frac{t}{2}$.

On the other hand, $\alpha \leq e\left(F^{g} / \mathbb{Q}_{3}\right) / 2=3, \beta \leq e\left(M / \mathbb{Q}_{3}\right) / 2=1.5$ (see e.g., [9], p. 72, Exc. 3c). Thus $\beta=1$ and since $a(\mu)$ is even, $\alpha=1$ or $\alpha=3$. Furthermore, by comparing $a(\mu)$ and $a(\phi)$ in terms of α, β with those in terms of t, s, we have two cases
(1) $\alpha=t, \beta=\frac{1}{2}\left(t+\frac{s}{3}\right)=1$, hence $\alpha=t=1$, or
(2) $\alpha=t+\frac{s}{3}, \beta=\frac{t}{2}=1$, hence $t=2, \alpha=3$.

Consider the following elliptic curves over \mathbb{Q}_{3} :

$$
\begin{aligned}
& E: y^{2}+x y+y=x^{3}-x^{2}-5 x+5, \\
& E_{1}: y^{2}+y=x^{3}, \\
& E_{2}: y^{2}+y=x^{3}-1
\end{aligned}
$$

Let Δ, Δ_{1}, and Δ_{2} denote the minimal discriminants of E, E_{1}, and E_{2}, respectively. It is shown in [3] that E, E_{1}, and E_{2} are of the Kodaira-Néron reduction type II, val $\mathbb{Q}_{3}(\Delta)=$ $a\left(\sigma_{E}\right)=4, \operatorname{val}_{\mathbb{Q}_{3}}\left(\Delta_{1}\right)=a\left(\sigma_{E_{1}}\right)=3, \operatorname{val}_{\mathbb{Q}_{3}}\left(\Delta_{2}\right)=a\left(\sigma_{E_{2}}\right)=5$. It is not hard to check that this implies, in particular, that E satisfies the hypothesis of Lemma 6.1. Also, denote $M_{i}=\mathbb{Q}_{3}\left(E_{i}[2]\right), i=1,2$. Then one can check that $\operatorname{Gal}\left(M_{i} / \mathbb{Q}_{3}\right) \cong S_{3}$ and M_{i} is totally ramified over \mathbb{Q}_{3}. For $i \in\{1,2\}$ let ϕ_{i} denote the analogue of ϕ for E_{i} (note that each ϕ_{i} is wildly ramified), M_{i} will play a role of F^{g} in our notation above, and let α_{i} denote the analogue of α for M_{i}. From $a\left(\sigma_{E_{1}}\right)=3$ and $a\left(\sigma_{E_{2}}\right)=5$ we can find $a\left(\phi_{1}\right)=2, a\left(\phi_{2}\right)=4$. Moreover, note that $a\left(\phi_{i}\right)=\alpha_{i}+1$, so that $\alpha_{1}=1, \alpha_{2}=3$. Hence by cases (1) and (2) above there exist non-Galois cubic extensions $F_{i} / \mathbb{Q}_{3} \subset M_{i} / \mathbb{Q}_{3}$ such that $t\left(F_{1}\right)=1$ and $t\left(F_{2}\right)=2$.

Acknowledgements. I would like to thank Kenneth Kramer and David Rohrlich for their interest in this work and useful inspiring discussions. I am also very grateful to Shinichi Kobayashi for answering a question regarding his paper [4]. Last but not least I would like to thank the anonymous referee for valuable suggestions that greatly improved the paper.

References

[1] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 501-597. Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973.
[2] A. Fröhlich, J. Queyrut, On the functional equation of the Artin L-function for characters of real representations, Invent. Math. 20 (1973), 125-138.
[3] M. Kida, Variation of the reduction type of elliptic curves under small base change with wild ramification, Cent. Eur. J. Math. 1 (2003), no. 4, 510-560.
[4] S. Kobayashi, The local root number of elliptic curves with wild ramification, Math. Ann. 323 (2002), no. 3, 609-623.
[5] A. Kraus, Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive, Manuscripta Math. 69 (1990), no. 4, 353-385.
[6] D. E. Rohrlich, Variation of the root number in families of elliptic curves, Compositio Math. 87 (1993), no. 2, 119-151.
[7] D. E. Rohrlich, Elliptic curves and the Weil-Deligne group, Elliptic Curves and Related Topics (CRM Proc. Lecture Notes, 4, Amer. Math. Soc., Providence, RI, 1994), 125-157.
[8] D. E. Rohrlich, Galois theory, elliptic curves, and root numbers, Compositio Math. 100 (1996), 311-349.
[9] J.-P. Serre, Local fields (Graduate Texts in Mathematics, 67. Springer-Verlag, New York-Berlin, 1979).

Department of Mathematics, CUNY Queens College, 65-30 Kissena Blvd., Flushing, NY 11367, USA, PHONE: 718-997-5800, FAX: 718-997-5882

E-mail address: Maria.Sabitova@qc.cuny.edu

