Spectra of Algebraic Fields

Andrey Frolov Kazan State University

Iskander Kalimullin

Kazan State University

Russell Miller,

Queens College & Graduate Center CUNY

October 12, 2008

Spectrum of a Structure

Defns: For a countable structure S with domain ω , the *Turing degree of* S is the Turing degree of the atomic diagram of S. The *spectrum of* S is the set

 $\{\deg(\mathcal{A}):\mathcal{A}\cong\mathcal{S}\}$

of all Turing degrees of copies of \mathcal{S} .

Many general results are known about spectra. **Thm.** (Knight): For all nontrivial structures, the spectrum is closed upwards under \leq_T .

Algebraic Fields

Defn: A field F is algebraic if it is an algebraic (but possibly infinite) extension of its prime subfield. Equivalently, F is a subfield of either $\overline{\mathbb{Q}}$ or $\overline{\mathbb{Z}/(p)}$, the algebraic closures of the prime fields.

Thm. (FKM): The spectra of algebraic fields of characteristic 0 are precisely the sets of the form

 $\{\boldsymbol{d}:T \text{ is c.e. in } \boldsymbol{d}\}$

where T ranges over all subsets of ω .

The same holds for infinite algebraic fields of characteristic > 0.

Normal Extensions of ${\mathbb Q}$

A simple case: let $F \supseteq \mathbb{Q}$ be a normal algebraic extension. Enumerate the irreducible polynomials $p_0(X), p_1(X), \ldots$ in $\mathbb{Q}[X]$. (So for each i, Fcontains either all roots of p_i , or no roots of p_i .) Define

$$T_F^* = \{ i : (\exists a \in F) p_i(a) = 0 \}.$$

Claim: Spec(F) = { $\boldsymbol{d} : T_F^*$ is c.e. in \boldsymbol{d} }.

 \subseteq is clear: any presentation of F allows us to enumerate T_F^* .

 \supseteq : Given a *d*-oracle, start with $E_0 = \mathbb{Q}$. Whenever an *i* enters T_F^* , check whether E_s yet contains any root of $p_i(X)$. If so, do nothing; if not, enumerate all roots of *p* into E_{s+1} . (Use a computable presentation of $\overline{\mathbb{Q}}$ as a guide.) This builds $E \cong F$ with $E \leq_T d$.

Converse

Problem: Not all $T \subseteq \omega$ can be T_F^* . If $(X^2 - 2)$ and $(X^2 - 3)$ both have roots in F, then so does $(X^2 - 6)$.

Solution: Consider only polynomials $(X^2 - p)$ with p prime. Given T, let F be generated over \mathbb{Q} by $\{\sqrt{p_n} : n \in T\}$. Then

 $\operatorname{Spec}(F) = \{ \boldsymbol{d} : T \text{ is c.e. in } \boldsymbol{d} \}.$

So, for every $T \subseteq \omega$, this spectrum can be realized.

All Algebraic Fields

Defn: Given F, define T_F similarly to T_F^* , but reflecting non-normality:

$$T_F : \underbrace{1 \quad 0 \quad 0}_{p_i} : X^3 - 7 \qquad \underbrace{1 \quad 1 \quad 0 \quad 0}_{X^4 - X^2 + 1} \quad \cdots$$

Problem: Suppose that first $(X^2 - 3)$ requires a root $\sqrt{3}$ in F, and later $(X^4 - X^2 + 1)$ requires a root x in F. But

 $X^4 - X^2 + 1 = (X^2 + X\sqrt{3} + 1)(X^2 - X\sqrt{3} + 1),$

and T_F does not say which factor should have x as a root.

Solution

Let $\langle q_{j0}(X), q_{j1}(X, Y) \rangle_{j \in \omega}$ list all pairs in $(\mathbb{Q}[X] \times \mathbb{Q}[X, Y])$ s.t.:

- $\mathbb{Q}[X]/(q_{j0})$ is a field, and
- q_{j1} , viewed as a polynomial in Y, is irreducible in $(\mathbb{Q}[X]/(q_{j0}))[Y]$.

In the example above, q_{j0} would be $(X^2 - 3)$ and q_{j1} could be either factor of $(X^4 - X^2 + 1)$.

Defn: Given F, let U_F be the set:

$$\{j: (\exists x, y \in F) [q_{j0}(x) = 0 = q_{j1}(x, y)]\}$$

and let $V_F = T_F \oplus U_F$. So every presentation of F can enumerate V_F .

Construction of $E \cong F$

Fix F, and suppose d enumerates V_F . When T_F demands that k roots of some $p_i(X)$ enter E, we find $j \in U_F$ such that q_{j0} is the minimal polynomial of a primitive generator x of E_s over \mathbb{Q} (so that $E_s \cong \mathbb{Q}[X]/(q_{j0})$), and $q_{j1}(Y)$ divides $p_i(Y)$ in $(\mathbb{Q}[X]/(q_{j0}))[Y]$. Extend our E_s to E_{s+1} by adjoining a root of $q_{j1}(Y)$. Since $j \in U_F$, E_{s+1} embeds into F via some f_{s+1} .

Now all f_s agree on \mathbb{Q} ($\subseteq E_s$). The least element $x_0 \in E = \bigcup_s E_s$ has only finitely many possible images in F, so some infinite subsequence of $\langle f_s \rangle_{s \in \omega}$ agrees on $\mathbb{Q}[x_0]$. Likewise, some infinite subsequence of this subsequence agrees on $\mathbb{Q}[x_0, x_1]$, etc. This embeds E into F. But T_F ensures that E has as many roots of each $p_i(X)$ as F does, so the embedding is an isomorphism.

Corollaries

Thm. (Richter): There exists $A \subseteq \omega$ such that there is no least degree d which enumerates A. **Cor.** (Calvert-Harizanov-Shlapentokh): There exists an algebraic field whose spectrum has no least degree.

Thm. (Coles-Downey-Slaman): For every $T \subseteq \omega$ there is a degree \boldsymbol{b} which enumerates T, such that all \boldsymbol{d} enumerating T satisfy $\boldsymbol{b}' \leq \boldsymbol{d}'$. **Cor.**: Every algebraic field F has a jump degree, i.e. a degree \boldsymbol{c} such that all $\boldsymbol{d} \in \operatorname{Spec}(F)$ have $\boldsymbol{d}' \leq \boldsymbol{c}$ and some $\boldsymbol{d} \in \operatorname{Spec}(F)$ has $\boldsymbol{d}' = \boldsymbol{c}$. In particular, \boldsymbol{c} is the degree of the enumeration jump of V_F .

Cor.: No algebraic field has spectrum $\{\boldsymbol{d}: \boldsymbol{0} < \boldsymbol{d}\}$. Indeed, $(\forall \boldsymbol{d}_0)(\exists \boldsymbol{d}_1 \leq \boldsymbol{d}_0)$ s.t. every algebraic field F with $\{\boldsymbol{d}_0, \boldsymbol{d}_1\} \subseteq \operatorname{Spec}(F)$ is computably presentable.