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Abstract. In this paper we study how the root number attached to an elliptic curve E
over a finite field extension K of Q3 changes when E is considered as an elliptic curve over
a finite Galois extension F of K via extension of scalars. The main result is a formula
relating the root number W (E/F ) attached to E ×K F to the root number W (E/K)
attached to E.

Introduction

Let K be a finite field extension of Qp with a fixed algebraic closure K and let F ⊂ K
be a finite field extension of K. The main goal of the paper is to relate the root number
W (E/K) attached to an elliptic curve E over K to the root number W (E/F ) attached
to elliptic curve E ×K F over F obtained from E via extension of scalars.

Explicit formulas for W (E/K) in terms of the coefficients of an arbitrary generalized
Weierstrass equation of E have been obtained by D. Rohrlich [6] in the case when E has
potential multiplicative reduction over K and under the additional assumption p ≥ 5 in
the case when E has potential good reduction over K. Thus Rohrlich’s formulas can be
used to calculate W (E/F ) using an arbitrary Weierstrass equation of E over K. In the
case p = 3 formulas for W (E/K) were obtained by S. Kobayashi [4] in terms of the coef-
ficients of a minimal Weierstrass equation of E over K, so in order to apply Kobayashi’s
formulas to calculate W (E/F ) one needs to find a minimal Weierstrass equation of E
over F . Our motivation is to calculate W (E/F ) using a Weierstrass equation of E over
K. The cases p = 2 or 3, E has potential good reduction over K, and F is an arbitrary
finite field extension of K still remain untreated in full generality. We answer the question
when p = 3 under an additional assumption that F is Galois over K.

Assume E has potential good reduction over K and F ⊂ K is a finite field extension of
K. By definition, the root number W (E/K) is the root number of representation σE of
the Weil group W(K/K) of K attached to E. It is known that σE is a two-dimensional
semisimple representation ofW(K/K). If σE is not irreducible, then one can easily deduce
from well-known formulas that

W (E/F ) = W (E/K)[F :K]
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(see e.g., [6], p. 128).

If σE is irreducible and p is odd (i.e., p 6= 2), then σE is induced by a multiplicative
character of a quadratic extension H ⊂ K of K. Moreover, E has the Kodaira–Néron
type III, III∗, II, IV , IV ∗, or II∗ (see Proposition 1.6 below). Furthermore,

• H = K(
√
−1) if E is of type III or III∗,

• H = K(∆1/2) if E is of type II, IV , IV ∗, or II∗, where ∆ is a discriminant of E .

The main results of the paper together with easy cases, which we include for the sake of
completeness, can be summarized in the following

Theorem. Let F ⊂ K be a finite field extension of K with ramification index e(F/K)
over K. Suppose p is odd, E has potential good reduction over K, and σE is irreducible.

• If H ⊆ F , then

W (E/F ) =

(
−1

K̂

)δ
, δ =

{
[F :K]

2
, if H/K ramified,

0, if H/K unramified,

where K̂ denotes the residue field of K and
(
x

K̂

)
is the quadratic residue symbol of x ∈ K̂

(Lemma 2.1 below).

• If H 6⊆ F , p ≥ 5, then

W (E/F ) = (−1)α+[F :K]W (E/K)[F :K],

where

α =

{
0, if ε | e(F/K),

1, otherwise,

and ε denotes the ramification index of a minimal extension of K over which E has good
reduction (Lemma 2.2 below).

• If H 6⊆ F , p = 3, F is Galois over K, and e(H/K) = 1, then

W (E/F ) = (−1)1+[F :K]W (E/K)[F :K]

(Proposition 3.1 below).

• If H 6⊆ F , p = 3, F is Galois over K, e(H/K) = 2, and e(F/K) is even, then

W (E/F ) = (−1)1+
e(F/K)

2
f(F/Q3),

where f(F/Q3) is the residual degree of F over Q3 (Proposition 4.1 below).

• If H 6⊆ F , p = 3, F is Galois over K, e(H/K) = 2, and e(F/K) is odd, then

W (E/F ) = (−1)1+[F :K]+af(F/Q3)W (E/K)[F :K],

where

a =

{
et−1

2
, if et ≡ 1 mod 3

et+1
2
, if et ≡ 2 mod 3

=

{
odd, if et ≡ 5 or 7 mod 12

even, if et ≡ 1 or 11 mod 12,
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and et denotes the ramification index of the maximal tamely ramified extension of K
contained in F (Theorem 4.3 below).

The paper is organized in the following way: Section 1 contains a list of general facts and
notation used in the paper. Section 2 contains general formulas for W (E/F ) and the cases
H ⊆ F and p ≥ 5. Section 3 treats the case whenH is unramified overK, whereas Sections
4 and 5 treat the case when H is ramified over K. Finally, Section 6 contains specific
examples showing that our formula for W (E/F ) becomes more complicated without the
assumption that F is Galois over K.

1. Notation and general facts

1.1. The base field and characters. In what follows K is a local non-archimedean field
of characteristic zero with ring of integers OK , maximal ideal pK ⊂ OK , a uniformizer
$K , and residue field K̂ of characteristic p and cardinality q. Equivalently, K is a finite
field extension of Qp. Let K be a fixed algebraic closure of K and we fix a valuation on
K satisfying valK $K = 1. We denote by D(K/Qp) the absolute different of K. If F ⊂ K
is a finite field extension of K, then e(F/K) and f(F/K) denote the ramification index
and the residual degree of F over K, respectively.

We call a continuous non-trivial homomorphism ψ : K −→ C× of absolute value 1 an
(additive) character of K and we call a continuous homomorphism µ : K× −→ C× a
(multiplicative) character of K×. For an additive character ψ of K we denote by n(ψ) the
largest integer n such that ψ is trivial on $−nK OK .

Let ΦK ∈ Gal(K/K) be a preimage of the (arithmetic) Frobenius automorphism of
the absolute Galois group of the residue field of K under the decomposition map, so
that ΦK is an arithmetic Frobenius of Gal(K/K). We will call ΦK simply a Frobenius
of Gal(K/K). By definition, the Weil group W(K/K) (also denoted by WK) of K is
a subgroup of Gal(K/K) equal to Gal(K/Kunr) o 〈ΦK〉, where Kunr ⊂ K denotes the
maximal unramified extension of K contained in K, 〈ΦK〉 denotes the infinite cyclic group
generated by ΦK , and IK = Gal(K/Kunr) is the inertia group of K. Throughout the
paper we will identify one-dimensional complex continuous representations of W(K/K)
with characters of K× via the local class field theory assuming that a uniformizer $K of
K corresponds to an arithmetic Frobenius ΦK of Gal(K/K). We also denote by χH/K
the quadratic character of K× with kernel NH/K(H×) or, equivalently, χH/K is the one-

dimensional representation of W(K/K) of order 2 with kernel W(K/H).

Lemma 1.1. Let P be a local non-archimedean field of characteristic zero and let Q be a
ramified quadratic extension of P . Suppose µ is a character of Q× such that µ|P× = χQ/P .
Then either a(µ) = 1 or a(µ) is positive and even.

Proof. Since a(µ) 6= 0, assume a(µ) = 2m+1 for some m 6= 0. Since Q is ramified over P ,
OQ = OP [$Q] for a uniformizer $Q of Q such that $2

Q ∈ OP . Let y = 1+x$2m
Q , x ∈ OQ.
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Then x = a+b$Q for a, b ∈ OP , y = 1+a$2m
Q +b$2m+1

Q , and µ(y) = χQ/P (1+a$2m
Q ) = 1,

since a(χQ/P ) = 1. Thus µ is trivial on 1 + p2m
Q , which contradicts a(µ) = 2m+ 1. �

Lemma 1.2. Let P be a local non-archimedean field of characteristic zero and let Q be
a tamely ramified Galois extension of P . Let µ be a complex continuous one-dimensional
representation of WP and let ν be the restriction of µ to WQ (denoted by ResQP µ). If
a(µ) > 1, then

(1.1) a(ν) = (a(µ)− 1)et + 1.

Proof. Let N be a finite Galois extension of P such that Gal(P/Nunr) is contained in the
kernel of µ. Since a(µ) > 1, a(µk) = a(µ) for any k not divisible by residual characteristic p
of P . Thus without loss of generality we can assume that A = Gal(Nunr/P unr) is a p-group
and hence Nunr∩Qunr = P unr. Let T = QunrNunr, B = Gal(T/P unr), C = Gal(T/Qunr),
where C ∼= A. Then a(µ) = 1 + 1

et
α, where α depends on whether µ is trivial on the

higher ramification groups Bi’s of B, i ≥ 1. On the other hand, a(ν) = 1 + β, where β
depends on whether µ is trivial on the higher ramification groups Ci’s of C, i ≥ 1. Since
Ci = C ∩Bi = Bi, we have α = β and hence (1.1). �

Lemma 1.3 ([8], p. 316, Prop. 1). Let P be a local non-archimedean field of characteristic
zero and let Q be a quadratic extension of P . Assume µ is a complex continuous one-
dimensional representation of Gal(P/Q). The representation of Gal(P/P ) induced by µ

(denoted by IndQP µ) is irreducible and symplectic if and only if µ|P× = χQ/P and µ2 6= 1Q.

Also, a complex continuous finite-dimensional representation of Gal(P/P ) is dihedral (i.e.,

two-dimensional orthogonal and irreducible) if and only if it has the form IndQP µ for a
quadratic extension Q of P and a character µ of Q× satisfying µ|P× = 1P and µ2 6= 1Q.

1.2. Root numbers. Suppose dx is a Haar measure on K, ψ is a (additive) charac-
ter of K, π is a complex continuous finite-dimensional representation of W(K/K), and
ε(π, ψ, dx) is the corresponding epsilon factor. The root number W of π is defined as

W (π, ψ) =
ε(π, ψ, dx)

|ε(π, ψ, dx)|
.

It follows from a property of the epsilon factors that the root number does not depend on
the choice of dx (see e.g., [7], Proposition on p. 143).

Given an elliptic curve E over K and a finite field extension F ⊂ K of K we are
interested in calculating the root number W (E/F ) of elliptic curve E ×K F obtained
from E via extension of scalars. Our goal is to express W (E/F ) in terms of W (E/K) and
F . We are particularly interested in the case when E has potential good reduction over
K. Let l be a rational prime different from p, let Tl(E) be the l-adic Tate module of E,
and let σE denote the (2-dimensional) complex representation of W(K/K) associated to
the representation σE,l,ı of Gal(K/K) on (Tl(E)⊗Zl

Ql)
∗⊗ıC, where ı is an embedding of

Ql into C. It is known that the isomorphism class of σE,l,ı does not depend on the choice
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of l and ı. Furthermore, σE is the restriction of σE,l,ı to W(K/K). By definition,

W (E/K) = W (σE)

and hence W (E/F ) = W (ResFK σE), where ResFK σE denotes the restriction of σE to
W(K/F ). Let ω denote the unramified one-dimensional representation of W(K/K) sat-
isfying

ω(ΦK) = q.

By properties of root numbers,

W (σE) = W (σE ⊗ ω1/2) = W (σ),

where σ = σE ⊗ ω1/2 is symplectic and hence W (σ) does not depend on the choice of a
character of K (see e.g., [7], Proposition on p. 150).

Lemma 1.4 ([8], p. 319, Prop. 3). Let P be a local non-archimedean field of characteristic
zero and let Q be the unramified quadratic extension of P . Assume µ is a character of
Q× such that µ|P× = χQ/P . If ψP is a character of P and ψQ = ψP ◦ TrQ/P , then

W (µ, ψQ)W (IndQP 1Q, ψP ) = W (µ, ψQ)W (χQ/P , ψP ) = (−1)a(µ)µ(uQ/P ),

where uQ/P ∈ O×Q is any element such that Q = P (uQ/P ) and u2
Q/P ∈ P .

Remark 1.5. Note that µ(uQ/P ) does not depend on the choice of uQ/P . Indeed, let v ∈ O×Q
satisfy v2 ∈ P and Q = P (v). This implies uQ/P = αv for α ∈ O×P . Thus

µ(uQ/P ) = µ(α)µ(v) = χQ/P (α)µ(v) = µ(v),

since χQ/P is unramified.

1.3. Elliptic curves. Throughout this subsection we assume that E has potential good
reduction over K. The next proposition due to S. Kobayashi provides a criterion of
irreducibility of σE in terms of the Kodaira–Néron type and discriminant ∆ ∈ K of a
Weierstrass equation of E.

Proposition 1.6 ([4], p. 613, Prop. 3.2). Suppose p is odd.

• If E is of type I0 or I∗0 , then σE is not irreducible.

• If E is of type III or III∗, then σE is irreducible if and only if
(
−1

K̂

)
6= 1.

• If E is of type II, IV , IV ∗, or II∗, then σE is irreducible if and only if ∆1/2 6∈ K.

For the rest of this subsection we assume that p = 3, E has potential good reduction
over K, and σE is irreducible. Let ∆ ∈ K denote a fixed discriminant of E, let ∆1/4

be an arbitrary fixed 4-th root of ∆, N = K(∆1/4, E[2]), H = K(∆1/2), M = K(E[2]),
and S = K(∆1/4). It is known that H ⊂ M , M is a finite Galois extension of K
with Gal(M/K) being isomorphic to a subgroup of the symmetric group S3 on 3 letters,
Nunr = Kunr(∆1/4, E[2]) is a finite Galois extension of Kunr, and Nunr is the minimal
extension of Kunr over which E has good reduction ([5], p. 362). In particular, σE is trivial
on IN by the criterion of Néron-Ogg-Shafarevič. Suppose σE is wildly ramified. Then H
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is a quadratic extension of K and Gal(M/K) ∼= S3. Moreover, if H is unramified over
K, then Gal(Nunr/Kunr) ∼= Z/3Z or Gal(Nunr/Kunr) ∼= Z/6Z, Gal(Sunr/Kunr) ∼= Z/2Z.
Also, if H is ramified over K, then

Gal(Nunr/Kunr) ∼= (Z/3Z) o (Z/4Z)

with the uniquely defined non-trivial action of Z/4Z on Z/3Z, so that Gal(Sunr/Kunr) ∼=
Z/4Z and Gal(Nunr/Sunr) ∼= Z/3Z. Let a ∈ Gal(Nunr/Sunr) be an element of order
3 and let b ∈ Gal(Nunr/Kunr) be an element of order 4 that maps onto a generator of
Gal(Sunr/Kunr) under the quotient map.

Lemma 1.7. Assume H is ramified over K and σE is wildly ramified. Then N is totally
ramified over K and let ΦN ∈ Gal(K/N) be a Frobenius considered as a Frobenius of
Gal(K/K). Then

W(K/K)/IN ∼= (〈a〉o 〈b〉) o 〈c〉,
where c = ΦN , |a| = 3, |b| = 4, b−1ab = a2, ac = ca, c−1bc = br, and r = (−1)f(K/Q3).
Moreover, there exist a root of unity η satisfying η2 = (−1)f(K/Q3), a primitive third root
of unity ξ, and a one-dimensional complex representation φ of the subgroup

W(K/H)/IN ∼= 〈a, b2, c〉

such that φ(a) = ξ, φ(b2) = −1, φ(c) = η, and σ = σE ⊗ ω1/2 is induced by φ. Thus, in a
suitable basis we have

σ(a) =

(
ξ 0
0 ξ2

)
, σ(b) =

(
0 −1
1 0

)
, σ(c) = η

(
1 0
0 (−1)f(K/Q3)

)
.

Proof. First, note that W(K/K)/IN ∼= Gal(Nunr/Kunr) o 〈ΦN〉. It is easy to check that
Φ−1
N ◦ a ◦ΦN = a. Also, let ξ4 ∈ K be the forth-root of unity such that b(∆1/4) = ξ4∆1/4.

Then for r = (−1)f(K/Q3) we have

Φ−1
N ◦ b ◦ ΦN(∆1/4) = Φ−1

N ◦ b(∆
1/4) = Φ−1

N (ξ4)∆1/4 = ξr4∆1/4 = br(∆1/4)

and hence Φ−1
N ◦ b ◦ ΦN ◦ b−r = at for some t ∈ {0, 1, 2}. For x-coordinate α of a point in

E[2] we have b1−r(α) = at(α), since ΦN(α) = α. If r = 1, then t = 0. If r = −1, then
b2(α) = at(α). Since the order of a is 3 and the order of b is 4, we have t = 0 in this case
as well.

Denote G = (〈a〉o〈b〉)o〈c〉. Note that σ can be considered as an irreducible symplectic
representation of G. It is known that σE is induced by a character of H× (see e.g., [4],
p. 613, Prop. 3.3(ii)). This implies that σ is also induced by a character φ of H×.
Note that if φ(a) = 1, then σE is tame, which contradicts the assumption. Hence φ(a)
is a primitive third root of unity ξ. It is well-known that a two-dimensional complex
representation is symplectic if and only if its determinant is trivial. Calculating detσ, we
conclude that φ(b2) = −1 and if φ(c) = η, then η2 = (−1)f(K/Q3). �



CHANGE OF ROOT NUMBERS OF ELLIPTIC CURVES UNDER EXTENSION OF SCALARS 7

Lemma 1.8. Assume H is ramified over K and σE is wildly ramified. In the notation of
Lemma 1.7 let θ be a character of H× given by θ(a) = 1, θ(b2) = −1, and θ(c) = γ for a
root of unity γ satisfying γ2 = (−1)f(H/Q3). Then

θ|K× = χH/K , (φ⊗ θ)|K× = 1K , and a(θ) = 1.

Proof. Interpreting the condition (φ ⊗ θ)|K× = 1K in terms of Weil groups via the local
class field theory we need to show that (φ⊗ θ) ◦ tr :W(K/K)ab −→ C× is trivial, where
tr : W(K/K)ab −→ W(K/H)ab is the transfer map. Let G = 〈a, b, c〉 and Γ = 〈a, b2, c〉.
Since φ is trivial on IN , it is enough to show that φ ⊗ θ composed with the transfer
map tr : Gab −→ Γab is trivial (here both φ and θ are considered as one-dimensional
representations of Γ). By calculating the transfer map explicitly and using the definition
of φ given in Lemma 1.7 it is easy to verify that θ|K× = φ|K× = χH/K . Since the restriction
of θ to the inertia group IH has order two, we have a(θ) = 1. �

Lemma 1.9. Suppose σE is wildly ramified. Let F be a finite Galois extension of K
contained in K such that F ∩H = K and let L = FH. Then Lunr ∩Munr = Hunr and if
e(H/K) = 2, then in addition Lunr ∩Nunr = Hunr.

Proof. Assume that Munr ⊆ Lunr. Let Ft be the maximal tamely ramified extension
of K contained in F and let Lt = FtH, T = LtM . Since [M : H] = e(M/H) =
3, we have Lt ∩ M = H, Lunrt ∩ Munr = Hunr, and T unr ⊆ Lunr. The restriction
map gives the surjection f : Gal(Lunr/Lunrt ) � Gal(T unr/Lunrt ). Note that there are
natural isomorphisms Gal(Lunr/Lunrt ) ∼= Gal(L/Lt) and Gal(T unr/Lunrt ) ∼= Gal(T/Lt),
which are induced by the restriction maps. These together with f give the surjection
g : Gal(L/Lt) � Gal(T/Lt), which commutes with the natural action of Gal(K/Ft). On
the other hand, Gal(T/Ft) ∼= Gal(T/Lt)oZ/2Z ∼= S3 and Gal(L/Ft) ∼= Gal(L/Lt)×Z/2Z.
This implies that there exists an element j in Gal(K/Ft) with j|Lt 6= idLt that acts
trivially on Gal(L/Lt) and non-trivially on Gal(T/Lt). This gives a contradiction with
the existence of g.

Assume now that e(H/K) = 2 and Sunr ⊆ Lunr. Thus the restriction map gives the
surjection

h : Gal(Lunr/Kunr) � Gal(Sunr/Kunr),

where Gal(Lunr/Kunr) ∼= Gal(Lunr/Hunr) × Z/2Z and Gal(Sunr/Kunr) ∼= Z/4Z. This is
a contradiction, since h induces a surjection of the exact sequences

1 // Gal(Lunr/Hunr)

����

// Gal(Lunr/Kunr)

����

// Z/2Z

����

// 1

1 // Gal(Sunr/Hunr) // Gal(Sunr/Kunr) // Z/2Z // 1,

the first of which splits and the second does not. �
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2. Root numbers of elliptic curves

We keep the notation of Section 1. Suppose E has potential good reduction over K,
σE is irreducible, and let F ⊂ K be a finite field extension of K. To calculate the root
number W (E/F ) we will follow the approach of D. Rohrlich developed in [8]. Let π
be a continuous complex finite-dimensional representation of Gal(K/F ) with real-valued
character and let τ = IndFK π denote the representation of Gal(K/K) induced by π. We
will need the following formula ([8], p. 321):

(2.1) W (E, τ) = W (σE ⊗ τ) = W ((ResFK σE)⊗ π)
det τ(−1)

detπ(−1)
.

Note that ResFK σE is the representation of W(K/F ) attached to E considered as an
elliptic curve over F by extension of scalars, so that if π = 1F , then (2.1) implies

W (E, τ) = W (E/F ) det τ(−1).

Let ψK be an additive character of K. Since σ = IndHK φ (see Lemma 1.7 above), by the
inductive properties of root numbers (see e.g., [8], p. 316, formula (1.4)) we have

W (E/K) = W (σ) = W (IndHK φ, ψK) = W (φ, ψH)W (IndHK 1H , ψK) =(2.2)

= W (φ, ψH)W (χH/K , ψK),

where ψH = ψK ◦ TrH/K .

Lemma 2.1. Let τ = IndFK π. If H ⊆ F , then

(2.3) W (E, τ) =

(
−1

K̂

)δ
det τ(−1), δ =

{
dim τ

2
, if H/K ramified,

0, if H/K unramified,

where
(
x

K̂

)
is the quadratic residue symbol of x ∈ K̂. In particular,

W (E/F ) =

(
−1

K̂

)δ
, δ =

{
[F :K]

2
, if H/K ramified,

0, if H/K unramified.

Proof. The calculation is the same as on p. 321 in [8], which we repeat for the sake of

completeness. Recall that σ = IndHK φ. We have ResFK σ = φ̃⊕ φ̃−1 with φ̃ = ResFH φ, since
σ is symplectic. Since π has real-valued character, using properties of root numbers we
have

W ((ResFK σ)⊗ π) = det(π ⊗ φ̃)(−1) = det π(−1)φ(−1)[F :H] dimπ,

where φ(−1) = χH/K(−1) (by Lemma 1.3) and χH/K(−1) =
(
−1

K̂

)
if H/K is ramified,

χH/K(−1) = 1 if H/K is unramified. Hence (2.3) follows from (2.1). �

For the rest of the paper we assume that H 6⊆ F , i.e., F ∩ H = K. Let L = FH,
λ = ResLH φ, and let ψF be an additive character of F . Note that ResFK σ = IndLF λ and

W (E/F ) = W (ResFK σE) = W (ResFK(σE ⊗ ω1/2)) = W (ResFK σ),
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so that by (2.2) we have

(2.4) W (E/F ) = W (λ, ψL)W (χL/F , ψF ),

where ψL = ψF ◦ TrL/F .

Lemma 2.2. Let ε denote the ramification index of a minimal extension of K over which
E has good reduction. If p ≥ 5, then

W (E/F ) = (−1)α+[F :K]W (E/K)[F :K],

where

α =

{
0, ε | e(F/K),

1, otherwise.

Proof. It is known that if p ≥ 5, then H is unramified over K and φ is tame, i.e., a(φ) = 1.
Suppose uH/K ∈ O×H satisfies u2

H/K ∈ OK and H = K(uH/K). Recall that σ = IndHK φ is

symplectic and irreducible, hence φ|K× = χH/K by Lemma 1.3. This implies λ|F× = χL/F ,
so that by Lemma 1.4 applied to φ, λ and (2.4), we have

W (E/K) = (−1)a(φ)φ(uH/K),

W (E/F ) = (−1)a(λ)λ(uH/K) = (−1)a(λ)φ(uH/K)[F :K].

Since a(φ) = 1, this implies W (E/F ) = (−1)a(λ)+[F :K]W (E/K)[F :K]. Clearly, a(λ) ≤ 1
and a(λ) = 0 if and only if ε divides e(F/K). �

3. Case when H/K is unramified

We keep the notation of Section 1. In this section we assume that E has potential good
reduction over K, σE is irreducible and wildly ramified, p = 3, and H/K is unramified.
Then Gal(Nunr/Hunr) = 〈a〉, where the order |a| of a is 3 or 6, and let φ be a one-
dimensional complex continuous representation of W(K/H) such that ker(φ|IH ) = IN , so
that φ(a) is a primitive 3rd root of unity if |a| = 3 and φ(a) is a primitive 6th root of unity
if |a| = 6 (such φ exists because σ is induced by a character of H× and ker(σE|IK ) = IN).

Proposition 3.1. Assume that H is unramified over K, σ = IndHK φ, and φ is wildly
ramified. Suppose uH/K ∈ O×H satisfies u2

H/K ∈ OK and H = K(uH/K). If F is a finite

Galois extension of K and λ = ResFK φ, then

(3.1) a(λ) ≡ (a(φ)− 1)[F : K] + 1 mod 2

and

(3.2) W (E/F ) = (−1)1+(a(φ)−1)[F :K]φ(uH/K)[F :K] = (−1)1+[F :K]W (E/K)[F :K].
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Proof. Recall that σ = IndHK φ is symplectic and irreducible, hence φ|K× = χH/K by
Lemma 1.3. This implies λ|F× = χL/F , so that by Lemma 1.4 applied to φ, λ and (2.4),
we have

W (E/K) = (−1)a(φ)φ(uH/K),

W (E/F ) = (−1)a(λ)λ(uH/K) = (−1)a(λ)φ(uH/K)[F :K].

Thus (3.1) implies (3.2) and it is enough to prove (3.1). Assume now that Gal(Nunr/Hunr) ∼=
Z/3Z, so that Nunr = Munr. Denote L = FH. Note that by Lemma 1.9 we have
Lunr ∩Munr = Hunr.

Let F̃ be the maximal tamely ramified extension of K contained in F , let L̃ = F̃H,
and let λt be the restriction of φ to L̃. Denote et = e(L̃/H) = e(F̃ /K). By Lemma 1.2,
since a(φ) > 1, we have a(λt) = (a(φ) − 1)et + 1. Since p = 3 and f(F/K) is odd, we
have et ≡ [F : K] mod 2, so that

(3.3) a(λt) ≡ (a(φ)− 1)[F : K] + 1 mod 2.

Assume now that F is a (totally ramified) Galois extension of F̃ of degree 3. We will
show that a(λ) ≡ a(λt) mod 2. Indeed, let T̃ = L̃M , T = LM . Since L ∩M = H, we
have the following diagram of field extensions:

F

3

2
L

3

3
T

3

F̃
2

L̃
3

T̃

Moreover, Gal(T̃ /F̃ ) ∼= S3 and λt is a faithful representation of Gal(T̃ /L̃). Let G =
Gal(T/L̃) ∼= (Z/3Z)× (Z/3Z). Ramification groups of G have the form

G = G0 = G1 = · · · = Gt ⊃ Gt+1 = {1} or

G = G0 = G1 = · · · = Gt ⊃ Gt+1 = · · · = Gt+s ⊃ Gt+s+1 = {1},(3.4)

where Gt+1
∼= Z/3Z. It is easy to see that depending on the embedding of Gt+1 into G

we have either

(1) a(λt) = a(λ), or
(2) a(λt) = 1 + t+ s

3
, a(λ) = 1 + t+ s, or

(3) a(λt) = 1 + t+ s
3
, a(λ) = 1 + t.

Since a(λt) is an integer, a(λt) ≡ a(λ) mod 2 in cases (1) and (2). Case (3) occurs when
ramification groups of G have form (3.4) and Gt+1 embeds diagonally into G. Assume
that this is the case. Let a denote a generator of Gal(T̃ /L̃), let b denote a generator of
Gal(L/L̃). Then we can identify G with 〈a〉 × 〈b〉 via the natural isomorphism given by
restrictions and without loss of generality we can assume that Gt+1 = 〈ab〉. Let c = ΦF̃

be a Frobenius of F̃ . Since Gal(T̃ /F̃ ) ∼= S3 and Gal(L/F̃ ) ∼= Z/6Z, we have cac−1 = a−1
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and cbc−1 = b. Denote Γ =WF̃/IT and Λ =WL̃/IT . Then

Γ ∼= (〈a〉 × 〈b〉) o 〈c〉, Λ ∼= (〈a〉 × 〈b〉)× 〈c2〉.
Let ψ denote a one-dimensional complex representation of Λ given by ψ(a) = ξ for a
primitive third root of unity ξ, ψ(b) = ψ(c2) = 1, let µ be a one-dimensional complex

representation of Γ given by µ(a) = µ(c) = 1, µ(b) = ξ, and let ρ = IndΓ
Λ ψ = IndL̃

F̃
ψ, so

that

ρ(a) =

(
ξ 0
0 ξ−1

)
, ρ(b) =

(
1 0
0 1

)
, ρ(c) =

(
0 1
1 0

)
.

Then it is easy to check that on one hand, a(ρ⊗µ) = 2(t+ 1) + s
3

and on the other hand,

a(ρ⊗ µ) = a(IndL̃
F̃

(ψ ⊗ ResL̃
F̃
µ)) = 2a(ψ ⊗ ResL̃

F̃
µ),

which implies that s is even and hence a(λt) ≡ a(λ) mod 2 in case (3) as well.

Assume now that F is an arbitrary Galois extension ofK. If F is tame overK, then (3.1)
follows from (3.3). Otherwise, since Gal(F/F̃ ) is a 3-group, there exists a totally ramified
Galois extension F ′ of F̃ contained in F such that F is a totally ramified Galois extension
of F ′ of degree 3. Note that F ′ ∩ H = K, because F ∩ H = K, hence [F ′H : F ′] = 2
and e(F ′H/F ′) = 1. Also, (F ′H)unr ∩Munr = Hunr, because Lunr ∩Munr = Hunr, so
that F ′H ∩M = H and e(F ′M/F ′H) = 3. Finally, using the results above together with
the induction on the degree of F over F̃ , we get a(λ) ≡ a(λt) mod 2, which together with
(3.3) proves (3.1) in the case when Gal(Nunr/Hunr) ∼= Z/3Z.

Assume now that Gal(Nunr/Hunr) ∼= Z/6Z. Since Munr 6⊆ Lunr by Lemma 1.9,
λ is wildly ramified, hence a(λ2) = a(λ) and we can apply the results for the case
Gal(Nunr/Hunr) ∼= Z/3Z above. Thus

a(λ) ≡ (a(φ2)− 1)[F : K] + 1 mod 2,

where a(φ2) = a(φ), so that (3.1) follows. �

Remark 3.2. Note that φ(uH/K) does not depend on the choice of uH/K . Indeed, recall

that σ = IndHK φ is symplectic and irreducible, hence by Lemma 1.3 we have φ|K× = χH/K .
Thus φ(uH/K) does not depend on the choice of uH/K by Remark 1.5.

4. Case when H/K is ramified

We keep the notation of Section 1. In this section we assume that E has potential good
reduction over K, σE is irreducible and wildly ramified, p = 3, and H/K is ramified. We
distinguish two cases: L = FH is unramified over F (equivalently, the ramification index
e(F/K) of F over K is even) and L is ramified over F (equivalently, e(F/K) is odd).
Proposition 4.1 below treats the first case and Theorem 4.3 below treats the second.

Proposition 4.1. Let H be ramified over K and let α ∈ OH satisfy α2 ∈ OK, valH α = 1,
and H = K(α). Let L be unramified over F (equivalently, e(F/K) is even). Then

(4.1) W (E/F ) = (−1)a(λ)+
e(F/K)

2 φ(α)[F :K].
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Moreover, if F is Galois over K, then

(4.2) a(λ) ≡ (a(φ)− 1)
e(F/K)

2
+ 1 ≡ e(F/K)

2
+ 1 mod 2

and

(4.3) W (E/F ) = (−1)1+
e(F/K)

2
f(F/Q3).

Proof. Let $F be a uniformizer of F . Since e(F/K) is even, we have α = u$k
F for

k = e(F/K)
2

, u ∈ O×L , u2 ∈ O×F , and L = F (u). Recall that σ = IndHK φ is symplectic and
irreducible, hence φ|K× = χH/K by Lemma 1.3. This implies λ|F× = χL/F , so that by
Lemma 1.4 applied to λ and (2.4), we have

W (E/F ) = (−1)a(λ) · λ(u).

Here λ(u) = λ(α)λ($F )−k, where λ($F ) = χL/F ($F ) = −1 and (4.1) follows.

Let Ft be the maximal tamely ramified extension of K contained in F , let Lt = FtH,
and let λt be the restriction of φ to Lt. Since Lt is unramified over Ft, Proposition 3.1
implies

a(λ) ≡ (a(λt)− 1)[F : Ft] + 1 mod 2.

Let et = e(Ft/K)
2

= e(Lt/H). Using Lemma 1.2 and taking into account that a(φ) is even
(by Lemma 1.1), we have

a(λt) = (a(φ)− 1)et + 1 ≡ et + 1 mod 2.

This implies (4.2).

Finally, from (4.1) and (4.2) we have

W (E/F ) = −φ(α)[F :K].

Also, φ(α2) = χH/K(−1) = (−1)f(K/Q3), since α2 ∈ K, α 6∈ K, and φ|K× = χH/K . Since
[F : K] is even, we have

φ(α)[F :K] = φ(α2)
[F :K]

2 = (−1)f(K/Q3)
[F :K]

2 = (−1)
e(F/K)

2
f(F/Q3)

and (4.3) follows. �

Remark 4.2. Note that φ(α)[F :K] does not depend on the choice of α. Indeed, let β ∈ OH
satisfy β2 ∈ OK , valH α = 1, and H = K(β). This implies that α = uβ for u ∈ O×K . Since
[F : K] is even and φ|K× = χH/K (by Lemma 1.3), we have

φ(u)[F :K] = φ(u2)
[F :K]

2 = χH/K(u2)
[F :K]

2 = 1,

since u2 = NH/K(u) is in the kernel of χH/K .



CHANGE OF ROOT NUMBERS OF ELLIPTIC CURVES UNDER EXTENSION OF SCALARS 13

Theorem 4.3. Suppose e(F/K) is odd and et is the ramification index of the maximal
tamely ramified extension of K contained in F . Assume in addition that F is Galois over
K. Then there exists α ∈ OH (that depends on E and does not depend on F ) such that
H = K(α), α2 ∈ OK, valH α = 1, and

(4.4) W (E/F ) = (−1)1+af(F/Q3)η[F :K]φ(α)[F :K],

where η is given by Lemma 1.7 (it depends on E and does not depend on F ) and

a =

{
et−1

2
, if et ≡ 1 mod 3

et+1
2
, if et ≡ 2 mod 3

=

{
odd, if et ≡ 5 or 7 mod 12

even, if et ≡ 1 or 11 mod 12.

In particular,

W (E/K) = −ηφ(α)

and

W (E/F ) = (−1)1+[F :K]+af(F/Q3)W (E/K)[F :K].

Proof. Clearly, it is enough to prove (4.4). For that we will choose a special ψF and
calculate separately W (χL/F , ψF ) and W (λ, ψL) in (2.4).

The root number W (χL/F , ψF ). Let g be a generator of Gal(M/H) (recall that
M = K(E[2]) and Gal(M/H) ∼= Z/3Z) and let A, B, C denote the x-coordinates of the
2-torsion points on E such that g(A) = B, g(B) = C. Let ∆1/2 denote a fixed quadratic
root of ∆ satisfying

∆1/2 = (A−B)(B − C)(C − A),

let ∆1/4 denote a fixed quadratic root of ∆1/2, and let N = K(E[2],∆1/4) with our choice
of ∆1/4. We can extend g to an element of order 3 of Gal(N/H), then consider g as an
element of Gal(Nunr/Hunr) via the natural isomorphism Gal(Nunr/Hunr) ∼= Gal(N/H)
given by the restriction, and finally regard g as an element ofW(K/H)/IN via the natural
embedding Gal(Nunr/Hunr) ↪→ W(K/H)/IN . In particular, g(∆1/4) = ∆1/4. Let ψK
denote a character of K whose restriction to OK is given by

ψK(x) = φ(g)
−TrK̂/F3

(x̄)
, x ∈ OK ,

where x̄ denotes the image of x in K̂ under the quotient map.

Let σF = ResFK σ = IndLF λ, so that σF is the analogue of σ for the elliptic curve over F
obtained from E by extension of scalars. Denote P = LM and T = LN . By Lemma 1.9,
the natural restriction map

µ : Gal(T unr/Lunr) −→ Gal(Nunr/Hunr)

is an isomorphism. Hence σF is irreducible by Lemma 1.3. Let g̃ ∈ Gal(T unr/Lunr) be
the preimage of g under µ. We consider g̃ as an element of W(K/L)/IT via the natural
embedding Gal(T unr/Lunr) ↪→ W(K/L)/IT . Thus T = F (E[2],∆1/4) with the above
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choice of ∆1/4, g̃ fixes each element of F unr, g̃(A) = B, g̃(B) = C, g̃(∆1/4) = ∆1/4, and
λ(g̃) = φ(g). Let ψ denote a character of F whose restriction to OF is given by

ψ(x) = φ(g)
−TrF̂ /F3

(x̄)
, x ∈ OF ,

and let ψF be a character of F given by

ψF (x) = ψ(etx).

(Recall that et is the ramification index of the maximal tamely ramified extension Ft of K
contained in F .) Let ΦT ∈ W(K/T ) be a Frobenius. Then by a property of root numbers
(see e.g., [7], Proposition on p. 143) we have

(4.5) W (χL/F , ψF ) = χL/F (et)W (χL/F , ψ).

On the other hand, it follows from [4] that

(4.6) W (χL/F , ψ) = −λ(ΦT ).

Indeed, denote

G =
∑

u∈(F̂ )×

(
u

F̂

)
φ(g)

−TrF̂ /F3
(u)
,

where
(
u

F̂

)
is the quadratic residue symbol of u ∈ F̂ . Using the definition of W (χL/F , ψ),

one can check that

(4.7) W (χL/F , ψ) = C1 ·G,

where C1 is a real positive number. It follows from Proposition 5.7 on p. 618 in [4] that

(4.8) G = −C2 · λ(ΦT ),

where C2 is a real positive number (note that in [4] instead of λ the author uses a character
of L× that induces ResFK σE). Since both W (χL/F , ψ) and λ(ΦT ) are of absolute value 1,
(4.7) and (4.8) imply (4.6). Finally, (4.5) and (4.6) give

W (χL/F , ψF ) = −χL/F (et)λ(ΦT ).

Note that since Gal(K/T unr) is in the kernel of λ, λ(ΦT ) does not depend on the choice
of ΦT . Let f = f(F/K). Note that f = f(T/N), which follows from the assumptions
that e(H/K) = 2, e(F/K) is odd, and φ is wildly ramified together with Lemma 1.9. Let

ΦN ∈ Gal(K/N) be a fixed Frobenius. There exists d ∈ IN such that ΦT = Φf
Nd, hence

λ(ΦT ) = φ(ΦN)f = ηf and

(4.9) W (χL/F , ψF ) = −χL/F (et)η
f .

The root number W (λ, ψL). Given Lt = FtH we define characters ψH and ψL of H
and L, respectively, via

ψH = ψK ◦ TrH/K , ψL = ψF ◦ TrL/F .
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Note that

ψF (x) = φ(g)
−et TrF̂ /F3

(x̄)
, x ∈ OF ,

ψH(x) = φ(g)
−2 TrĤ/F3

(x̄)
, x ∈ OH ,

ψL(x) = φ(g)
−2et TrL̂/F3

(x̄)
, x ∈ OL,

so that n(ψK) = n(ψF ) = n(ψH) = n(ψL) = −1 and

ψL(x) = ψH ◦ TrLt/H(x), x ∈ OLt ,

ψF (x) = ψK ◦ TrFt/K(x), x ∈ OFt .

Clearly, ΦN is a Frobenius of both Gal(K/H) and Gal(K/K). We fix uniformizers $H

and $K of H and K, respectively, corresponding to ΦN via the local class field theory.
Analogously, we fix uniformizers $L and $F of L and F , respectively, corresponding to
ΦT via the local class field theory. In particular, we have

$K = NH/K$H , $F = NL/F$L.

Let θ̃ = ResLH θ, where θ is defined by Lemma 1.8. Then

θ̃($L) = θ($H)f = γf , f = f(F/K) = f(L/H),

and
θ̃($L)2 = γ2f = (−1)f(L/Q3).

Let α ∈ OH satisfy H = K(α), α2 ∈ OK , and valH α = 1, and let e = e(F/K). By
Lemma 1.9, λ is not tame and hence a(λ) and a(φ) are even by Lemma 1.1. We denote
a(λ) = κ, a(φ) = m. To calculate W (λ, ψL) we follow Rohrlich’s approach, namely make
use of the Fröhlich–Queyrut’s formula as follows. Note that L = F (α). Since θ was chosen

so that (φ⊗ θ)|K× = 1K , we have (λ⊗ θ̃)|F× = 1F and hence

W (λ⊗ θ̃, ψL) = λ(α)θ̃(α) = φ(α)[F :K] · θ(α)[F :K],

where the first equality follows from Theorem 3 on p. 130 in [2]. On the other hand, since

a(θ̃) = 1 and n(ψL) = −1, by the results on p. 546 in [1], we have

W (λ⊗ θ̃, ψL) = θ̃(z)−1W (λ, ψL),

where z ∈ L× satisfies valL(z) = 1− κ and

(4.10) λ(1 + b) = ψL(zb), for any b ∈ L with valL(b) ≥ κ/2.

Hence,

(4.11) W (λ, ψL) = φ(α)[F :K] · θ(α)[F :K] · θ̃(z).

Let y ∈ H× with valH(y) = 1−m satisfy

(4.12) φ(1 + a) = ψH(ya), for any a ∈ H with valH(a) ≥ m/2.

Lemma 4.4. We have

(4.13) θ̃(z) = θ(y)etf .
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Proof. See Section 5 below. �

Let n = a(φ)/2 = m/2. Note that φ−1(1 + α$n−1
K b) is an additive character in b ∈ OK

and hence there exists u ∈ K× such that

φ−1(1 + α$n−1
K b) = ψK(ub), ∀b ∈ OK .

Moreover, valK u = 0, so that u ∈ O×K . Thus there exists α ∈ H depending on φ, ψK ,
and our choice of $K such that H = K(α), α2 ∈ OK , valH α = 1, and

(4.14) φ−1(1 + α$n−1
K b) = ψK(b), ∀b ∈ OK .

In particular, it follows from our choices of ψK and $K that α in (4.14) depends on E
and does not depend on F . Taking into account that valH

(
α$n−1

K b
)
≥ n for any b ∈ OK

and using (4.12) we get

ψH(b) = φ(1 + α$n−1
K b) = ψH(yα$n−1

K b).

Hence yα$n−1
K ≡ 1 mod pH (since n(ψH) = −1) and θ(y) = θ(α)−1. This together with

(4.11) and (4.13) yields

(4.15) W (λ, ψL) = φ(α)[F :K] · θ(α)[F :K]−etf .

We now prove (4.4). It follows from (2.4), (4.9), and (4.15) that

(4.16) W (E/F ) = −ηfχL/F (et)φ(α)[F :K]θ(α)[F :K]−etf .

Let α = u$H for some u ∈ O×H . Note that θ($H) = γ, θ|O×H has order 2, and [F : K]−etf
is even, so that

(4.17) θ(α)[F :K]−etf = γ[F :K]−etf .

Assume f(F/Q3) is even. Then χL/F (et) = 1. Also, using Lemmas 1.7 and 1.8, it is

easy to check that γ[F :K]−etf = 1 and ηf = η[F :K], so that (4.4) follow from (4.16) together
with (4.17).

Assume f(F/Q3) is odd, so that both f(F/K) and f(K/Q3) are odd. Then η2 = −1
and we choose γ = η, which gives

ηf+[F :K]−etf = (−1)
et−1

2 η[F :K].

Calculating (−1)
et−1

2 and χL/F (et) =
(
et

3

)
explicitly, we get (4.4). �

5. Proof of Lemma 4.4

In this section we keep the notation and assumptions of the previous section. We
consider three cases: 1) F is tamely ramified over K (equivalently, L is tamely ramified
over H), 2) F is a totally ramified Galois extension of K of degree 3 (hence, L is a totally
ramified Galois extension of H of degree 3), and 3) the general case.
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L is tamely ramified over H. Note that in this case we have L = Lt and hence
ψL = ψH ◦ TrL/H on OL. Since by assumption φ is not tame, by Lemma 1.2 we have
κ = (m− 1)et + 1. This implies

valL y = valL z = (1−m)et.

For any b ∈ L with valL(b) ≥ (m− 1)et using (4.10) we have

(5.1) ψL(zb) = λ(1 + b) = φ(NL/H(1 + b)) = φ(1 + TrL/H(b) + b′), b′ ∈ H,
where valL(TrL/H(b)) ≥ met/2 and valL(b′) ≥ met. Thus

valH(TrL/H(b)) ≥ m/2, valH(b′) ≥ a(φ), and yb ∈ OL,
hence by (4.12)

(5.2) φ(1 + TrL/H(b) + b′) = ψH(yTrL/H(b)) = ψH(TrL/H(yb)) = ψL(yb).

Therefore, comparing (5.1) and (5.2) we get ψL(zb) = ψL(yb) or, equivalently,

ψL((z − y)b) = 1.

Since the last equation holds for all b ∈ p
(m−1)et

L , we conclude that

(5.3) valL((z − y)$
(m−1)et

L ) ≥ 1.

Let y = u$valL y
L , z = v$valL y

L for u, v ∈ O×L . Then (5.3) implies u ≡ v mod pL and hence

(5.4) θ̃(z) = θ̃($L)valL y · θ̃(u) = θ̃(y) = θ(y)[L:H].

L is a totally ramified Galois extension of H of degree 3. Let T = LN . We first
study the relation between a(φ) and a(λ). In particular, we will show that a(λ) ≥ a(φ).
For that we analyze the higher ramification groups of Gal(T unr/Hunr). Denote

P = Gal(Nunr/Hunr) ∼= Z/2Z× Z/3Z,
Q = Gal(Lunr/Hunr) ∼= Z/3Z,
G = Gal(T unr/Hunr),

C = Gal(T unr/Lunr) ∼= Z/2Z× Z/3Z
(here we used Lemma 1.9). The higher ramification groups of P are

P = P0 ⊃ P1 = · · · = Pn ⊃ Pn+1 = {1},
where P1

∼= Z/3Z, n is even (as follows from the results on the action of inertia groups
on higher ramification groups), m = 1 + n/2, and since m is even, we have n/2 is odd.
Let R = Gal(Lunr/Kunr) ∼= Z/2Z× Z/3Z. Then the higher ramification groups of R are

R = R0 ⊃ R1 = · · · = Rα ⊃ Rα+1 = {1},
where R1

∼= Z/3Z and α is even. Then the higher ramification groups Qi of Q have the
form Qi = Q ∩Ri, so that

Q = Q0 = · · · = Qα ⊃ Qα+1 = {1},
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where α is even. Finally, the higher ramification groups of C are

C = C0 ⊃ C1 = · · · = Cδ ⊃ Cδ+1 = {1},

where C1
∼= Z/3Z, δ is even, κ = 1 + δ/2, and since κ is even, we have δ/2 is odd. Since

Lunr ∩Nunr = Hunr, the restriction maps give the isomorphism

µ : G
∼=−→ Gal(Nunr/Hunr)×Gal(Lunr/Hunr),

so that G ∼= Z/2Z × (Z/3Z)2 is an abelian group of order 18. As a result, the higher
ramification groups of G can have two forms:

(5.5) G = G0 ⊃ G1 = · · · = Gt ⊃ Gt+1 = {1},

where G1
∼= Z/3Z× Z/3Z, t is even, or

(5.6) G = G0 ⊃ G1 = · · · = Gt ⊃ Gt+1 = · · · = Gt+s ⊃ Gt+s+1 = {1},

where G1
∼= Z/3Z×Z/3Z, Gt+1

∼= Z/3Z, t is even, and s is divisible by 6. We will show,
in particular, that (5.5) does not occur.

Assume that (5.5) holds. By comparing the higher ramification groups of G with the
higher ramification groups of its quotients Q and P , it is not hard to see that in this case
we have α = t/2, n = t, which is a contradiction, since by above α is even and n/2 is odd.

Assume that (5.6) holds. There are three sub-cases depending on the embedding of
Gt+1

∼= Z/3Z into Gt
∼= Z/3Z × Z/3Z. Let S ⊆ N be a quadratic extension of H such

that Sunr/Hunr is the maximal tamely ramified subextension of Nunr/Hunr. Again, as
in the previous paragraph, by comparing the higher ramification groups of G with the
higher ramification groups of its subgroup C and quotients Q and P , it is not hard to see
that

(5.7)
α = t

2
+ s

6
, n = t, δ = t, if µ(Gt+1) = Gal(Lunr/Hunr),

α = t
2
, n = t+ s

3
, δ = t+ s, if µ(Gt+1) = Gal(Nunr/Sunr),

α = t
2

+ s
6
, n = t+ s

3
, δ = t, otherwise.

Thus, in the third sub-case in (5.7) we get α = n/2, which is a contradiction, since by above
α is even and n/2 is odd. Hence µ(Gt+1) = Gal(Lunr/Hunr) or µ(Gt+1) = Gal(Nunr/Sunr)
and a(λ) ≥ a(φ).

Remark 5.1. It turns out that both first two cases in (5.7) can occur. Explicit examples
of elliptic curves over K = Q3 can be found in [3].

Note that since L is wildly ramified over H, by our choice ψH = ψL on OH . Let x ∈ L
with valL(x) ≥ κ− 1. Then

(5.8) ψL(zx) = λ(1 + x) = φ
(
NL/H(1 + x)

)
.
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By Lemmas 4 and 5 on p. 83 in [9] we have

NL/H(1 + x) ≡ 1 + TrL/H(x) + NL/H(x) mod pl1H , l1 =

[
2

3
(κ+ α)

]
,(5.9)

TrL/H(x) ≡ 0 mod pl2H , l2 =

[
κ+ 2α + 1

3

]
.

(Here, for r ∈ R the symbol [r] denotes the largest integer ≤ r.) In both cases when
µ(Gt+1) = Gal(Lunr/Hunr) or µ(Gt+1) = Gal(Nunr/Sunr), using formulas (5.7) and a(λ) =
κ = 1 + δ/2, a(φ) = m = 1 + n/2, it is easy to check that l1 ≥ m. Let

x = a$κ−1
L , z = w$1−κ

L , y = u$
3(1−m)
L , a ∈ OL, w, u ∈ O×L .

Assume that µ(Gt+1) = Gal(Lunr/Hunr). In this case we have κ = m, l2 ≥ m, and
valH NL/H(x) ≥ κ− 1 = m− 1 ≥ m/2. Thus using (5.8) and (5.9) we get

(5.10) ψL(zx) = φ
(
1 + NL/H(x)

)
= ψL(yNL/H(x)).

Note that the group Gal(L/H) coincides with its α-th ramification subgroup, where α ≥ 1,
so that g($L)$−1

L ≡ 1 mod pL for any g ∈ Gal(L/H). Then easy calculation shows that

yNL/H(x) = yNL/H(a) NL/H($L)κ−1 ≡ ua3 mod pL.

Thus, (5.10) implies aw− ua3 ∈ kerψL. Let f = f(L/Q3). We have u3f ≡ u mod pL and

ua3 ≡ u3f

a3 − u3f−1

a+ u3f−1

a ≡ u3f−1

a mod kerψL,

since it follows from the definition of ψL that u3f
a3 − u3f−1

a ∈ kerψL. This implies
a ·(w−u3f−1

) ∈ kerψL for all a ∈ OL and hence w ≡ u3f−1
mod pL (because n(ψL) = −1).

Since the restriction of θ̃ to O×L has order 2, we have

θ̃(y) = θ̃(u)θ̃($L)3(1−κ) = θ̃(w)θ̃($L)3(1−κ) = θ̃(w)3θ̃($L)3(1−κ) = θ̃(z)3.

On the other hand, θ̃(y) = θ(y)3, since y ∈ H×. Finally, recall that θ(β)4 = 1 for any
β ∈ W(K/H), hence

(5.11) θ̃(z) = θ(y).

Assume now that µ(Gt+1) = Gal(Nunr/Sunr). In this case l2 = m − 1 ≥ m/2 and
valH NL/H(x) ≥ κ− 1 ≥ m. Hence, using (5.8) and (5.9) we get

(5.12) ψL(zx) = φ
(
1 + TrL/H(x)

)
= ψL(yTrL/H(x)).

Note that without loss of generality we can assume w ∈ O×H . Indeed, since L is to-
tally ramified over H, there exists w0 ∈ O×H such that w − w0 ∈ pL. Then ψL(zx) =

ψL(w0$
1−κ
L x) (because n(ψL) = −1) and θ̃(z) = θ̃(w0$

1−κ
L ) (because a(θ̃) = 1). For any

a ∈ OH equation (5.12) yields

a · (w − yTrL/H($κ−1
L )) ∈ OH ∩ kerψL
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and hence w ≡ yTrL/H($κ−1
L ) mod pH . Our next step is to calculate yTrL/H($κ−1

L ).
Denote $L = $, κ− 1 = j, and let g be a generator of Gal(L/H), so that

TrL/H($j) = $j + g($)j + g2($)j.

Note that valL(y) + j + 2α = 0. We have g($) = $(1 + c$α) for some c ∈ O×L and
g(c) ≡ c mod pα+1

L . Using this, it is easy to check that

TrL/H($j) = $j +$j(1 + c$α)j + g($)j(1 + g(c)g($)α)j ≡(5.13)

≡ $j(3 + 3cj$α + c2j(α + j)$2α) mod pj+2α+1
L .

Let b = e(H/Q3). Then e(N/Q3) = 6b and e(L/Q3) = 3b. It is known (see e.g., [9], p. 72,
Exc. 3c) that

n ≤ 1

2
e(N/Q3) and α ≤ 1

2
e(L/Q3),

which implies t+ s
3
≤ 3b and since s 6= 0, we conclude that 2α = t < 3b. In other words,

valL 3 > 2α and it follows from (5.13) that

yTrL/H($j) ≡ uc2j(α + j) mod pL.

Recall that j = κ− 1 = δ
2

= t
2

+ s
2
, α = t

2
and since s ≡ 0 mod 3, we have

w ≡ yTrL/H($j) ≡ 2c2t2u mod pL.

Since w is a unit, we see that t is not divisible by 3 and since the restriction of θ̃ to O×L
has order 2, we have

θ̃(z) = θ̃(w)θ̃($L)1−κ = θ(2)θ̃(u)θ̃($L)1−κ.

Recall that y = u$
3(1−m)
L . Also, 1− κ− 3(1−m) = t, where t = 2α and α is even, so t is

divisible by 4 and hence

θ̃($L)1−κ = θ̃($L)3(1−m).

Thus,

θ̃(z) = θ(2)θ̃(y) = θ(2)θ(y)3.

Writing y ∈ H× as the product of a unit in O×H and $valH y
H and taking into account that

θ(2) = (−1)f(H/Q3), θ($H)2 = (−1)f(H/Q3), valH y = 1 −m is odd, and the restriction of
θ to O×H has order two, we get θ(2)θ(y)2 = 1. Therefore,

(5.14) θ̃(z) = θ(y).

General case. We now assume that F is an arbitrary finite Galois extension of K.
Let Ft be the maximal tamely ramified extension of K contained in F . Since the group
Gal(F/Ft) is a p-group with p = 3, it has a quotient that is a cyclic group of order 3, hence,
there exists a finite Galois extension F1 of Ft contained in F with Gal(F1/Ft) ∼= Z/3Z.
We put L1 = F1H, Lt = L0 and for each i ∈ {0, 1} denote φi = ResLi

H φ, θi = ResLi
H θ,
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ψ0 = ψH ◦ TrLt/H . Also, let ψ1 be a character of L1 such that ψ1 = ψL on OL1 and let
zi ∈ L×i be the analogues of z for φi, i.e., we have

φi(1 + a) = ψi(zia), a ∈ L×i , valLi
(a) ≥ a(φi)/2.

(Note that ψi is non-trivial and a(φi) is even by Lemma 1.9 and Lemma 1.1.) Using the
inductive hypothesis on the order of Gal(L/Lt) ∼= Gal(F/Ft) together with (5.11) and
(5.14), we get

θ̃(z) = θ1(z1) = θ0(z0).

Finally, using (5.4) we have

θ̃(z) = θ0(z0) = θ(y)[Lt:H].

6. Example of a non-Galois F/K

We keep the notation of Section 1 and assume p = 3, E has potential good reduction
over K, σE is irreducible and wildly ramified.

Lemma 6.1. Let H be unramified over K and let uH/K ∈ O×H satisfy u2
H/K ∈ OK and

H = K(uH/K). Suppose F is a degree 3 extension of K such that the Galois closure F g

of F over K is totally ramified over K. Then there exists t ∈ N such that

W (E/F ) = (−1)Aφ(uH/K)[F :K],

where

(6.1) A =

{
a(φ), if F/K is Galois,

a(φ) + t, if F/K is not Galois.

In particular, if F is Galois over K, then W (E/F ) = W (E/K). If F is not Galois over
K, then W (E/F ) = (−1)tW (E/K) and both cases t is even and t is odd can occur.

Proof. The case when F is Galois over K is done in Proposition 3.1. Suppose F is not
Galois over K, so that Gal(F g/K) ∼= S3. By Proposition 4 and its proof on p. 320 in [8]
we have

W (E/F ) = (−1)a(σ⊗τ)/2−a(τ)φ(uH/K)[F :K],(6.2)

where τ = IndFK 1F . Let S/K be the maximal tamely ramified subextension of F g/K, i.e.,
[S : K] = 2. Let T = F gM , H̃ = SH, L̃ = F gH, and M̃ = SM . By Lemma 1.9 above,
M is not contained in L̃ and hence we have the following diagrams of field extensions:

F g

3

2
L̃

3

3
T

3

S

2

2
H̃

2

3
M̃

2

K
2

H
3

M

(F g)unr

3

L̃unr

3

3
T unr

3

Sunr

2

H̃unr

2

3
M̃unr

2

Kunr Hunr 3
Munr
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Let µ be a character of S× such that kerµ = Gal(K/F g), let µ̃ = ResH̃S µ, φ̃ = ResH̃H φ.

Then a(φ̃) = 2a(φ) − 1 by Lemma 1.2 and hence a(φ̃) is odd. Also, it is easy to check
that µ|K× = 1K and hence a(µ) = a(µ̃) is even by Lemma 4 on p. 132 in [2]. Let
G = Gal(T unr/Hunr) ∼= S3 × Z/3Z. Ramification groups of G have the form

G = G0 ⊃ G1 = · · · = Gt ⊃ Gt+1 = {1} or(6.3)

G = G0 ⊃ G1 = · · · = Gt ⊃ Gt+1 = · · · = Gt+s ⊃ Gt+s+1 = {1},(6.4)

where G1 = Gal(T unr/H̃unr) ∼= Z/3Z × Z/3Z and in (6.4) we have Gt+1
∼= Z/3Z. It

is easy to see that in case (6.3) and in case (6.4) with Gt+1 embedded diagonally into

G1, we have a(φ̃) = a(µ̃), which is a contradiction, since by above one number is odd
and the other is even. Thus (6.3) does not occur and in (6.4) we have either Gt+1 =
Gal(T unr/L̃unr) or Gt+1 = Gal(T unr/M̃unr). If Gt+1 = Gal(T unr/L̃unr), then we have

a(φ̃) = a(φ̃ ⊗ µ̃) = 1 + t + s
3
, a(µ̃) = 1 + t. Since a(φ̃) is odd and a(µ̃) is even, we

conclude that both t and a(φ̃⊗ µ̃) are odd. Analogously, if Gt+1 = Gal(T unr/M̃unr), then

a(φ̃) = 1 + t, a(µ̃) = a(φ̃⊗ µ̃) = 1 + t+ s
3
, so that both t and a(φ̃⊗ µ̃) are even.

On the other hand, τ = IndFK 1F ∼= 1K + IndSK µ and using the inductive properties of
function a(−) one can see that

a(σ ⊗ τ)/2− a(τ) ≡ a(φ) + a(φ̃⊗ µ̃) ≡ a(φ) + t mod 2,

so that using (6.2) we have A ≡ a(φ) + t mod 2 in (6.1).

We now show that both cases t is even and t is odd can occur. Let K = Q3 and let
B = Gal(F g/K) ∼= S3, C = Gal(M/H) ∼= Z/3Z. Then the ramification groups of B and
C are

B = B0 ⊃ B1 = · · · = Bα ⊃ Bα+1 = {1}, B1
∼= Z/3Z,

C = C0 = C1 = · · · = Cβ ⊃ Cβ+1 = {1}.

Thus a(µ) = 1 + α and a(φ) = 1 + β. By the previous paragraph we also have two cases:

(1) a(µ) = 1 + t, a(φ) = 1 + 1
2
(t+ s

3
) or

(2) a(µ) = 1 + t+ s
3
, a(φ) = 1 + t

2
.

On the other hand, α ≤ e(F g/Q3)/2 = 3, β ≤ e(M/Q3)/2 = 1.5 (see e.g., [9], p. 72,
Exc. 3c). Thus β = 1 and since a(µ) is even, α = 1 or α = 3. Furthermore, by comparing
a(µ) and a(φ) in terms of α, β with those in terms of t, s, we have two cases

(1) α = t, β = 1
2
(t+ s

3
) = 1, hence α = t = 1, or

(2) α = t+ s
3
, β = t

2
= 1, hence t = 2, α = 3.

Consider the following elliptic curves over Q3:

E : y2 + xy + y = x3 − x2 − 5x+ 5,

E1 : y2 + y = x3,

E2 : y2 + y = x3 − 1.
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Let ∆, ∆1, and ∆2 denote the minimal discriminants of E, E1, and E2, respectively. It is
shown in [3] that E, E1, and E2 are of the Kodaira-Néron reduction type II, valQ3(∆) =
a(σE) = 4, valQ3(∆1) = a(σE1) = 3, valQ3(∆2) = a(σE2) = 5. It is not hard to check that
this implies, in particular, that E satisfies the hypothesis of Lemma 6.1. Also, denote
Mi = Q3(Ei[2]), i = 1, 2. Then one can check that Gal(Mi/Q3) ∼= S3 and Mi is totally
ramified over Q3. For i ∈ {1, 2} let φi denote the analogue of φ for Ei (note that each φi
is wildly ramified), Mi will play a role of F g in our notation above, and let αi denote the
analogue of α for Mi. From a(σE1) = 3 and a(σE2) = 5 we can find a(φ1) = 2, a(φ2) = 4.
Moreover, note that a(φi) = αi + 1, so that α1 = 1, α2 = 3. Hence by cases (1) and (2)
above there exist non-Galois cubic extensions Fi/Q3 ⊂ Mi/Q3 such that t(F1) = 1 and
t(F2) = 2. �
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