Hilbert's Tenth Problem for Subrings of the Rationals

Russell Miller

Queens College & CUNY Graduate Center

Special Session on Computability Theory & Applications

AMS Sectional Meeting Loyola University, Chicago, IL 4 October 2015

HTP: Hilbert's Tenth Problem

Definition

For a ring R, Hilbert's Tenth Problem for R is the set

 $\mathsf{HTP}(R) = \{ p \in R[X_0, X_1, \ldots] : (\exists \vec{a} \in R^{<\omega}) \ p(a_0, \ldots, a_n) = 0 \}$

of all polynomials (in several variables) with solutions in *R*.

So HTP(R) is c.e. relative to (the atomic diagram of) R.

Hilbert's formulation demanded a decision procedure for $HTP(\mathbb{Z})$.

Theorem (RPDM, 1970)

 $HTP(\mathbb{Z})$ is undecidable: indeed, $HTP(\mathbb{Z}) \equiv_1 \emptyset'$, and there is a polynomial $f \in \mathbb{Z}[Y, X_1, \dots, X_k]$ such that

$$(\forall n) \ [n \in \emptyset' \iff f(n, X_1, \dots, X_k) \in \mathsf{HTP}(\mathbb{Z})].$$

The Turing degree of $HTP(\mathbb{Q})$ remains an open question.

Russell Miller (CUNY)

HTP for Subrings of Q

Subrings R_W of \mathbb{Q}

A subring *R* of \mathbb{Q} is characterized by the set of primes *p* such that $\frac{1}{p} \in R$. For each $W \subseteq P = \{ \text{ all primes } \}$, set

$${\it R}_{\it W}=\left\{rac{m}{n}\in\mathbb{Q}\ :\ (orall {\it p})\ [{\it p} ext{ divides } n \implies {\it p}\in {\it W}]
ight\}$$

to be the subring $\mathbb{Z}[W^{-1}]$ generated by inverting all $p \in W$.

We often move effectively between $W \subseteq P$ and $\{n : p_n \in W\} \subseteq \omega$.

Notice that R_W is computably presentable precisely when W is c.e., while R_W is a computable subring of \mathbb{Q} iff W is computable.

It is immediate that $HTP(R_W) \leq_1 W'$. The PMDR result shows that 1-equivalence can hold: when $W = \emptyset$, we have $HTP(R_{\emptyset}) \equiv_1 \emptyset'$.

It is possible to have $W' \not\equiv_T \text{HTP}(R_W)$: let W be c.e. and nonlow. Then R_W is computably presentable, so $\text{HTP}(R_W)$ is c.e. Hence $\text{HTP}(R_W) \leq_1 \emptyset' <_T W'$ for such sets W.

In fact, $HTP(R_W) \equiv_T W$ is also possible, e.g. when $W = \emptyset'$.

Generalizing This Idea

Definition

A set *W* is *relatively c.e.* if there exists $V <_T W$ such that *W* is c.e. relative to *V*.

Theorem (Jockusch 1977; Kurtz 1981)

The relatively c.e. sets form a comeager class (Jockusch) of measure 1 (Kurtz).

Recall the topology: the basic open subsets of 2^{ω} are the intervals

$$\mathcal{U}_{\sigma} := \{ X \subseteq \omega : \sigma \subset X \},\$$

for all $\sigma \in 2^{<\omega}$. The *measure* of \mathcal{U}_{σ} is $2^{-|\sigma|}$.

A class $\mathcal{M} \subseteq 2^{\omega}$ is *nowhere dense* if the closure $cl(\mathcal{M})$ contains no interval \mathcal{U}_{σ} . The *meager sets* are the elements of the Σ -ideal generated by these: all countable unions of nowhere dense sets.

Russell Miller (CUNY)

Corollaries of the Jockusch & Kurtz Results

Corollary (M.)

The class $\{W \subseteq P : W' \leq_1 HTP(R_W)\}$ is meager, of measure 0. Therefore, so is the class of those *W* such that *W'* is *polynomially definable* in R_W , by an $f \in \mathbb{Z}[Y, X_1, \dots, X_k]$ with

$$(\forall n) [n \in W' \iff f(n, X_1, \ldots, X_k) \in \mathsf{HTP}(R_W).$$

Proof: If *W* is relatively c.e., then *W* is c.e. in some *V* with $W \leq_T V$. But then $W' \leq_1 V'$. However, HTP(R_W) is also c.e. in *V*, so HTP(R_W) $\leq_1 V'$. Thus $W' \leq_1$ HTP(R_W).

So the MRDP proof for the case $W = \emptyset$ is anomalous.

Can We Do Better?

W is *relatively c.e. and non-low* if there exists some $V <_T W$ in which *W* is c.e., but with $W' \leq_T V'$. If this holds, then $HTP(R_W) \leq_1 V'$, and so $W' \leq_T HTP(R_W)$.

Can We Do Better?

W is *relatively c.e. and non-low* if there exists some $V <_T W$ in which *W* is c.e., but with $W' \not\leq_T V'$. If this holds, then $HTP(R_W) \leq_1 V'$, and so $W' \not\leq_T HTP(R_W)$.

However, this is far more rare. The class

$$\mathsf{GL}_1 := \{ \boldsymbol{W} : \boldsymbol{W} \oplus \emptyset' \equiv_{\mathcal{T}} \boldsymbol{W}' \}$$

of *generalized-low*₁ sets is comeager of measure 1. If $W \in \mathbf{GL}_1$ and W is c.e. in V, then

$$W' \equiv_T W \oplus \emptyset' \leq_T V'.$$

So almost all W fail to be relatively c.e. and non-low.

Enumeration Reducibility

Fact

W and HTP(R_W) are always *e*-equivalent, via uniform reductions.

 $W \leq_1 \operatorname{HTP}(R_W)$ via $p \mapsto (pX - 1)$.

To see that $\text{HTP}(R_W) \leq_e W$, given a polynomial *f*, start enumerating solutions \vec{x} of *f* in \mathbb{Q} . Each time we find one, we add an axiom: if *W* contains the primes necessary for the denominators in \vec{x} , then $f \in \text{HTP}(R_W)$.

$W' \not\leq_e \mathsf{HTP}(R_W)$ for most W

Theorem

The class of all $W \subseteq P$ with $W' \leq_e HTP(R_W)$ is meager, of measure 0.

Proof: Suppose $W' \leq_e HTP(R_W)$. Now $P - W = \overline{W} \leq_e W'$, so $\overline{W} \leq_e HTP(R_W)$.

But if *V* can enumerate *W*, then it can enumerate $\text{HTP}(R_W)$, since $\text{HTP}(R_W) \leq_e W$. Hence *V* can enumerate \overline{W} , and thus $W \leq_T V$. It follows that *W* cannot be relatively c.e. The Jockusch-Kurtz results complete the proof.