Real Computable Manifolds

Wesley Calvert Murray State University

Russell Miller,
Queens College \&
Graduate Center - CUNY
January 8, 2009
AMS Special Session on
Orderings in Logic and Topology
AMS-MAA 2009 Joint Meetings Washington, DC

Computability on \mathbb{N}

Turing computability: an idealized computer accepts finite binary strings (or finite tuples from \mathbb{N}) as inputs, runs according to a finite program, and may halt within finitely many steps, outputting another binary string or tuple from \mathbb{N}.

So Turing programs naturally compute partial functions $\mathbb{N}^{j} \rightarrow \mathbb{N}^{k}$ or $\mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$. (Partial: the domain may be a proper subset of \mathbb{N}^{j} or \mathbb{N}^{*}.)

Halting Problem: does a given Turing program with a given input ever halt? No Turing machine can give you the correct answer in all cases.

A subset of \mathbb{N}^{*} is computable iff its characteristic function is computable.

Computability on \mathbb{R}

Blum-Shub-Smale computability (or real computability): a BSS machine accepts finite tuples from \mathbb{R} as inputs, runs according to a finite program, which has finitely many reals as parameters and can perform operations and comparisons on reals. It may halt within finitely many steps, outputting another tuple from \mathbb{R}.

So BSS programs naturally compute partial functions $\mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$, and can be indexed by elements of \mathbb{R}^{*}.

Halting Problem: does a given BSS program with a given input ever halt? Again, no BSS machine can give you the correct answer in all cases.

Real Computable Manifolds

Defn.: A real-computable n-manifold M consists of (1) a computable subset $C \subseteq \mathbb{R}^{*}$; and (2) real-computable i, j, k, the inclusion functions, satisfying the conditions on the next slide. Interpretation:

- Each $\vec{r} \in C$ is a chart $U_{\vec{r}}$ in M, with domain \mathbb{R}^{n};
- $i(\vec{q}, \vec{r})=1$ iff $U_{\vec{q}} \subseteq U_{\vec{r}}$, and then $j(\vec{q}, \vec{r})$ is an index for the (computable!) inclusion map;
- If $i(\vec{q}, \vec{r})=0$, then $k(\vec{q}, \vec{r}) \in C^{*}$ and $\sqcup_{\vec{t} \in k(\vec{q}, \vec{r})} U_{\vec{t}}=U_{\vec{q}} \cap U_{\vec{r}}$.
- Else $i(\vec{q}, \vec{r})=-1$, and $U_{\vec{q}} \cap U_{\vec{r}}=\emptyset$.

Conditions on C, i, j, and k

If $i(\vec{t}, \vec{q})=i(\vec{q}, \vec{r})=1$, then $i(\vec{t}, \vec{r})=1$ and

$$
\varphi_{j(\vec{q}, \vec{r})} \circ \varphi_{j(\vec{t}, \vec{q})}=\varphi_{j(\vec{t}, \vec{r})} .
$$

Also, $(\forall \vec{q}, \vec{r} \in C) i$ on input (\vec{q}, \vec{r}) outputs either

- 1 , and $\varphi_{j(\vec{q}, \vec{r})}$ is a total real-computable homeomorphism from \mathbb{R}^{n} into \mathbb{R}^{n}. $\left(\varphi_{j(\vec{q}, \vec{r})}\right.$ then describes the inclusion $U_{\vec{q}} \subseteq U_{\vec{r}}$.)
- 0 , and $k(\vec{q}, \vec{r})=\vec{t}$ s.t. $i(\vec{t}, \vec{q})=i(\vec{t}, \vec{r})=1 \&$ $\forall \vec{u}, \vec{v} \in C[i(\vec{u}, \vec{q})=i(\vec{u}, \vec{r})=1 \Longrightarrow i(\vec{u}, \vec{t})=1]$ \& if $i(\vec{q}, \vec{v})=i(\vec{r}, \vec{v})=1$, then
$\operatorname{range}\left(\varphi_{j(\vec{r}, \vec{v})}\right) \cap \operatorname{range}\left(\varphi_{j(\vec{q}, \vec{v})}\right)=\operatorname{range}\left(\varphi_{j(\vec{t}, \vec{v})}\right)$.
(Here $U_{\vec{t}}=U_{\vec{q}} \cap U_{\vec{r}}$.)
- -1 , and $(\forall \vec{u}, \vec{v} \in C)[i(\vec{u}, \vec{q}) \neq 1$ or $i(\vec{u}, \vec{r}) \neq 1]$ \& if $i(\vec{q}, \vec{v})=i(\vec{r}, \vec{v})=1$, then
$\operatorname{range}\left(\varphi_{j(\vec{q}, \vec{v})}\right) \cap \operatorname{range}\left(\varphi_{j(\vec{r}, \vec{v})}\right)=\emptyset$.
(Here $U_{\vec{q}} \cap U_{\vec{r}}=\emptyset$.)

Loops and Homotopy

Defn.: A loop in M is given by finitely many continuous functions $f_{m}:\left[t_{m-1}, t_{m}\right] \rightarrow \mathbb{R}^{n}$, where $0=t_{0}<\cdots<t_{l}=1$, along with $\vec{r}_{1}, \ldots, \vec{r}_{l} \in C$. We think of f mapping $[0,1]$ into M by mapping each $\left[t_{m-1}, t_{m}\right]$ into $U_{\vec{r}_{m}}$, with the obvious condition on the end points. If all f_{m} are computable, then the loop is computable.

Fact: Every loop in M is homotopic to a computable loop.
(One could define computable homotopy, but for now we just use homotopy.)

Noncomputable Nullhomotopy

Build a computable 2-manifold M with charts indexed by $\mathbb{N} \times \mathbb{R}^{*}$:

- $U_{0, \vec{r}}$ and $U_{1, \vec{r}}$ form an annulus.
- Define a computable loop $f_{\vec{r}}$ around this annulus.
- For $s>1$, if $\varphi_{\vec{r}}\left(f_{\vec{r}}\right)$ halts in exactly $(s-1)$ steps and says that $f_{\vec{r}}$ is not nullhomotopic, then $U_{s, \vec{r}}$ fills in the hole in the annulus.
- If no halt occurs at step $(s-1)$, then $U_{s, \vec{r}}$ is disjoint from all other charts.

So no $\varphi_{\vec{r}}$ correctly decides nullhomotopy of $f_{\vec{r}}$.

A simpler manifold

The above M has no countable cover. But even in S^{1}, there is no real-computable ψ which accepts \vec{r} as input and satisfies:
if $\varphi_{\vec{r}}$ is a loop in S^{1}, then

$$
\psi(\vec{r})= \begin{cases}1, & \text { if } \varphi_{\vec{r}} \text { nullhomotopic } \\ 0, & \text { if not. }\end{cases}
$$

Proof: Use the Recursion Thm. for BSS-machines to produce $\varphi_{\vec{r}}:[0,1] \rightarrow S^{1}$ s.t. $\varphi_{\vec{r}}(0)=\varphi_{\vec{r}}(1)=1$ and

$$
\varphi_{\vec{r}}\left\lceil\left[\frac{1}{2^{s}}, \frac{1}{2^{s+1}}\right]= \begin{cases}S^{1}, & \text { if } \psi(\vec{r})=1 \mathrm{in} \\ & \text { exactly } s \text { steps } \\ 1, & \text { if not. }\end{cases}\right.
$$

General Theorems

The procedure above works for any computable M containing a computable loop which is not nullhomotopic.
Thm. (Calvert-M.): For any real-computable manifold M, TFAE:

1. There exists a real-computable ψ such that (\forall computable loops $\varphi_{\vec{r}}$ in $\left.M\right) \psi(\vec{r})$ decides nullhomotopy of $\varphi_{\vec{r}}$,
2. All computable loops in M are nullhomotopic.
3. M is simply connected.

Thm. (Calvert-M.): Simple-connectedness is not decidable. That is, there is no real-computable ψ such that whenever \vec{r} is the index of a computable manifold $M, \psi(\vec{r})$ decides whether M is simply connected.

