Survey of Degree Spectra of $High_n$ and $Non-low_n$ Degrees

Russell Miller,

Queens College & Graduate Center

C.U.N.Y.

July 31, 2009

Logic Colloquium 2009 Sofia University

Spectrum of a Structure

Defns: For a countable structure S with domain ω , the *Turing degree of* S is the Turing degree of the atomic diagram of S. The *spectrum of* S is

$$\operatorname{Spec}(\mathcal{S}) = \{ \operatorname{deg}(\mathcal{A}) : \mathcal{A} \cong \mathcal{S} \}$$

of all Turing degrees of copies of S.

For a relation R on a computable structure \mathcal{M} , the spectrum of R, $\mathrm{DgSp}_{\mathcal{M}}(R)$, is

 $\{\deg(f(R)): f: \mathcal{M} \cong \mathcal{N} \& \mathcal{N} \text{ is computable}\}.$

Non-low Degrees

Theorem (Slaman; Wehner; Hirschfeldt): There exists a structure whose spectrum contains every Turing degree > 0, but not the degree 0.

This also holds with an arbitrary d in place of 0.

Theorem (GHKMMS): For each $n \in \omega$, there exists a structure whose spectrum contains precisely the non-low_n degrees. Indeed, for each computable successor ordinal α , there exists a structure with spectrum

 $\{\deg(X): (\exists \mathbf{d} \notin \mathbf{\Delta}_{\alpha}^{\mathbf{0}})[\mathbf{d} \text{ is } \Delta_{\alpha}^{\mathbf{0}} \text{ relative to } \mathbf{X}]\}.$

High Degrees

Given a structure \mathcal{A} , the technique of (GHKMMS) builds, for each successor ordinal α , a structure \mathcal{B} such that

$$c \in \operatorname{Spec}(\mathcal{B}) \iff c^{(\alpha)} \in \operatorname{Spec}(\mathcal{A}).$$

Fact: For every d, there is a structure A_d with spectrum $\{c : c \geq_T d\}$.

So with $\alpha = 1$ and $\mathbf{d} = \mathbf{0}''$, this gives a structure \mathcal{B} whose spectrum contains exactly the high-or-above degrees (those \mathbf{c} with $\mathbf{c}' \geq_T \mathbf{0}''$). Likewise for high_n, and even high_{\alpha} (with $\alpha \notin \mathbf{LOR}$). This extends a known result...

Spectrum of high degrees

Proposition (Harizanov-Miller): There exists a relation R on a computable dense linear order \mathbb{Q} with

$$\operatorname{DgSp}_{\mathbb{Q}}(R) = \{ \mathbf{d} : \mathbf{d}' \geq_{\mathbf{T}} \mathbf{0}'' \}.$$

Corollary: There exists a structure with this same spectrum.

Corollary: Not all spectra of unary relations on $(\mathbb{Q}, <)$ can be realized as spectra of linear orders. **Proof**: By a theorem of Knight (1986), $\mathbf{0}'$ is the only possible jump degree of a linear order.

How About Linear Orders?

For Boolean algebras, the spectrum $\{d: d > 0\}$ is impossible.

- Jockusch-Soare: For every c.e. d > 0, there exists a linear order whose spectrum contains d but not 0.
- Downey/Seetapun: Extension to any d with $0 < d \le 0'$.
- Knight: Extension to any d > 0.
- M.: There is a single linear order whose spectrum contains all d with $0 < d \le 0'$, but not 0.
- Frolov: For each $n \in \omega$, there is a linear order whose spectrum contains all non-low_n degrees $\leq \mathbf{0}'$ but no low_n degrees.

Question: Can a linear order have a spectrum of precisely the non-low_n degrees?

Where Next?

Frolov's result builds an order \mathcal{L} by relativizing Miller's result to $\mathbf{0}^{(n)}$, so that $\operatorname{Spec}(\mathcal{L})$ contains all \mathbf{d} with $\mathbf{0}^{(n)} < \mathbf{d} \leq \mathbf{0}^{(n+1)}$, but not $\mathbf{0}^{(n)}$. Then it applies the relativization of a theorem of Downey and Knight: A linear order \mathcal{L} is Δ_2^0 iff $(\eta + 2 + \eta) \cdot \mathcal{L}$ is computable. So the order $\mathcal{L}_n = (\eta + 2 + \eta)^n \cdot \mathcal{L}$ has all non-low_n degrees below $\mathbf{0}'$ in its spectrum, but no low_n degree.

Spectral Universality

An embedding $f : \mathcal{A} \hookrightarrow \mathcal{B}$ preserves the spectrum if $\operatorname{Spec}(A) = \operatorname{DgSp}_{\mathcal{B}}(f(\mathcal{A}))$.

A computable model \mathcal{B} of a theory T is spectrally universal for T if every countable model \mathcal{A} of T embeds into \mathcal{B} via some f preserving the spectrum.

Many (but not all!) computable Fraïssé limits of theories turn out to be spectrally universal for those theories. Examples:

- Countable dense linear order.
- Random graph.
- Countable atomless Boolean algebra.

Counterexample:

• Algebraic closure of the field $\mathbb{Z}/(p)$.

Structures vs. Relations

Corollary (of the spectral universality of the random graph): The spectra of countable graphs are precisely the spectra of unary relations on the random graph.

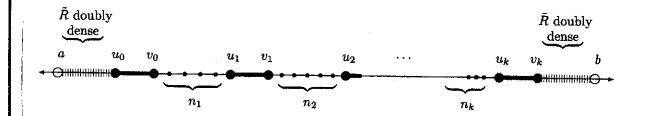
We saw above that this does *not* hold of linear orders. Spectral universality of the countable DLO shows that every spectrum of a LO is the spectrum of a unary relation on the DLO, but the converse is false.

Candidate for a Counterexample

Theorem (M.): There exists a unary relation \tilde{R} on the countable DLO (\mathbb{Q}, \prec) whose degree spectrum contains the non-low degrees:

$$\mathrm{DgSp}_{\mathbb{Q}}(\tilde{R}) = \{\mathbf{d} : \mathbf{d}' >_{\mathbf{T}} \mathbf{0}'\}.$$

For a given finite set $F = \{n_1, n_2, \dots, n_k\} \subset \omega$ and $a \prec b$ in \mathbb{Q} , define \tilde{R} on (a, b) for F as follows:



Wehner's construction gives a family \mathcal{F} of finite sets F, uniformly enumerable by any degree $> \mathbf{0}'$, but not by $\mathbf{0}'$.

For each $F \in \mathcal{F}$, in each order, define \tilde{R} as above for this F on densely many intervals (a, b) in \mathbb{Q} .

Does this work?

This \tilde{R} on (\mathbb{Q}, \prec) gives a potential second counterexample to the converse of spectral universality for linear orders.

Question: Does there exist a linear order with spectrum $\{c : c' >_T \mathbf{0}'\}$?

Notice that the restriction of \prec to \tilde{R} does not yield such an order.

Fields

Example: Fix $r_0 = e$ and $r_{i+1} = e^{r_i}$. Given $S \subseteq \omega$, let F_S be the closure of $\mathbb{Q}(r_t \mid t \in S)$ under square roots of positive elements. We claim that

$$\operatorname{Spec}(F_S) = \{ \boldsymbol{d} : S \text{ is } \Sigma_2^0 \text{ in } \boldsymbol{d} \}.$$

Cor.: For any $A \subseteq \omega$, there is a field whose spectrum contains precisely those \mathbf{d} with $A \leq \mathbf{d}'$.

$$\operatorname{Spec}(F_{A'}) = \{ \boldsymbol{d} : (\exists D \in \boldsymbol{d}) A' \leq_1 D'' \}$$
$$= \{ \boldsymbol{d} : (\exists D \in \boldsymbol{d}) A \leq_T D' \}$$

As a relation on its algebraic closure, F_S has the same spectrum $\{d: S \text{ is } \Sigma_2^0 \text{ in } d\}$.

So the high degrees form the spectrum of a field, and also the spectrum of a subfield of the algebraic closure. $\mathbf{Spec}(F_S) = \{ \boldsymbol{d} : S \text{ is } \Sigma_2^0 \text{ in } \boldsymbol{d} \}.$

 \subseteq : If $E \cong F_S$, then S is the set

 $\{t \in \omega : (\exists x \in E)(\forall q \in \mathbb{Q})[q < r_t \leftrightarrow q \prec x \text{ in } E]\}.$

The order \prec on E is E-computable, by the closure of E under square roots of positive elements.

 \supseteq : If $S \leq_1 \operatorname{Fin}^D$, let $t \in S$ iff $W_{h(t)}^D$ is finite. Start building F_{ω} (the field containing all r_t). Each time $W_{h(t)}^D$ receives an element, make the old r_t become rational and add a new r_t to replace it.