Spectra of Algebraic Fields

Andrey Frolov
Kazan State University
Iskander Kalimullin
Kazan State University
Russell Miller,
Queens College \& Graduate Center CUNY
October 12, 2008

Spectrum of a Structure

Defns: For a countable structure \mathcal{S} with domain ω, the Turing degree of \mathcal{S} is the Turing degree of the atomic diagram of \mathcal{S}. The spectrum of \mathcal{S} is the set

$$
\{\operatorname{deg}(\mathcal{A}): \mathcal{A} \cong \mathcal{S}\}
$$

of all Turing degrees of copies of \mathcal{S}.
Many general results are known about spectra. Thm. (Knight): For all nontrivial structures, the spectrum is closed upwards under \leq_{T}.

Algebraic Fields

Defn: A field F is algebraic if it is an algebraic (but possibly infinite) extension of its prime subfield. Equivalently, F is a subfield of either $\overline{\mathbb{Q}}$ or $\overline{\mathbb{Z} /(p)}$, the algebraic closures of the prime fields.

Thm. (FKM): The spectra of algebraic fields of characteristic 0 are precisely the sets of the form

$$
\{\boldsymbol{d}: T \text { is c.e. in } \boldsymbol{d}\}
$$

where T ranges over all subsets of ω.
The same holds for infinite algebraic fields of characteristic >0.

Normal Extensions of \mathbb{Q}

A simple case: let $F \supseteq \mathbb{Q}$ be a normal algebraic extension. Enumerate the irreducible polynomials $p_{0}(X), p_{1}(X), \ldots$ in $\mathbb{Q}[X]$. (So for each i, F contains either all roots of p_{i}, or no roots of p_{i}.) Define

$$
T_{F}^{*}=\left\{i:(\exists a \in F) p_{i}(a)=0\right\} .
$$

Claim: $\operatorname{Spec}(F)=\left\{\boldsymbol{d}: T_{F}^{*}\right.$ is c.e. in $\left.\boldsymbol{d}\right\}$.
\subseteq is clear: any presentation of F allows us to enumerate T_{F}^{*}.
\supseteq : Given a \boldsymbol{d}-oracle, start with $E_{0}=\mathbb{Q}$. Whenever an i enters T_{F}^{*}, check whether E_{s} yet contains any root of $p_{i}(X)$. If so, do nothing; if not, enumerate all roots of p into E_{s+1}. (Use a computable presentation of $\overline{\mathbb{Q}}$ as a guide.) This builds $E \cong F$ with $E \leq_{T} \boldsymbol{d}$.

Converse

Problem: Not all $T \subseteq \omega$ can be T_{F}^{*}. If $\left(X^{2}-2\right)$ and $\left(X^{2}-3\right)$ both have roots in F, then so does $\left(X^{2}-6\right)$.

Solution: Consider only polynomials $\left(X^{2}-p\right)$ with p prime. Given T, let F be generated over \mathbb{Q} by $\left\{\sqrt{p_{n}}: n \in T\right\}$. Then

$$
\operatorname{Spec}(F)=\{\boldsymbol{d}: T \text { is c.e. in } \boldsymbol{d}\} .
$$

So, for every $T \subseteq \omega$, this spectrum can be realized.

All Algebraic Fields

Defn: Given F, define T_{F} similarly to T_{F}^{*}, but reflecting non-normality:

$$
\begin{gathered}
T_{F}: \underbrace{1}_{X^{3}-7} 000 \\
p_{i}:
\end{gathered} \underbrace{1}_{X^{4}-X^{2}+1} 1 \begin{array}{lll}
1 & 0 & 0 \\
\underbrace{0} \quad 0 & 0
\end{array} \cdots
$$

Problem: Suppose that first $\left(X^{2}-3\right)$ requires a root $\sqrt{3}$ in F, and later $\left(X^{4}-X^{2}+1\right)$ requires a root x in F. But
$X^{4}-X^{2}+1=\left(X^{2}+X \sqrt{3}+1\right)\left(X^{2}-X \sqrt{3}+1\right)$,
and T_{F} does not say which factor should have x as a root.

Solution

Let $\left\langle q_{j 0}(X), q_{j 1}(X, Y)\right\rangle_{j \in \omega}$ list all pairs in $(\mathbb{Q}[X] \times \mathbb{Q}[X, Y])$ s.t.:

- $\mathbb{Q}[X] /\left(q_{j 0}\right)$ is a field, and
- $q_{j 1}$, viewed as a polynomial in Y, is irreducible in $\left(\mathbb{Q}[X] /\left(q_{j 0}\right)\right)[Y]$.

In the example above, $q_{j 0}$ would be $\left(X^{2}-3\right)$ and $q_{j 1}$ could be either factor of $\left(X^{4}-X^{2}+1\right)$.

Defn: Given F, let U_{F} be the set:

$$
\left\{j:(\exists x, y \in F)\left[q_{j 0}(x)=0=q_{j 1}(x, y)\right]\right\}
$$

and let $V_{F}=T_{F} \oplus U_{F}$. So every presentation of F can enumerate V_{F}.

Construction of $E \cong F$

Fix F, and suppose \boldsymbol{d} enumerates V_{F}. When T_{F} demands that k roots of some $p_{i}(X)$ enter E, we find $j \in U_{F}$ such that $q_{j 0}$ is the minimal polynomial of a primitive generator x of E_{s} over \mathbb{Q} (so that $\left.E_{s} \cong \mathbb{Q}[X] /\left(q_{j 0}\right)\right)$, and $q_{j 1}(Y)$ divides $p_{i}(Y)$ in $\left(\mathbb{Q}[X] /\left(q_{j 0}\right)\right)[Y]$. Extend our E_{s} to E_{s+1} by adjoining a root of $q_{j 1}(Y)$. Since $j \in U_{F}, E_{s+1}$ embeds into F via some f_{s+1}.

Now all f_{s} agree on $\mathbb{Q}\left(\subseteq E_{s}\right)$. The least element $x_{0} \in E=\cup_{s} E_{s}$ has only finitely many possible images in F, so some infinite subsequence of $\left\langle f_{s}\right\rangle_{s \in \omega}$ agrees on $\mathbb{Q}\left[x_{0}\right]$. Likewise, some infinite subsequence of this subsequence agrees on $\mathbb{Q}\left[x_{0}, x_{1}\right]$, etc. This embeds E into F. But T_{F} ensures that E has as many roots of each $p_{i}(X)$ as F does, so the embedding is an isomorphism.

Corollaries

Thm. (Richter): There exists $A \subseteq \omega$ such that there is no least degree \boldsymbol{d} which enumerates A. Cor. (Calvert-Harizanov-Shlapentokh): There exists an algebraic field whose spectrum has no least degree.

Thm. (Coles-Downey-Slaman): For every $T \subseteq \omega$ there is a degree \boldsymbol{b} which enumerates T, such that all \boldsymbol{d} enumerating T satisfy $\boldsymbol{b}^{\prime} \leq \boldsymbol{d}^{\prime}$.
Cor.: Every algebraic field F has a jump degree, i.e. a degree \boldsymbol{c} such that all $\boldsymbol{d} \in \operatorname{Spec}(F)$ have $\boldsymbol{d}^{\prime} \leq \boldsymbol{c}$ and some $\boldsymbol{d} \in \operatorname{Spec}(F)$ has $\boldsymbol{d}^{\prime}=\boldsymbol{c}$. In particular, \boldsymbol{c} is the degree of the enumeration jump of V_{F}.

Cor.: No algebraic field has spectrum $\{\boldsymbol{d}: \mathbf{0}<\boldsymbol{d}\}$. Indeed, $\left(\forall \boldsymbol{d}_{0}\right)\left(\exists \boldsymbol{d}_{1} \not \leq \boldsymbol{d}_{0}\right)$ s.t. every algebraic field F with $\left\{\boldsymbol{d}_{0}, \boldsymbol{d}_{1}\right\} \subseteq \operatorname{Spec}(F)$ is computably presentable.

