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Abstract. We study the root valuation strata of the adjoint quotient of the Lie algebra
of a connected reductive group G over the field of complex numbers. Given a fixed
maximal torus T of G and the corresponding Weyl group W each root valuation stratum
corresponds to a pair (w, r) of an element w in W and a rational-valued function r on
the set R of roots of T in G. We address the following question posed in a joint paper
by Goresky, Kottwitz, and MacPherson. Suppose that for w,w′ in W and a rational-
valued function r on R the two root valuation strata corresponding to (w, r) and (w′, r),
respectively, are non-empty. Is it true that w and w′ are conjugate in W (more precisely,
in the stabilizer of r in W )? Goresky, Kottwitz, and MacPherson show that the answer is
positive if r is a constant function. We show that the answer is positive for an arbitrary
r if G is of classical type.

Introduction

Let G be a connected reductive group over C with a fixed maximal torus T and the
corresponding Weyl group W . In order to study affine Springer fibers Goresky, Kottwitz,
and MacPherson in their joint paper [GKM06] introduce the root valuation strata of
the adjoint quotient A = g/G of the Lie algebra g of G. Given the ring O = C[[ε]] of
formal power series each root valuation stratum is a subset of A(O)′ = A(O) ∩ Areg(F ),
where F = C((ε)) is the field of formal Laurent power series and Areg denotes the set of
all elements in A that are images of regular semisimple elements in g under the natural
map. Furthermore, A(O)′ is a (infinite) disjoint union of distinct root valuation strata.
In [GKM06] the authors show that affine Springer fibers over points in the same root
valuation stratum have the same dimension and it is expected that overall they have
similar geometric characteristics.

Each root valuation stratum A(O)(w,r) depends on a pair (w, r) of an element w in
W and a Q-valued function r on the set R of roots of T in G. More precisely, the
correspondence is as follows. Let F be an algebraic closure of F , Γ = Gal(F/F ), and let
τ denote a (non-canonical) topological generator of Γ. Let w be an element of W of order
l and let r : R −→ Q≥0 be a function. For an l-th root ε1/l of ε in F put Ol = C[[ε1/l]]
and define

tw(O)r :=
{
u ∈ t(Ol)

∣∣w (τ(u)) = u and r(α) = valα(u), ∀α ∈ R
}
,
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where t denotes the Lie algebra of T and the valuation val on F extends the standard
valuation on F via val(ε1/l) = 1/l. By definition the root valuation stratum A(O)(w,r) is
the image of tw(O)r under the map induced by the natural projection t � A, where A
is identified with t/W . It is not difficult to see that the stratum A(O)(w,r) depends only
on the W -orbit of the pair (w, r), where W acts on itself by conjugation and on the set
of functions {r : R −→ Q≥0} in the natural way. In [GKM06] Goresky, Kottwitz, and
MacPherson provide necessary and sufficient conditions for a root valuation stratum to be
non-empty and prove that for a constant function r the non-emptyness of both A(O)(w,r)
and A(O)(w′,r) for w,w′ ∈ W implies that (w, r) and (w′, r) are in the same W -orbit,
i. e., more precisely, w and w′ are conjugate under an element in the stabilizer of r in W .
They ask whether this is true for an arbitrary r. The goal of this note is to show that the
question has a positive answer in the case of an arbitrary r and a classical G. Namely,
the main result of this paper is the following

Theorem. Assume in addition that G is classical. Let w1, w2 ∈ W and let r : R −→ Q≥0
be a function. Suppose that A(O)(w1,r) and A(O)(w2,r) are both non-empty. Then w1 and
w2 are conjugate under an element in the stabilizer of r in W .

Thus in the case under consideration non-empty root valuation strata depend only on
functions r, which simplifies the original definition of Goresky, Kottwitz, and MacPherson.

Loosely speaking the proof of the theorem is based on the observation that for arbitrary
G and r to show whether w1 and w2 are conjugate it is enough to show whether certain
varieties are irreducible (see Lemma 3.6 and Remark 3.7 below). Each such variety is
an open subset inside the quotient of a union of linear subspaces of the C-span of a root
subsystem R′ ⊆ R by the action of a subgroup H ′ in the Weyl group W ′ of R′ (W ′ ⊆ W ).
Thus in order to analyze these varieties one needs to understand the action of H ′. If G is
a classical group, then due to the simplicity of W (and hence that of W ′) the action can
be written explicitly and the irreducibility of the aforementioned varieties can be checked
case by case with little modification between the cases when R is of type A, B, C, or D
(Section 4 below). The group W is much more complicated in the case of an exceptional
G and additional considerations are required.

Acknowledgements. I would like to express my deepest gratitude to Robert Kottwitz
for useful discussions, continued encouragement, and for pointing out a mistake in an
earlier version of the note. I am also very grateful to Mitya Boyarchenko for valuable
comments and helpful discussions.

1. General facts and notation

In this paper we will keep the same notation as in [GKM06]. This section is devoted
to reviewing this notation and some results that will be used later.
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1.1. The setup. Let G be a connected reductive group over C. We fix a maximal torus
T of G with its Lie algebra t, the root system R ⊂ X∗(T ) of G associated to T , and the
Weyl group W of T in G. We say that a subset R1 of R is Q-closed if α1, . . . , αt ∈ R1,
m1, . . . ,mt ∈ Q, and α = m1α1 + · · ·+mtαt ∈ R imply α ∈ R1.

By abuse of notation we will denote the differential of a root α ∈ R also by α. Later
we will need the following result:

Lemma 1.1. Let R1 be a Q-closed subset of R. If u ∈ t and α(u) = 0 for all α ∈ R1, then
the Weyl group W (R1) of R1 is contained in the stabilizer Wu := {w ∈ W |w(u) = u} of
u in W . If in addition α(u) 6= 0 for all α ∈ R\R1, then W (R1) = Wu.

Proof. The lemma is a consequence of Corollary 2.8, Lemma 3.7, Corollary 3.11, and
Theorem 3.14 in [St75] (also [GKM06], Prop. 14.1.1(1)). �

1.2. The base field F . Let F = C((ε)) be the field of formal Laurent power series over

C in an indeterminate ε with the ring of integers O = C[[ε]]. For each n ∈ N let ε1/n ∈ F×

(resp., ξn ∈ C×) be a fixed n-th root of ε (resp., a primitive n-th root of unity) such that(
ε

1
mn

)m
= ε1/n, (ξmn)m = ξn, ∀m,n ∈ N.

We put Fn = C((ε1/n)), On = C[[ε1/n]], and let τn denote the automorphism of Fn given
by

τn
(
ε1/n
)

= ξn · ε1/n.

It is known that F =
⋃
n∈N Fn. Thus the element τ∞ ∈ Aut(F ) defined in such a way

that its restriction to each Fn equals τn is a topological generator of Γ = Gal(F/F ), i.e.,

it determines an isomorphism Ẑ '−→ Γ. We also fix the valuation val on F such that

val(ε1/n) = 1/n, ∀n ∈ N, and val(0) = +∞.

1.3. The definition of root valuation strata. Let w be an element of W of order l
and let r : R −→ Q≥0 be a function. Define

tw(O) :=
{
u ∈ t(Ol)

∣∣w (τl(u)) = u
}

and

tw(O)r :=
{
u ∈ tw(O)

∣∣ r(α) = valα(u), ∀α ∈ R
}
.

By definition the root valuation stratum A(O)(w,r) is the image of tw(O)r under the map
tw(O) −→ A(O) induced by the natural projection t � A, where A is identified with t/W
by the results of Springer and Steinberg (see [SS70]). Thus tw(O)r is non-empty if and
only if A(O)(w,r) is non-empty, hence for our purposes it is enough to consider the sets
tw(O)r.
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1.4. Conditions for tw(O)r to be non-empty. Let r : R −→ Q≥0 be a function that
takes values in 1

s
Z for some s ∈ N. For each m ∈ Z≥0 denote

(1.1) Rm := {α ∈ R | r(α) ≥ m/s} ,
so that we have the chain

R = R0 ⊇ R1 ⊇ R2 ⊇ · · · .
Also, for m ≥ 1 let

am := {u ∈ t |α(u) = 0, ∀α ∈ Rm} , and

a]m := {u ∈ am |α(u) 6= 0, ∀α ∈ Rm−1\Rm} .
For w ∈ W of order l and each i ∈ Z≥0 we denote by t(w, i) the set of all the eigenvectors
of w in t with the eigenvalue ξ−il including the zero vector, i.e.,

t(w, i) :=
{
u ∈ t |w(u) = ξ−il · u

}
.

Finally, we put
Wr :=

{
w ∈ W | r

(
w−1(α)

)
= r(α), ∀α ∈ R

}
.

Note that
Wr =

⋂
m≥0

{w ∈ W |w(Rm) = Rm} .

In the following lemma we summarize the results about strata tw(O)r that will be used
later.

Lemma 1.2. If tw(O)r is non-empty, then

(1) ws = 1;
(2) r takes values in 1

l
Z;

(3) each Rm is Q-closed;
(4) w ∈ Wr.

Also, the set tw(O)r is non-empty if and only if t(w, i) ∩ a]i+1 is non-empty for all i ≥ 0.

Proof. See [GKM06], Lemma 4.8.1, Proposition 4.8.2, and Corollary 4.8.4. �

2. Statement of the main result

2.1. Main result. For convenience we restate the main theorem of the note (Theorem
in the introduction) using the notation of §1.

Theorem 2.1. Assume that R is a reduced irreducible root system of type A, B, C, or D.
Let w1, w2 ∈ W and let r : R −→ Q≥0 be a function. Suppose that tw1(O)r and tw2(O)r
are both non-empty. Then w1, w2 ∈ Wr and they are conjugate by an element of Wr.

Proof. See Lemma 2.5, Lemma 3.6, and §4. �

Remark 2.2. Theorem 2.1 in the case of an arbitrary R and a constant function r is proved
in Proposition 4.9.1 and the discussion after it on p. 10 of [GKM06].
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2.2. Reduction of Theorem 2.1 to a question about root systems. In this section
we show that Theorem 2.1 follows from a certain result about root systems (Theorem 2.3
below).

Let V be a finite-dimensional vector space over C and let R be a reduced root system
in the dual vector space V ∗. Let W be the Weyl group of R. We identify V ∗ with V via
a fixed W -invariant scalar product (· , ·) on V . Assume that we have the following chain:

R = R0 ⊇ R1 ⊇ R2 ⊇ · · · ⊇ Rk ⊇ Rk+1 = ∅,
where k ≥ 0 and each Ri is a Q-closed subset of R. It is easy to see that each Ri is a
root system in the vector space it spans. For each i ∈ {0, 1, . . . , k} we denote by Wi the
subgroup of W consisting of all elements w ∈ W such that w(Ri) = Ri, and by W (Ri)
the Weyl group of Ri considered as a subgroup of W . We also put Wk+1 = W and
W (Rk+1) = {1}. Let

Wr :=
k⋂
i=0

Wi.

Also, let µl denote the group of all l-th roots of unity for a natural number l and let ζi
be an arbitrary fixed element from µl for each i ∈ {0, 1, . . . , k}.

Theorem 2.3 below is a slightly more general reformulation of Theorem 2.1 in terms of
root systems than Theorem 2.1 itself.

Theorem 2.3. Suppose that R is a reduced irreducible root system of type A, B, C, or
D. If there exist w1, w2 ∈ Wr and {u1i}ki=0, {u2i}ki=0 ∈ V such that

(2.1) w1(u1i) = ζi · u1i, w2(u2i) = ζi · u2i, for each i,

and

α(uji) = 0 for any α ∈ Ri+1,(2.2)

α(uji) 6= 0 for any α ∈ Ri\Ri+1, j = 1, 2, i ∈ {0, 1, . . . , k},(2.3)

then w1 is conjugate to w2 in Wr.

Proof. See Lemma 3.6 and §4. �

Remark 2.4. If k = 0, then Theorem 2.3 for an arbitrary root system R (not necessarily
of classical type) is a well-known result of Springer on regular elements of Weyl groups
(see [Sp74]). As was shown by Goresky, Kottwitz, and MacPherson this result implies
Theorem 2.1 for an arbitrary R in the case of a constant function r ([GKM06], Prop.
4.9.1 and the discussion after it).

Lemma 2.5. Theorem 2.3 implies Theorem 2.1.

Proof. First, note that in Theorem 2.1 without loss of generality we can assume that R is
a root system in t∗. Let tw1(O)r and tw2(O)r be both non-empty. Then by Lemma 1.2(4)
we have w1, w2 ∈ Wr and it is an easy consequence of Lemma 1.2(1), (2) that w1, w2 have
the same order, say l. For each m ≥ 0 let Rm be defined by (1.1). Then by Lemma 1.2(3)
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each Rm is Q-closed. Finally, by Lemma 1.2 we have t(wj, i)∩a]i+1 6= ∅ for all i ≥ 0, which
implies that for some ζi ∈ µl and uji ∈ t (i ≥ 0, j = 1, 2) the conditions (2.1) – (2.3) hold
for the chain R = R0 ⊇ R1 ⊇ R2 · · · . Thus, Theorem 2.1 follows from Theorem 2.3. �

3. Chains of root systems

In this section we show that Theorem 2.3 follows from a general conjugacy theorem
(Theorem 3.1 below) together with one statement about root systems (Proposition 3.5
below).

3.1. General conjugacy theorem. Let X be a separated algebraic variety over C, and
let Z and G be finite groups acting on X by morphisms. For z ∈ Z (resp., g ∈ G) and
x ∈ X we denote by z · x (resp., g(x)) the action of z (resp., of g) on x. Assume that the
actions of Z and G commute, i.e.,

g(z · x) = z · g(x), ∀g ∈ G, z ∈ Z, x ∈ X.

Let H be a normal subgroup in G and denote X◦ := {x ∈ X|Hx = {1}}, where Hx stands
for the stabilizer of x in H. Let Y = X/H be the quotient considered as a topological
space with the quotient topology of the Zariski topology on X and let f : X � Y denote
the quotient map. Since H is normal in G and the actions of Z and G on X commute, we
have the induced actions of Z and G/H on Y . Let π : G � G/H denote the projection
map and for g ∈ G, z ∈ Z, σ ∈ G/H let

X(g, z) := {x ∈ X| g(x) = z · x} , Y (σ, z) := {y ∈ Y |σ(y) = z · y} .

Theorem 3.1. Let z ∈ Z and σ ∈ G/H be such that Y (σ, z) ∩ f(X◦) is irreducible. If
there exist g1, g2 ∈ G, x1, x2 ∈ X◦ such that

gi(xi) = z · xi, i = 1, 2,

and π(g1) = π(g2) = σ, then there exists h ∈ H such that g1 = hg2h
−1.

Proof. Since X is separated, X(g, z′) is closed for all g ∈ G, z′ ∈ Z. Also, for g 6= g′ in
π−1(σ) we have X(g, z) ∩X(g′, z) ∩X◦ = ∅. Therefore

f−1(Y (σ, z)) ∩X◦ =
∐

g∈π−1(σ)

X(g, z) ∩X◦,

and each X(g, z) ∩ X◦ is open in f−1(Y (σ, z)) ∩ X◦. Since the restriction of f to
f−1(Y (σ, z))∩X◦ is also an open map, we see that f (X(g1, z) ∩X◦) and f (X(g2, z) ∩X◦)
intersect, being non-empty open subsets of the irreducible space Y (σ, z) ∩ f(X◦). Hence
there exist u, v ∈ X◦ and h ∈ H such that u = h(v), g1(u) = z · u, and g2(v) = z · v.
Combining these three equalities and taking into account that π(g1) = π(g2), we get
g1 = hg2h

−1. �

Remark 3.2. This argument is a slightly more general version of Theorem 4.1 in [BS07].
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Remark 3.3. In Theorem 3.1 the condition “Y (σ, z)∩f(X◦) is irreducible” can be replaced
by a weaker condition “Y (σ, z)∩f(X◦) is connected.” Indeed, for each g ∈ π−1(σ) the set
f(X(g, z)∩X◦) is open in Y (σ, z)∩ f(X◦) and A := {f(X(g, z) ∩X◦)}g∈π−1(σ) is a cover

of Y (σ, z) ∩ f(X◦). Since by assumption Y (σ, z) ∩ f(X◦) is connected, any two elements
U, V ∈ A can be joined by a chain of elements U1, . . . , Un ∈ A, i.e.,

U = U1, V = Un, and Ui ∩ Ui+1 6= ∅, ∀i ∈ {1, . . . , n− 1}
(see e.g., [P89], p. 313, Lemma 1). Taking into account that for g1, g2 ∈ π−1(σ) the
sets f(X(g1, z) ∩X◦), f(X(g2, z) ∩X◦) intersect if and only if g1, g2 are conjugate by an
element of H, this implies the claim.

Note that the converse to Theorem 3.1 does not hold in general. However, there is a
partial converse.

Proposition 3.4. In the notation of Theorem 3.1 assume in addition that X is an affine
space and G, Z act linearly on X. Let z ∈ Z and σ ∈ G/H be such that the set

M := {g ∈ G |X(g, z) ∩X◦ 6= ∅} ∩ π−1(σ)

is non-empty. If any two elements of M are conjugate by an element of H, then the space
Y (σ, z) ∩ f(X◦) is irreducible.

Proof. Indeed, it is easy to see that for all z′ ∈ Z and σ′ ∈ G/H we have

Y (σ′, z′) ∩ f(X◦) =
⋃

g′∈π−1(σ′)

f(X(g′, z′) ∩X◦),

which under the hypotheses on σ and z in Proposition 3.4 implies

(3.1) Y (σ, z) ∩ f(X◦) = f(X(g, z) ∩X◦) for any g ∈M.

Note that X◦ is open in X and X(g, z) is irreducible as a linear subspace of X. This
implies that X(g, z) ∩ X◦ is irreducible and hence Y (σ, z) ∩ f(X◦) is also irreducible
by (3.1). �

3.2. Reduction of Theorem 2.3. In this subsection we use the notation of §2.2. For
each i ∈ {0, 1, . . . , k} we put

Vi := {u ∈ V |α(u) = 0, ∀α ∈ Ri+1} and Hi := (Wr ∩W (Ri)) / (Wr ∩W (Ri+1)) .

By Lemma 1.1 the action of Wr on Vi induces the action of Hi on Vi and we denote
Yi = Vi/Hi. Let fi : Vi � Yi be the quotient map and let

V ◦i = {u ∈ Vi |α(u) 6= 0, ∀α ∈ Ri\Ri+1}, Y ◦i = fi(V
◦
i ).

By Lemma 1.1 the set V ◦i is contained in the set of all points in Vi with trivial stabilizer
in Hi. Note that since Wr ∩W (Ri) is a normal subgroup of Wr, we also have the induced
action of Wr on Yi. The action of µl on V by multiplication induces the action of µl on
each Yi, because the actions of Hi and µl commute. For σ ∈ Wr and z ∈ µl we put

Yi(σ, z) = {y ∈ Yi |σ(y) = z · y} , Y ◦i (σ, z) = Yi(σ, z) ∩ Y ◦i = {y ∈ Y ◦i |σ(y) = z · y} .
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We consider Yi as a topological space with the quotient topology of the standard Zariski
topology on Vi and we endow Yi(σ, z) with the induced topology.

Proposition 3.5. Suppose that R is a reduced irreducible root system of type A, B, C,
or D. Then for each σ ∈ Wr and z ∈ µl the space Y ◦i (σ, z) is irreducible.

Proof. See Section 4 below. �

Lemma 3.6. Proposition 3.5 implies Theorem 2.3.

Proof. Suppose the assumptions of Theorem 2.3 hold. We will prove by induction on i
that if Proposition 3.5 holds, then for each i ∈ {0, 1, . . . , k + 1} the images of w1, w2 in
Wr/ (Wr ∩W (Ri)) are conjugate. Clearly, the claim for i = k + 1 implies Theorem 2.3.

Obviously, the claim holds for i = 0. Assume that it holds for some i ∈ {1, 2, . . . , k},
i.e., w1 and w2 are conjugate in Wr/ (Wr ∩W (Ri)). We need to show that this implies that
w1, w2 are conjugate in Wr/ (Wr ∩W (Ri+1)). First, note that without loss of generality
we can assume that the images of w1 and of w2 coincide in Wr/ (Wr ∩W (Ri)).

We will apply Theorem 3.1 to prove the induction step. If Ri = ∅, then there is
nothing to prove. Suppose Ri is not empty. In the notation of Theorem 3.1 we take
X = Vi, G = Wr/ (Wr ∩W (Ri+1)), and H = Hi, so that G/H can be identified with
Wr/ (Wr ∩W (Ri)). Also, in the notation of Theorem 3.1 we take Y = Yi and Z = µl.
Clearly, uji ∈ X for j = 1, 2 by (2.2). Lemma 1.1 together with equations (2.2) and
(2.3) imply that the stabilizer of uji in H is trivial. Since Y ◦i (wj, ζi) is irreducible by
assumption, using equation (2.1) we see that w1, w2 are conjugate in Wr/ (Wr ∩W (Ri+1))
by Theorem 3.1. �

Remark 3.7. Note that in the proof of Lemma 3.6 we have not used the fact that R is
of classical type, hence Proposition 3.5 for an arbitrary R implies Theorem 2.3 for an
arbitrary R.

4. Proof of Proposition 3.5

In this section we prove Proposition 3.5. This together with Lemmas 2.5 and 3.6
finishes the proofs of Theorems 2.1, 2.3 and more importantly provides evidence for the
positive answer to the question by Goresky, Kottwitz, and MacPherson ([GKM06], §1,
p. 3) mentioned in this paper’s introduction. We keep the notation of §3.2.

4.1. Reductions of Proposition 3.5. Denote

Ar =
⋂
m≥0

{φ ∈ Aut(V ) |φ(Rm) = Rm} ,

so that Wr = Ar ∩ W . Note that Wr is a normal subgroup of Ar. For an arbitrary
i ∈ {0, 1, . . . , k} let Ri = S1 ∪ · · · ∪ St be a decomposition of Ri into Wr-orbits of its
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irreducible components, i.e., each Sj is a Wr-orbit of some irreducible component of Ri

and Ri is a direct sum of root systems S1, . . . , St. Then

W (Ri) = W (S1)× · · · ×W (St),

Wr ∩W (Ri) = Wr ∩W (S1)× · · · ×Wr ∩W (St),

Ri+1 = (Ri+1 ∩ S1) ∪ · · · ∪ (Ri+1 ∩ St), and

Vi = U1 ⊕ · · · ⊕ Ut ⊕ Ut+1,

where Uj = {u ∈ SpanC(Sj) |α(u) = 0, ∀α ∈ Ri+1 ∩ Sj}, j ∈ {1, 2, . . . , t}, and Ut+1

is the orthogonal complement to SpanC(Ri) in V . For each j ∈ {1, 2, . . . , t} denote
U◦j = {u ∈ Uj |α(u) 6= 0, ∀α ∈ Sj\(Ri+1 ∩ Sj)}. Then V ◦i

∼= U◦1 × · · · × U◦t × Ut+1 and
Y ◦i (σ, z) breaks into a direct product of analogous spaces corresponding to U1, . . . , Ut+1,
i.e.,

Y ◦i (σ, z) ∼= (U◦1/Wr ∩W (S1)) (σ, z)× · · · × (U◦t /Wr ∩W (St))(σ, z)× Ut+1(σ, z).

(Since each U◦j /Wr∩W (Sj) and Ut+1 are Wr- and µl-invariant.) Note that Ut+1 is a vector
space and both groups Wr and µl act on it by linear automorphisms, hence Ut+1(σ, z)
is irreducible as a vector subspace of Ut+1. Thus it is enough to show that for each
j ∈ {1, 2, . . . , t} the space

(
U◦j /Wr ∩W (Sj)

)
(σ, z) is irreducible. (It also shows that we

can think of Vi equivalently as a subspace of V or of SpanC(Ri).) In other words, without
loss of generality we can assume that Ri is isotypic and Wr acts transitively on its set of
irreducible components.

Let R be a reduced irreducible root system with a basis of simple roots ∆. Then there is
g ∈ W (R) such that g(Ri) has a basis of simple roots that is a subset of ∆. By considering
Dynkin diagrams this implies that there is at most one irreducible component of Ri that
is not of type A. Together with the assumption in the previous paragraph we conclude
that without loss of generality we can assume that Ri is either irreducible or is a direct
sum of irreducible root systems of type A on which Wr acts transitively.

Remark 4.1. Note that the group Wr ∩W (Ri) plays the role of Wr for the chain

(4.1) Ri ⊇ Ri+1 ⊇ · · · ⊇ Rk ⊇ Rk+1 = ∅
and the image of Wr in the group of automorphisms of SpanC(Ri) is contained in the group⋂
j≥i {φ ∈ Aut(SpanC(Ri)) |φ(Rj) = Rj}, which is the analogue of the group Ar for the

chain (4.1). Denoting Ri by R, Ri+1 by R1 and so on, we see that to prove Proposition 3.5
it is enough to show that Y ◦0 (σ, z) is irreducible. Here R is either irreducible or a direct
sum of irreducible root systems of type A on which Ar ∩W (R′) acts transitively, where
W (R′) is the Weyl group of a reduced irreducible root system R′ of classical type that
contains R, σ ∈ Ar ∩W (R′), z ∈ µl, and R1 6= R.

Let R′ be as before considered as a root system contained in E ′ = Cn with the standard
basis ε′1, . . . , ε

′
n and let ∆′ denote the standard basis of simple roots in R′. Since R′ is

reduced irreducible of classical type, according to [Bou68] (Chapter VI) without loss of
generality we can assume that we have the following cases.
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(1) R′ has type An−1 (n ≥ 2) and

R′ =
{
ε′i − ε′j | i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n

}
,

∆′ =
{
ε′i − ε′i+1 | 1 ≤ i ≤ n− 1

}
,

W (R′) = Sn.
Here Sn denotes the symmetric group on n elements with the action on Cn by
permutations of the standard coordinates. The action of Sn on SpanC(R′) is
induced by that on Cn.

(2) R′ has type Bn (n ≥ 2) and

R′ =
{
±ε′i (1 ≤ i ≤ n), ±ε′i ± ε′j (1 ≤ i < j ≤ n)

}
,

∆′ =
{
ε′i − ε′i+1, ε

′
n | 1 ≤ i ≤ n− 1

}
,

W (R′) = Sn n (Z/2Z)n .

Here SpanC(R′) = Cn with the action of Sn as in (1) and (Z/2Z)n acts on Cn by
multiplying each standard coordinate by ±1.

(3) R′ has type Cn (n ≥ 2) and

R′ =
{
±2ε′i (1 ≤ i ≤ n), ±ε′i ± ε′j (1 ≤ i < j ≤ n)

}
,

∆′ =
{
ε′i − ε′i+1, 2ε′n | 1 ≤ i ≤ n− 1

}
, and

W (R′) = Sn n (Z/2Z)n .

Here Sn and (Z/2Z)n act as in (2).

(4) R′ has type Dn (n ≥ 3) and

R′ =
{
±ε′i ± ε′j | 1 ≤ i < j ≤ n

}
,

∆′ =
{
ε′i − ε′i+1, ε

′
n−1 + ε′n | 1 ≤ i ≤ n− 1

}
, and

W (R′) = Sn nK(n).

Here

K(n) =

{
(λ1, λ2, . . . , λn) ∈ (Z/2Z)n |

∏
i

λi = 1

}
,

the actions of Sn and (Z/2Z)n on SpanC(R′) = Cn are as in (2), and the action of
K(n) is induced by that of (Z/2Z)n.

Note that there exists g ∈ W (R′) such that the system g(R) has a basis of simple roots
∆ that is a subset of ∆′. Since g : V −→ g(V ) induces an isomorphism between the space
Y ◦0 (σ, z) corresponding to the chain

(4.2) C : R ⊇ R1 ⊇ · · · ⊇ Rk ⊇ Rk+1 = ∅
and the space Y ◦0 (gσg−1, z) corresponding to the chain g(C), without loss of generality
we can assume that R itself has the basis ∆. Hence R can be considered as a root system
contained in the space E spanned by some subset F of {ε′1, . . . , ε′n} that is invariant under
the action of Ar ∩W (R′). Since every element of W (R′) permutes the vectors ε′1, . . . , ε

′
n

and possibly multiplies them by ±1, we conclude that Ar ∩W (R′) is contained in the
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group Ãr consisting of elements φ ∈ AutC(E) such that φ(Ri) = Ri for all i ≥ 0, φ
permutes vectors in F and multiplies them by ±1. Note that we have Wr ⊆ Ãr and if
R is irreducible, then as in cases (1) – (4) above we can assume that SpanC(R) = E if
R is of type B, C, or D and SpanC(R) is a hyperplane in E if R is of type A. Suppose
F = {ε1, . . . , εa}, then according to [Bou68] (Chapter VI) we have

(4.3)
Ãr ⊆ W (R)× (Z/2Z) if R = Al, a = l + 1,

Ãr = Wr if R = Bl or Cl, a = l,

Ãr ⊆ Sl n (Z/2Z)l if R = Dl, a = l.

Here in the case R = Al the only non-trivial element of Z/2Z takes εi to −εa+1−i,
i ∈ {1, . . . , a}, and in the case R = Dl the group (Z/2Z)l acts by multiplying each element
εi by ±1, i ∈ {1, . . . , l}. In what follows we will assume that σ ∈ Ãr.

Remark 4.2. Note that since Y0 = V0/Wr is a quotient of a vector space by the action of
a finite group, Y0 is an irreducible affine variety in an affine space As and the embedding
Y0 ↪→ As is a homeomorphism given by homogeneous Wr-invariant polynomial functions
on V0. This implies that the action of z on Y0 is induced by a linear map on As. It turns
out that in some cases, e.g., if R = Al, Bl, or Cl, the variety Y0 is actually the whole affine
space As. Hence to show that in this case Y ◦0 (σ, z) is irreducible it is enough to show that
σ acts on Y0 by a linear automorphism. Indeed, Y0(σ, z) is then a linear subspace of As,
hence irreducible and Y ◦0 (σ, z) is irreducible as an open subset of Y0(σ, z).

4.2. Case of an irreducible R. Assume first that R is irreducible, σ ∈ Ãr, and z ∈ µl.
Let E = Ca with the standard basis {ε1, . . . , εa}, where a = l + 1 if R = Al and a = l if
R = Bl, Cl, or Dl. We have V = E if R = Bl, Cl, or Dl and

V = {(x1, . . . , xl+1) ∈ E |x1 + · · ·+ xl+1 = 0}
if R = Al. (Recall that V denotes SpanC(R).) Without loss of generality we can assume
that for any R under consideration

V0 = {u ∈ E |α(u) = 0, ∀α ∈ R1} .
(Indeed, this follows from an argument analogous to one in the first paragraph on p. 9
of the present paper.) If R1 = ∅, then V0 = E and Wr = W (R), so that Y0 is an affine
space by the well-known result due to Chevalley (see [Bou68], p. 107). Furthermore, σ
acts linearly on Y0 as can be seen using (4.3). Thus Y ◦0 (σ, z) is irreducible by Remark 4.2.

Suppose R1 6= ∅. Let ∆ = {α1, . . . , αl} denote the standard basis of simple roots in
R and let R1 = S1 ∪ · · · ∪ St be a decomposition of R1 into Ãr-orbits of its irreducible
components, i.e., each Sj is an Ãr-orbit of some irreducible component of R1 and R1 is
a direct sum of root systems S1, . . . , St. (We use the same letters S1, . . . , St to denote
objects related to a possibly different chain of root systems than in the previous sections,
but since we will not return to Si’s introduced in §4.1 that should not cause confusion.)
As in Remark 4.1 without loss of generality we can assume that R1 has the basis of simple
roots ∆1 that is a subset of ∆.
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Consider the case when R 6= Al and αl ∈ ∆1. Then without loss of generality we can
assume that αl ∈ St and there are the following possibilities:

(a) αl−1 ∈ ∆1 and R = Bl or Cl,
(b) αl−1 6∈ ∆1 and R = Bl or Cl,
(c) R = Dl, αl−1 ∈ ∆1, αl−2 ∈ ∆1,
(d) R = Dl, αl−1 ∈ ∆1, αl−2 6∈ ∆1,
(e) R = Dl, αl−1 6∈ ∆1.

In the case (a) the element αl−1 is not orthogonal to αl ∈ St, hence αl−1 ∈ St. Since by
assumption all the irreducible components of St are isomorphic to each other, this implies
that St is an irreducible root system of type B or C and St has a basis {αk, . . . , αl−1, αl}
for some k ≤ l − 1.

In the case (b) the element αl is orthogonal to every α ∈ R1, hence St is a direct sum
of irreducible root systems of type A1. Since Ãr acts transitively on the set of irreducible
components of St and Ãr = Wr, we conclude that St = {±αl}.

In the case (c) the element αl−2 is not orthogonal to αl−1 and αl ∈ St, hence αl−1, αl−2 ∈
St. Thus St is an irreducible system of type D and St has a basis {αk, . . . , αl−2, αl−1, αl}
for some k ≤ l − 2.

In the case (d) without loss of generality we can assume that αl−1 ∈ St−1 or αl−1 ∈ St.
We put S ′t = St−1 ∪ St in the first case and S ′t = St in the second, so that αl−1, αl ∈ S ′t.

Finally, in the case (e) denote by φ the element of AutC(V ) that permutes αl−1 and
αl, and φ(αi) = αi for any i 6∈ {l − 1, l}. Then φ(R) = R, αl−1 = φ(αl) ∈ φ(R1) and
αl = φ(αl−1) 6∈ φ(R1). Working with the chain φ(C) instead of the chain C, this implies
that without loss of generality we can assume that αl 6∈ R1.

It follows from the cases (a)—(e) considered above that without loss of generality we can
assume that S1 is either empty or has a basis {εi − εi+1 | i ∈ I1}, . . . , St−1 is either empty
or has a basis {εi − εi+1 | i ∈ It−1}. Finally, if R 6= Al and αl ∈ R1, then we can assume
that St (or S ′t in the case (d)) has a basis {αi | i ∈ It} for some subset It of {1, 2, . . . , a}
that contains l. Here It = {l − k, l − k + 1, . . . , l} in cases (a)—(c) and l − 1 ∈ It in case
(d). Note that {i, i+ 1 | i ∈ I1}, . . . , {i, i+ 1 | i ∈ It−1}, {i, i+ 1 | i ∈ It, i 6= l} are disjoint
subsets of {1, 2, . . . , a}. Denote

X1 = SpanC{εi, εi+1 | i ∈ I1},
· · ·(4.4)

Xt−1 = SpanC{εi, εi+1 | i ∈ It−1},
Xt = SpanC {εi, εi+1 | i ∈ It, i 6= l} ,

and let Ut denote the orthogonal complement to X1 ⊕ · · · ⊕Xt in E with respect to the
standard scalar product. Then

(4.5) V0 = U1 ⊕ · · · ⊕ Ut ⊕ Ut+1,
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where

(4.6) Ui = {u ∈ Xi |α(u) = 0, ∀α ∈ Si}, i ∈ {1, . . . , t− 1},

and Ut+1 = {u ∈ Xt |α(u) = 0, ∀α ∈ St (or S ′t in the case (d))}. It is easy to see that

(4.7) Ut+1 = {(0, . . . , 0)}.

Indeed, it is clear in the cases (a)—(c) when It = {l− k, l− k+ 1, . . . , l}, where k ≥ 0 for
R = Bl, Cl and k ≥ 1 for R = Dl. In the case (d) we have l−1 ∈ It and R = Dl. Since Ãr
acts transitively on the irreducible components of St−1 and St, for any αi = εi− εi+1 ∈ S ′t
there is φ ∈ Ãr such that αi = φ(αl) or αi = φ(αl−1). Then εi + εi+1 equals ±φ(αl−1) or
±φ(αl) and hence belongs to S ′t, which implies (4.7).

Clearly, all Xi’s and Ui’s are Wr-invariant and if R = Al, Bl, or Cl, then

(4.8) V0/Wr
∼= U1/Wr × · · · × Ut/Wr

and hence we have

(4.9) Y0(σ, z) ∼= (U1/Wr) (σ, z)× · · · × (Ut/Wr) (σ, z),

since each Ui/Wr is Ãr- and µl-invariant. The formula (4.8) is a consequence of the
following easily verified fact. Suppose W is the Weyl group of Al, Bl, or Cl, i.e., W = Sa
or W = Sl n (Z/2Z)l. Let V1 = SpanC (ε1, ε2, . . . , εs) and V2 = SpanC (εs+1, εs+2, . . . , εa).
If for i = 1, 2 and w ∈ W we have w(Vi) = Vi, then w̃ ∈ Aut(V ) given by

w̃|V1 = w, w̃|V2 = id

also belongs to W . If R = Dl, then (4.8) does not necessarily hold.

Our next step is to understand the action of Wr on each Ui. Thus in the next few
paragraphs we assume that R1 is isotypic and Ãr (hence Ar) acts transitively on its set
of irreducible components. Also, according to the results of the previous paragraphs we
only need to consider the case when all the irreducible components of R1 are of type A.
Let R1 = M1 ∪ · · · ∪Mn be a decomposition of R1 into its irreducible components, where
M1, . . . ,Mn are of the same type Ak. Without loss of generality we can assume that

M1 has the basis α1, . . . , αk,

M2 has the basis αk+2, . . . , α2k+1,

· · ·
Mn has the basis α(n−1)k+n, . . . , αnk+n−1,
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where nk + n− 1 ≤ l − 1, if R = Bl, Cl, or Dl and nk + n− 1 ≤ l, if R = Al. As before,
denote

Z1 = SpanC (ε1, . . . , εk+1) ,

Z2 = SpanC (εk+2, . . . , ε2k+2) ,

· · ·
Zn = SpanC

(
ε(n−1)k+n, . . . , εn(k+1)

)
,

Zn+1 = SpanC
(
εn(k+1)+1, . . . , εa

)
.

Then E = Z1 ⊕ · · · ⊕ Zn ⊕ Zn+1. Put Z = {(x̄1, x̄2, . . . , x̄n) | ∀xi ∈ C}, where each x̄i
denotes a (k+1)-tuple (xi, xi, . . . , xi). We have V0 = Z⊕Zn+1. Since we already included
the “remainder” Ut in V0 (see (4.5)), in this case we only need to consider Z/Wr. Let Sn
denote the symmetric group on n elements viewed as the subgroup of W that permutes
the components M1, . . . ,Mn and acts trivially on Zn+1. We will show that without loss
of generality we can assume that Sn is contained in Wr (i.e., Sn leaves the chain (4.2)
invariant). This will follow from the assumption that Ãr acts transitively on the set
{M1, . . . ,Mn}.

Lemma 4.3. If Ãr acts transitively on the set {M1, . . . ,Mn}, then without loss of gener-
ality we can assume that Sn ⊆ Ãr.

Proof. First, note that there exists λ1 ∈ W (M1) such that λ1(M1 ∩ R2) has a basis of
simple roots that is a subset of the standard basis of M1. Analogously, there exists
λ2 ∈ W (λ1(M1 ∩R2)) such that λ2 (λ1(M1 ∩R3)) has a basis that is a subset of the
standard basis of λ1(M1 ∩R2) and so on. Repeating this process for each component Mi

we see that there exists β ∈ W (R1) such that the chain β(C) consisting of the systems
β(Ri), 0 ≤ i ≤ k + 1, looks like the one on Figure 1.

M1 M2
M3

N 3N 2N1
R

   R1

2

R3

Figure 1

(Here each rectangle depicts an irreducible system of type A, the first line of rectangles
depicts the system R1, the second line depicts the system R2, and so on.) As before
without loss of generality we can assume that C itself has the form described above.

Since Ãr acts transitively on the set {M1, . . . ,Mn}, for each irreducible component
N1 of M1 ∩ R2 and for each i ∈ {2, . . . , n} there exists an irreducible component Ni of
Mi ∩R2 such that N1 ∩Rj

∼= Ni ∩Rj for all j ≥ 1 (see Figure 1). This implies that there
exists φi ∈ W (Mi) such that (1i)(N1) = φi(Ni) for all i ≥ 2, where (1i) ∈ Sn denotes
a transposition. Let φ = φ2φ3 · · ·φn. Then φ(Mj) = Mj for each j, φ ∈ W (R1), and
φ(R) = R. Also, by construction φ(α) = α for any α ∈ M1 and (1j)(N1) = φ(Nj) for
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all j ∈ {2, . . . , n}. In other words, using permutations of the basis vectors εi that are
contained in Z2 we can rearrange blocks inside M2 so that M2 ∩ R2 looks like M1 ∩ R2

and so on. Applying this process to other irreducible components of M1 ∩ R2 and then
if necessary to irreducible components of N1 ∩ R3 and so on, we see that there exists
ψ ∈ W (R1) such that δ(ψ(Ri)) = ψ(Ri) for all i ≥ 1 and δ ∈ Sn. Since ψ ∈ W (R1),
arguing as above without loss of generality we can assume that δ(Ri) = Ri for any δ ∈ Sn
and i. �

Let X1 = Z1 ⊕ · · · ⊕ Zn. Note that the image of Ãr in AutC(X1) is contained in the
subgroup

A(R1) = {φ ∈ AutC(X1) |φ(R1) = R1}
and Sn ⊆ A(R1). Let A(M1) = {φ ∈ AutC(Z1) |φ(M1) = M1}. We consider A(M1) as
a subgroup of A(R1) in the usual way, i.e., by letting it act trivially on each Zi, i 6= 1.
Doing the same for each component we get a subgroup A(M1)

n in A(R1) and it is easy to
see that A(R1) = SnnA(M1)

n. (Moreover, A(R1) is generated by Sn and A(M1).) Since
Sn ⊆ Wr ⊆ Ãr ⊆ A(R1), we have

Ãr = Sn n
(
Ãr ∩ A(M1)

n
)
,

Wr = Sn n (Wr ∩ A(M1)
n) .

Taking into account that M1 is of type A by (4.3) we get

Ãr ∩ A(M1)
n ⊆ (W (M1)× Z/2Z)n .

Here Z/2Z is considered as a subgroup of A(M1) whose the only non-trivial element w0

takes εi to −εk+2−i, i ∈ {1, . . . , k + 1}. We also extend w0 to an element of AutC(E) by
letting it act trivially on all εj, j 6∈ {1, . . . , k + 1}.

Let R = Al. Then Wr ∩ A(M1)
n ⊆ W (M1)

n and hence Wr acts on Z (naturally
identified with Cn) as Sn and Z/Wr is an affine space. By (4.3) σ ∈ Ãr permutes vectors
εi, 1 ≤ i ≤ l + 1, and possibly multiplies all of them by −1. Since σ(X1) = X1 (resp.,
σ(Ut) = Ut), σ permutes vectors εj inside X1 (resp., inside Ut) and possibly multiplies all
of them by −1. Recall that Wr acts on the “remainder” Ut ∼= Cnt as Snt , hence Ut is an
affine space and σ acts linearly on both Z/Wr and Ut/Wr. This together with (4.9) and
Remark 4.2 finishes the proof that Y ◦0 (σ, z) is irreducible in the case when R = Al.

Let R = Bl, Cl, or Dl. Suppose first that there is λ ∈ W (M1) such that λw0 ∈ Ãr. Since
Sn ⊆ Ãr, this implies that for any α1, . . . , αn ∈ Z/2Z there exist λ1, . . . , λn ∈ W (M1)
such that λ = (λ1α1, . . . , λnαn) ∈ Ãr. Clearly, if α1 · · ·αn = 1, then λ ∈ Wr. Let F and
G denote the images of Wr∩A(M1)

n and of Ãr∩A(M1)
n, respectively, in AutC(Z). Then

we have
K(n) ⊆ F ⊆ G ⊆ (Z/2Z)n .

Since K(n) is a subgroup of (Z/2Z)n of index 2, we have either F = G or F = K(n) and
G = (Z/2Z)n. If F = G, then Wr acts on Z ∼= Cn as SnnK(n) or as Snn (Z/2Z)n and σ
acts on Z/Wr trivially. Thus in this case Z/Wr is an affine space with the trivial action
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of σ. If F = K(n) and G = (Z/2Z)n, then Wr acts on Z ∼= Cn as Sn n K(n). Hence
Z/Wr is an affine space An with the isomorphism induced by the map

φ = (φ1, . . . , φn) : Cn −→ An

given by

yj = φj(x1, . . . , xn) =
∑
τ∈Sn

x2τ(1)x
2
τ(2) · · · x2τ(j), 1 ≤ j ≤ n− 1,(4.10)

yn = φn(x1, . . . , xn) = x1x2 · · ·xn.(4.11)

It follows that σ acts on Z/Wr
∼= An via

(4.12) (y1, . . . , yn−1, yn) 7→ (y1, . . . , yn−1,±yn).

Suppose now that for any λ ∈ W (M1) we have λw0 6∈ Ãr. This implies

Ãr ∩ A(M1)
n ⊆ W (M1)

n

and hence both Wr and Ãr act on Z ∼= Cn as Sn. Thus Z/Wr is again an affine space
with the trivial action of σ. Thus we have proved that each (Ui/Wr) (σ, z), 1 ≤ i ≤ t− 1,
is irreducible, if R = Bl, Cl or Dl.

We now show that (Ut/Wr) (σ, z) is also irreducible. Indeed, if R = Bl or Cl, then Wr

acts on Ut ∼= Cnt as Snt n (Z/2Z)nt . Thus Ut/Wr is an affine space and σ acts trivially
on it, because Ãr = Wr. This together with (4.9) and Remark 4.2 finishes the proof that
Y ◦0 (σ, z) is irreducible in the case when R = Bl or Cl.

Let R = Dl. Then Wr acts on Ut as either Snt n (Z/2Z)nt or Snt nK(nt). If σ ∈ Ãr,
then by (4.3) the action of σ on Ut/Wr

∼= Ant is given by (4.12) with n replaced by nt.
Thus (Ut/Wr) (σ, z) is irreducible in this case as well.

Next we continue working on the case R = Dl, since in that case we do not always have
the decomposition (4.9).

4.3. The case R = Dl. In what follows we assume that R = Dl. If S1, . . . , St−1 are all
empty, then St 6= ∅ and by (4.5), (4.7) we have

V0 = {(x1, . . . , xk−1, 0, . . . , 0) | ∀xi ∈ C}.
It can be checked thatWr acts on the first k−1 coordinates of V0 as either Sk−1n(Z/2Z)k−1

or Sk−1 nK(k − 1), hence Y0 = V0/Wr is an affine space in this case. Also, by (4.3) any
σ ∈ Ãr permutes x1, . . . , xk−1 and multiplies them by ±1, which induces a linear map on
Y0 (see (4.12)). Hence Y ◦0 (σ, z) is irreducible by Remark 4.2.

Assume now that there is at least one non-empty Si for some 1 ≤ i ≤ t− 1. Clearly, in
this case without loss of generality we can assume that all S1, . . . , St−1 are not empty. As
was proved in the previous subsection Wr acts on each Ui ∼= Cni , 1 ≤ i ≤ t− 1, as either
Sni

, or Sni
n (Z/2Z)ni , or Sni

nK(ni) for some ni. Also, Wr acts on Ut ∼= Cnt as either
Snt n (Z/2Z)nt or Snt nK(nt) and Ut+1 = {(0, . . . , 0)} by (4.7). Thus by (4.5)

V0 ∼= U1 ⊕ · · · ⊕ Ut ∼= Cn1 ⊕ · · · ⊕ Cnt .
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It can be easily verified that if Wr acts on U1 as Sn1 , or as Sn1 nK(n1), then V0/Wr
∼=

(U1/Wr)× (U2 × · · · × Ut) /Wr. Applying the same argument to all Ui’s we get

(4.13) V0/Wr
∼=

(
s∏
i=1

Uki

)/
Wr ×

∏
j 6∈{k1,...,ks}

(Uj/Wr) ,

where for each i ∈ {1, . . . , s} the group Wr acts on Uki as Snki
n (Z/2Z)nki , and for

each j the variety Uj/Wr is an affine space. Put X =
∏s

i=1 Uki and consider the variety
X/Wr. Assume that X/Wr cannot be decomposed any further in the way described above

into direct products, i.e., X/Wr 6∼=
(∏

j∈J1 Uj

)
/Wr ×

(∏
j∈J2 Uj

)
/Wr for any nonempty

subsets J1, J2 such that J1
∐
J2 = {k1, . . . , ks}. Then the image of Wr in AutC(X) equals{

s∏
i=1

(σi;λ
i
1, . . . , λ

i
nki

) ∈
s∏
i=1

Snki
n (Z/2Z)nki

∣∣∣ ∏
i,j

λij = 1

}
.

For each i let Qi = Snki
n K(nki). The group Qi acts on Uki and we consider Qi as

a subgroup of AutC(X) by letting it act trivially on each Uj, j 6= ki. Also, denote
Q = Q1 ×Q2 × · · · ×Qs. Then Q is a normal subgroup of Wr (or rather of the image of
Wr in AutC(X), but to simplify the notation we will not distinguish between these two).
We have

X/Wr = (X/Q) /(Wr/Q) =

(
s∏
i=1

(Uki/Qi)

)/
(Wr/Q).

Recall that each Uki/Qi is isomorphic to an affine space Av with the isomorphism given
by (4.10) and (4.11). Thus by (4.12) the induced action of Wr/Q on Av has the form

(y1, . . . , yv−1, yv) 7→ (y1, . . . , yv−1,±yv).
This implies that X/Wr is isomorphic to a direct product Aβ × As/K(s). By (4.13) the
variety Y0 = V0/Wr has the same form as X/Wr and since K(s) is not a reflection group
for As, this shows that Y0 is not necessarily an affine space when R = Dl.

Let σ ∈ Ãr. Note that

Y0(σ, z) ∼= (X/Wr) (σ, z)×
∏

j 6∈{k1,...,ks}

(Uj/Wr) (σ, z),

since each Ui/Wr is Ãr- and µl-invariant. Recall that each (Uj/Wr) (σ, z) is irreducible
(see §4.2) and since Y ◦0 (σ, z) is an open subset of Y0(σ, z), it is enough to show that the pro-
jection of Y ◦0 (σ, z) onto (X/Wr)(σ, z) is contained in an irreducible subset of (X/Wr)(σ, z).
Furthermore, by the results of the previous paragraph X/Wr

∼= Aβ × As/K(s) and it is
easy to see that both Aβ and As/K(s) are σ- and µl-invariant with linear actions of σ
and z on Aβ. (In fact, σ acts trivially on Aβ.) This implies in turn that it is enough to
show that the projection of Y ◦0 (σ, z) onto

P = {ū ∈ As/K(s) |σ(ū) = z · ū, u ∈ As}
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is contained in an irreducible subset of P . For u = (u1, . . . , us) ∈ As we have

σ−1(z · ū) = σ−1(z · u), σ−1(z · u) = (z1u1, . . . , zsus),

for some z1, . . . , zs ∈ C×. Thus ū ∈ P if and only if

u1 = λ1z1u1, u2 = λ2z2u2 , . . . , us = λszsus,

for some λi ∈ Z/2Z such that
∏

i λi = 1. We claim that P is either irreducible and
hence both Y0(σ, z) and Y ◦0 (σ, z) are irreducible, or P is the image of the union of the
coordinate hyperplanes in As under the quotient map As � As/K(s). Indeed, if there
exists zi 6= ±1, then ui = 0 and hence P is irreducible as a linear subspace of the affine
space As−1/(Z/2Z)s−1. Thus assume zi = ±1 for all i ∈ {1, . . . , s}. If

∏
i zi = 1, then P

coincides with As/K(s), which is an irreducible variety. If
∏

i zi = −1, then
∏

i(λizi) = −1
and hence at least one uj equals zero. This shows that P is contained in the image of
the union of the coordinate hyperplanes in As and since we have the reverse inclusion,
the claim follows. Since the images H1, . . . , Hs of the coordinate hyperplanes do not
coincide, this shows, in particular, that Y0(σ, z) is not necessarily irreducible. However,
the projection of Y ◦0 (σ, z) onto P is irreducible, since it is contained in some Hi. Indeed,
recall that As = {(x1, . . . , xs)}, where each xi is the last standard coordinate of an element
in Uki/Qi

∼= Anki , 1 ≤ i ≤ s, s ∈ {1, . . . , t}. Here each Uki , 1 ≤ ki ≤ t− 1, corresponds to
the system Ski , which has only type A irreducible components. Thus the projection of

V ◦0 = {u ∈ V0 | α(u) 6= 0,∀α ∈ R\R1}
onto Uki

∼= Cnki is contained in the set {(x1, . . . , xnki
) | ∀xj 6= 0} and hence the image of

V ◦0 in Anki is contained in {(x1, . . . , xnki
) |xnki

6= 0}. This implies that the image of V ◦0 in

As can intersect at most one coordinate hyperplane (corresponding to the “remainder” Ut)
and the claim follows.

4.4. Case of an isotypic R. Assume now that R is reducible, isotypic, each irreducible
component of R is of type A, and Ãr acts transitively on the set of irreducible components
of R. As we have proved above in this case Y0 is an affine space and as usual it is enough
to show that Ãr acts linearly on Y0. Let R = T1 ∪ T2 ∪ · · · ∪ Tm be a decomposition
of R into irreducible components. Since by assumption Ãr acts transitively on the set
{T1, . . . , Tm}, by Lemma 4.3 without loss of generality we can assume that Sm ⊆ Ãr.
Thus as in the previous section we get

Ãr = Sm n (Ãr ∩ A(T1)
m).

We have Y0 = Y
(1)
0 × · · · × Y (m)

0 , where each Y
(i)
0 is the analogue of Y0 for the system Ti

and Sm acts on Y0 by permutations of Y
(1)
0 , . . . , Y

(m)
0 . Since each Ti is of type A, by the

results of §4.2 each Y
(i)
0 is an affine space and clearly Sm acts linearly on Y0. Thus to

show that Y ◦0 (σ, z) is irreducible it is enough to show that Ãr ∩A(T1)
m also acts linearly

on Y0. Note that

Ãr ∩ A(T1)
m = (Ãr ∩ A(T1))× (Ãr ∩ A(T2))× · · · × (Ãr ∩ A(Tm)),
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where each Ãr∩A(Ti) acts linearly on Y
(i)
0 by the results of §4.2. This implies irreducibility

of Y0(σ, z) and hence of Y ◦0 (σ, z) for all σ ∈ Ãr, z ∈ µl. This finishes the proof of
Proposition 3.5 and hence by Lemmas 2.5 and 3.6 proves Theorem 2.3 and Theorem 2.1.
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