Functors and Effective Interpretations in Model Theory

Russell Miller

Queens College & CUNY Graduate Center

ASL North American Annual Meeting University of Illinois, Urbana-Champaign 27 March 2015

(Joint work with many researchers.)

A First Example

Background: a structure *A* with domain ω is *computable* if all of its functions and relations are computable. Such an *A* is *computably categorical* if, for every computable structure *B* which is classically isomorphic to *A*, there is a computable isomorphism from *A* onto *B*.

More generally, the *Turing degree* a structure A with domain ω is the degree of the atomic diagram of A.

A First Example

Background: a structure *A* with domain ω is *computable* if all of its functions and relations are computable. Such an *A* is *computably categorical* if, for every computable structure *B* which is classically isomorphic to *A*, there is a computable isomorphism from *A* onto *B*.

More generally, the *Turing degree* a structure A with domain ω is the degree of the atomic diagram of A.

Theorem (Hirschfeldt-Khoussainov-Shore-Slinko, 2002)

For every countable, automorphically non-trivial structure S, there exists a graph G with the same computable-model-theoretic properties as S.

A First Example

Background: a structure *A* with domain ω is *computable* if all of its functions and relations are computable. Such an *A* is *computably categorical* if, for every computable structure *B* which is classically isomorphic to *A*, there is a computable isomorphism from *A* onto *B*.

More generally, the *Turing degree* a structure A with domain ω is the degree of the atomic diagram of A.

Theorem (Hirschfeldt-Khoussainov-Shore-Slinko, 2002)

For every countable, automorphically non-trivial structure S, there exists a graph G with the same computable-model-theoretic properties as S.

Theorem (M-Park-Poonen-Schoutens-Shlapentokh)

For every countable graph *G*, there exists a countable field $\mathscr{F}(G)$ with the same computable-model-theoretic properties as *G*.

Construction of $\mathscr{F}(G)$

We use two curves X and Y, defined by integer polynomials:

$$X: p(u, v) = u^4 + 16uv^3 + 10v^4 + 16v - 4 = 0$$

$$Y: q(T, x, y) = x^4 + y^4 + 1 + T(x^4 + xy^3 + y + 1) = 0$$

Let $G = (\omega, E)$ be a graph. Set $K = \mathbb{Q}(\prod_{i \in \omega} X)$ to be the field generated by elements $u_0 < v_0 < u_1 < v_1, \ldots$, with $\{u_i : i \in \omega\}$ algebraically independent over \mathbb{Q} , and with $p(u_i, v_i) = 0$ for every *i*. The element u_i in $K \subseteq \mathscr{F}(G)$ will represent the node *i* in *G*.

Next, adjoin to *K* elements x_{ij} and y_{ij} for all i > j, with $\{x_{ij} : i > j\}$ algebraically independent over *K*, and with

$$q(u_iu_j, x_{ij}, y_{ij}) = 0 \text{ if } (i,j) \in E$$
$$q(u_i + u_j, x_{ij}, y_{ij}) = 0 \text{ if } (i,j) \notin E.$$

We write Y_t for the curve defined by q(t, x, y) = 0 over $\mathbb{Q}(t)$. So the process above adjoins the function field of either $Y_{u_iu_j}$ or $Y_{u_i+u_j}$, for each i > j. $\mathscr{F}(G)$ is the extension of K generated by all x_{ij} and y_{ij} .

Reconstructing *G* **From** $\mathscr{F}(G)$

Lemma

Let
$$G = (\omega, E)$$
 be a graph, and build $\mathscr{F}(G)$ as above. Then:
(i) $X(\mathscr{F}(G)) = \{(u_i, v_i) : i \in \omega\}.$
(ii) If $(i, j) \in E$, then $Y_{u_i u_j}(\mathscr{F}(G)) = \{(x_{ij}, y_{ij})\}$ and $Y_{u_i + u_j}(\mathscr{F}(G)) = \emptyset.$
(iii) If $(i, j) \notin E$, then $Y_{u_i u_j}(\mathscr{F}(G)) = \emptyset$ and $Y_{u_i + u_j}(\mathscr{F}(G)) = \{(x_{ij}, y_{ij})\}.$

This is the heart of the proof. (i) says that p(u, v) = 0 has no solutions in $\mathscr{F}(G)$ except the ones we put there, so we can enumerate

$$\{u_i: i \in \omega\} = \{u \in \mathscr{F}(G): (\exists v \in \mathscr{F}(G)) p(u, v) = 0\}.$$

Similarly, (ii) and (iii) say that the equations $q(u_iu_j, x, y) = 0$ and $q(u_i + u_j, x, y) = 0$ have no unintended solutions in $\mathscr{F}(G)$. So, given *i* and *j*, we can determine from $\mathscr{F}(G)$ whether $(i, j) \in E$: search for a solution to either $q(u_iu_j, x, y) = 0$ or $q(u_i + u_j, x, y) = 0$.

Interpretations

One can readily view this construction as a way of *interpreting* the graph *G* in the field $\mathscr{F}(G)$. The domain of *G* (within $\mathscr{F}(G)$) is defined by the formula

$$(\exists v) \ p(u, v) = 0,$$

under the relation of equality, and the edge relation on such u_0 , u_1 is defined by

$$E(u_0, u_1) \iff (\exists x \exists y) \ q(u_0 u_1, x, y) = 0;$$

$$\neg E(u_0, u_1) \iff (\exists x \exists y) \ q(u_0 + u_1, x, y) = 0.$$

Since the domain, *E*, and $\neg E$ are all defined by Σ_1 formulas, the interpretation may be considered *effective*.

Consequences in Computable Model Theory

Definition

The *isomorphism problem* for a class \mathfrak{S} of computable structures (e.g. $\mathfrak{S} = \{ all \text{ computable graphs } \}$) is the set of all pairs of isomorphic members of \mathfrak{S} :

 $\{(i,j) \in \omega^2 : \varphi_i \text{ and } \varphi_j \text{ are the characteristic functions of the atomic diagrams of isomorphic members of } \mathfrak{S}\}.$

Since the isomorphism problem for computable graphs is known to be Σ_1^1 -complete, this re-proves the known result that the isomorphism problem for computable fields is also Σ_1^1 -complete.

Here we only needed that \mathscr{F} respects isomorphism. The Friedman-Stanley embedding did the same.

Consequences: Spectra of Structures

Definition

The *spectrum* of *S* is the set of all Turing degrees of copies of *S*:

$$\operatorname{Spec}(S) = \{ \operatorname{deg}(M) : M \cong S \& \operatorname{dom}(M) = \omega \}.$$

Corollary

For every countable structure A, there exists a field F with the same Turing degree spectrum as A:

$$Spec(A) = \{ deg(B) : B \cong A \& dom(B) = \omega \}$$
$$= \{ deg(E) : E \cong F \& dom(E) = \omega \}$$
$$= Spec(F).$$

This follows because \mathscr{F} respects isomorphism, with $\mathscr{F}(G) \equiv_{\mathcal{T}} G$, and \mathscr{F} has a computable left inverse taking copies of $\mathscr{F}(G)$ to copies of F.

Categoricity Spectra & Computable Dimension

Definition

If S is computable, the *computable dimension* of S is the number of computable isomorphism classes of computable structures isomorphic to S. If this equals 1, then S is *computably categorical*.

d-computable dimension is similar, still for a computable structure *S* but with *d*-computable isomorphisms.

Definition

The *categoricity spectrum* of a computable structure S is the set of all Turing degrees **d** such that S is **d**-computably categorical.

Consequences: Categoricity Spectra & Dimension

Corollary

For every computable structure A, there exists a computable field F with the same categoricity spectrum as A and (for each Turing degree d) the same d-computable dimension as A.

That is, for every Turing degree d, A is d-computably categorical if and only if F is d-computably categorical.

This requires the functoriality of the map \mathscr{F} : we use the fact that a *d*-computable isomorphism $g : G \to \widehat{G}$ gives rise to a *d*-computable $\mathscr{F}(g) : \mathscr{F}(G) \to \mathscr{F}(\widehat{G})$. So it is important that \mathscr{F} is a **functor**, not just a map on structures. Moreover, if *F* is computable and $F \cong \mathscr{F}(G)$, then *F* is computably isomorphic to $\mathscr{F}(\widehat{G})$ for some computable $\widehat{G} \cong G$. This yields the required reverse implication.

Functoriality

Our procedure \mathscr{F} can also be viewed as a **functor**. Not only does it build a field $\mathscr{F}(G)$ from a graph *G*, but also, given an isomorphism $g: G_0 \to G_1$, it builds an isomorphism $\mathscr{F}(g): \mathscr{F}(G_0) \to \mathscr{F}(G_1)$, respecting composition and preserving the identity map. *g* tells us where each pair (u_i, v_i) from $\mathscr{F}(G_0)$ should be mapped in $\mathscr{F}(G_1)$, and this in turn determines the map on all x_{ij} and y_{ij} , effectively. So

$$\mathscr{F}(g) = \Phi^{G_0 \oplus g \oplus G_1}_*$$

Now we are thinking of our collection of all countable graphs as a category, under isomorphisms, and the same for fields. (\mathscr{F} would be a functor even with monomorphisms, not just isomorphisms.)

Consequences: Computable Categoricity

Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky have recently proven that computable categoricity for trees is Π_1^1 -complete.

Corollary

The property of computable categoricity for computable fields is Π^1_1 -complete. That is, the set

 $\{e \in \omega : \varphi_e \text{ computes a computably categorical field}\}$

is a Π_1^1 set, and every Π_1^1 set is 1-reducible to this set.

Again, functoriality of \mathscr{F} is essential to this result.

The Friedman-Stanley Embedding

Given a graph *G* with domain ω , H. Friedman and Stanley defined the field $\mathscr{F}(G)$. Let X_0, X_1, \ldots be algebraically independent over \mathbb{Q} . Let F_0 be the field generated by $\bigcup_n \overline{\mathbb{Q}(X_n)}$. Then set

$$\mathscr{F}\!\mathscr{F}(G) = F_0[\sqrt{X_m + X_n} : (m, n) \in G].$$

Thus $\mathscr{FS}(G)$ is computable in *G*, uniformly, and an isomorphism $g: G \to H$ gives an isomorphism $\mathscr{FS}(g): \mathscr{FS}(G) \to \mathscr{FS}(H)$. Indeed $G \cong H \iff \mathscr{FS}(G) \cong \mathscr{FS}(H)$.

The Friedman-Stanley Embedding

Given a graph *G* with domain ω , H. Friedman and Stanley defined the field $\mathscr{F}(G)$. Let X_0, X_1, \ldots be algebraically independent over \mathbb{Q} . Let F_0 be the field generated by $\bigcup_n \overline{\mathbb{Q}(X_n)}$. Then set

$$\mathscr{F}\!\mathscr{F}(G) = F_0[\sqrt{X_m + X_n} : (m, n) \in G].$$

Thus $\mathscr{FS}(G)$ is computable in *G*, uniformly, and an isomorphism $g: G \to H$ gives an isomorphism $\mathscr{FS}(g): \mathscr{FS}(G) \to \mathscr{FS}(H)$. Indeed $G \cong H \iff \mathscr{FS}(G) \cong \mathscr{FS}(H)$.

However, $\mathscr{FS}(G)$ may be computably presentable, even when *G* is not. And $\mathscr{FS}(G)$ is never computably categorical, even when *G* is. So this \mathscr{FS} does not preserve the properties we want. The functor \mathscr{FS} is neither computable, nor *full*: not all isomorphisms $\mathscr{FS}(G) \to \mathscr{FS}(H)$ are of the form $\mathscr{FS}(g)$.

Other Possible Functors

Another example is given by Victor Ocasio Gonzalez (recent PhD student of Knight), using ideas of Dave Marker and others.

Theorem (Ocasio)

There is a computable functor (Φ, Φ_*) from the category of countable linear orders *L* into that of countable real closed fields *F*. Moreover, there is a computable functor (Ψ, Ψ_*) which is a left inverse of (Φ, Φ_*) .

Given *L*, Φ builds the real closure *F* of the ordered field $\mathbb{Q}(a_0, a_1, \ldots)$, where $(\forall i)(\forall n) \ n < a_i$ in *F* and

$$i < j$$
 in $L \iff a_i < a_j$ in $F \iff (\forall m)a_i^m < a_j$ in L .

So *L* is the linear order of the positive nonstandard elements of *F*, modulo the equivalence $a \sim b \iff (\exists m \in \omega)[a < b^m \& b < a^m]$.

$$\cdots$$
 $RC(\mathbb{Q})$ $[a_0]_{\sim}$ $[a_1]_{\sim}$ $[a_2]_{\sim}$ \cdots

Inverse of Ocasio's Functor?

For each *L*, the field $F = \Phi^L$ is built in a straightforward way, with the odd numbers in $\omega = \text{dom}(F)$ serving as the elements a_i in *F*. Therefore, there is a computable functor (Ψ, Ψ_*) which is a left inverse of (Φ, Φ_*) .

However, this Ψ does *not* extend to all other *F* isomorphic to fields of the form Φ^L . The interpretation of *L* in *F* uses Σ_2^c formulas: computable infinitary Σ_2^0 formulas. Therefore, picking out representatives a_0, a_1, \ldots in a copy of *F* requires the jump of the atomic diagram of *F*.

Ocasio uses this to show that, for every (infinite) L, there is a RCF F such that

$$\operatorname{Spec}(F) = \{ \boldsymbol{d} : \boldsymbol{d}' \in \operatorname{Spec}(L) \}.$$

For \supseteq , he takes an arbitrary *d*-computable approximation to *L*, and builds a *d*-computable copy of *F* from the approximation.

Computable Infinitary Formulas

Recall the **computable infinitary** formulas in $L_{\omega_1\omega}$:

- All finite quantifier-free formulas (with constants from the domain ω) are Σ₀^c, and also Π₀^c.
- If $\alpha_0, \alpha_1, \ldots$ is a computable list of Π_n^c formulas, then

 $\exists n (\alpha_n)$

is \sum_{n+1}^{c} , and its negation is \prod_{n+1}^{c} . (Since we allow constants from ω , this allows quantification $\exists x$ over the structure's domain.)

• Taking unions at limit ordinals defines Σ_{θ}^{c} iteratively for all $\theta < \omega_{1}^{CK}$. These arise very naturally in computable model theory. For instance, the following Σ_{2}^{c} formula defines the standard part of a nonstandard model of Th(ω , <):

$$\exists \langle y_1, \ldots, y_m \rangle \ \forall z(z < x \implies (z = y_1 \text{ or } \cdots \text{ or } z = y_m)).$$

More Marker Ideas

A similar process uses the ENI-DOP for the theory DCF_0 to show that, for every countable, automorphically nontrivial graph *G*, there is a countable differentially closed field *K* such that

 $\operatorname{Spec}(K) = \{ d : d' \in \operatorname{Spec}(G) \}.$

Indeed, we have a converse, established by a priority construction:

Theorem (Marker-M.)

Every model of \mathbf{DCF}_0 of low Turing degree is isomorphic to a computable DCF.

Corollary (Marker-M.)

The spectra of differentially closed fields of characteristic 0 are exactly the preimages, under the jump operation, of the spectra of graphs.

From Graphs to Differentially Closed Fields

Once again, this can be seen as a construction of a computable functor from graphs to models of DCF_0 . It has a computable inverse functor, but this inverse is only defined on the image, not on a class closed under isomorphism.

As with the Ocasio functor, this one is best described as building a DCF *K* such that the given graph *G* has an interpretation in *K* by Σ_2^c formulas. Nodes $n \in G$ are represented by elements of a decidable infinite set of indiscernibles a_n in $\hat{\mathbb{Q}}$. The existence of an edge between *m* and *n* is coded by:

 $(\exists (x,y) \in E^{\#}_{a_m a_n})[x,y \text{ transcendental over } \mathbb{Q}\langle a_m + a_n \rangle]$

where $E_{a_m a_n}^{\#}$ is the Manin kernel for an elliptic curve involving a_m and a_n . Thus this is a Σ_2^c formula, though not a finitary formula.

Effective Interpretation

Definition (Montalbán)

Let *A* be an *L*-structure, and *B* be any structure. Let us assume that *L* is a relational language $L = \{P_0, P_1, P_2, ...\}$ where P_i has arity a(i); so $A = (A; P_0^A, P_1^A, ...)$ and $P_i^A \subseteq A^{a(i)}$.

We say that A is effectively interpretable in B if, in B, there is

- a uniformly r.i.c.e. set $D_A^B \subseteq B^{<\omega}$ (the domain of the interpretation),
- a uniformly r.i. computable relation η ⊆ B^{<ω} × B^{<ω} which is an equivalence relation on D^B_A (interpreting equality),
- a uniformly r.i. computable sequence of relations R_i ⊆ (B^{<ω})^{a(i)}, closed under the equivalence η within D^B_A (interpreting P_i),
- and a function $f_A^B \colon D_A^B \to A$ which induces an isomorphism:

$$(D_{A}^{B}/\eta; R_{0}, R_{1}, ...) \cong (A; P_{0}^{A}, P_{1}^{A}, ...).$$

With parameters, Montalbán notes, this is equivalent to Σ -definability.

Functors

Definition

Let \mathfrak{C} be a category in which the objects are countable structures with domain ω (in a single computable language) and the morphisms are maps; and let \mathfrak{D} be another such category (possibly with a different language). A (type-2) *computable functor* from \mathfrak{C} into \mathfrak{D} consists of two Turing functionals Φ and Φ_* such that:

• for all
$$A \in \mathfrak{C}$$
, $\Phi^A \in \mathfrak{D}$; and

- for all morphisms $f : A \to B$ in \mathfrak{C} , $\Phi^{A \oplus f \oplus B}_*$ is a morphism from Φ^A to Φ^B in \mathfrak{D} ; and
- these define a functor from & into D.

For instance, any time we have an interpretation of *B* in *A* by Σ_1^c -formulas, we automatically get a functor

 $\mathsf{Iso}(A) := \{ \text{isomorphic copies of } A \text{ with domain } \omega \} \longrightarrow \mathsf{Iso}(B).$

Connecting Semantics with Syntax

Let Iso(A) be the category of all structures (with domain ω) isomorphic to A, with isomorphisms as the morphisms.

Theorem (Harrison-Trainor, Melnikov, M., Montalbán)

B is effectively interpretable in *A* if and only if there is a computable functor (Φ, Φ_*) from Iso(*A*) into Iso(*B*).

 \Leftarrow : First code $A^{<\omega} \times \omega$ into $A^{<\omega}$: represent (a_0, \ldots, a_j, n) by all tuples $(a_0, \ldots, a_j)^{\hat{}}a^{n+1}$ with $a_j \neq a$.

A pair (\vec{a}, n) enters the domain D_B^A if $\Phi_*^{\Delta(\vec{a}) \oplus id \upharpoonright |\vec{a}| \oplus \Delta(\vec{a})}(n) \downarrow = n$.

Since $\Phi^{\Delta(A)\oplus id\oplus\Delta(A)}_*$ is the identity on Φ^A , every *n* has an \vec{a} with $(\vec{a}, n) \in D^A_B$. Intuitively, $\Delta(\vec{a})$ was enough information for Φ_* to recognize the element *n* in $\hat{B} = \Phi^{\hat{A}}$ whenever $\Delta(\hat{A})$ extends $\Delta(\vec{a})$.

Notice that this is a *computable infinitary* Σ_1 relation on tuples.

Russell Miller (CUNY)

Equivalence on tuples

Roughly: for tuples \vec{a} , \vec{a}' , we define $(\vec{a}, n) \sim (\vec{a}', n')$ if, for some $m > \max(\vec{a}, \vec{a}')$, some permutation $\sigma \in \Sigma_m$ has $\sigma(\vec{a}) = \vec{a}'$ and

$$\Phi^{\Delta(\mathsf{dom}(\sigma))\oplus\sigma\oplus\Delta(\mathsf{rg}(\sigma))}_*(n)=n' \quad \& \quad \Phi^{\Delta(\mathsf{rg}(\sigma))\oplus\sigma^{-1}\oplus\Delta(\mathsf{dom}(\sigma))}_*(n')=n.$$

Again, this is a *computable infinitary* Σ_1 relation on tuples.

Of course, to be an effective interpretation, this process should avoid using $\Delta(A)$. In the above, choosing a tuple \vec{a} really means choosing a finite atomic diagram for that many elements. The Σ_1^c formula says that, if you find that finite atomic diagram within an oracle $\Delta(\hat{A})$, then you should consider these two tuples from $D_B^{\hat{A}}$ to represent the same element in the interpretation.

Bi-Interpretability

In the MPPSS construction, *B* was an arbitrary graph *G*, and *A* was the field $\mathscr{F}(G)$ which we built from *G*. In this construction, there were *two* computable functors: \mathscr{F} uses the graph *G* to build the field $\mathscr{F}(G)$, and then we saw that \mathscr{F} has a computable left-inverse functor \mathscr{G} which, given any copy of $\mathscr{F}(G)$, produces a copy of *G*. The graph *G* and the field $\mathscr{F}(G)$ always satisfy:

Definition (Montalbán)

Structures *A* and *B* effectively interpretable in each other are *effectively bi-interpretable* if the compositions

$$f_B^A \circ \overline{f}_A^B : D_B^{D_B^A} \to B \text{ and } f_A^B \circ \overline{f}_B^A : D_A^{D_B^A} \to A$$

are uniformly relatively intrinsically computable in *B* and *A*.

(Recall: f_B^A is an isomorphism onto *B* from the interpretation D_B^A of *B* within *A*.)

Bi-Interpretability and Functors

Theorem (HTM³)

Structures *A* and *B* are effectively bi-interpretable if and only if there exist computable functors $\mathscr{F} : \mathsf{Iso}(A) \to \mathsf{Iso}(B)$ and $\mathscr{G} : \mathsf{Iso}(B) \to \mathsf{Iso}(A)$ such that $\mathscr{F} \circ \mathscr{G}$ and $\mathscr{G} \circ \mathscr{F}$ are effectively isomorphic to the identity functors in their categories.

The technical term *"effectively isomorphic"* means that there is a computable natural transformation from $\mathscr{G} \circ \mathscr{F}$ to the identity functor on Iso(A), and likewise in Iso(B).

Ultimately the MPPSS theorem shows that, for every graph *G*, there is a field $\mathscr{F}(G)$ which is effectively bi-interpretable with *G*, and that the formulas used in the interpretations (equivalently, the algorithms for the computable functors) are uniform for all graphs *G*. Moreover, the relation \sim is just equality. This is sufficient to transfer from *G* to $\mathscr{F}(G)$ all the computable model theoretic properties seen earlier.

Current Work

Question: what about those more complicated interpretations?

Intepretations using Σ_2^c formulas (e.g. Ocasio's interpretation of a LO *L* in a RCF *F*_L) can readily be viewed as functors into the *jump*.

Defn. (various researchers), roughly stated

The jump A' of a countable structure A has the same domain as A and includes the same predicates, but also has a predicate for every Σ_1^c formula (with free variables v_1, \ldots, v_n) in the language of A. That predicate holds of \vec{a} in A' iff the formula holds of \vec{a} in A.

This includes predicates such as "the length of the tuple \vec{a} lies in \emptyset' ," which are not really structural. We get $\text{Spec}(A') = \{ d' : d \in \text{Spec}(A) \}$.

The Σ_2^c interpretation of *L* in F_L is naturally an effective interpretation of *L* in the jump F'_L , and thus corresponds to a computable functor.

Current Work: Graphs vs. Linear Orders

The Σ_2^c interpretations given here suggest that DCF's are connected to graphs, and RCF's to linear orders. These are the opposite sides of a basic divide in computable model theory: linear orders and related classes (e.g. Boolean algebras) are the main classes known not to be complete for many of the properties we have discussed: spectra, computable categoricity, etc.

The Marker-Miller theorem shows that DCF_0 models are not complete, but still ties them closely to graphs. However:

Conjecture (M-Ocasio)

Every graph *G* has a Σ_2^c -interpretation in some RCF F_G .

Specific multiplicative classes [x] in F_G are identified by Σ_2^c -formulas:

$$(\exists y, z \in [x])(\forall q \in \mathbb{Q}^+)[y < z^q \iff \sqrt{2} < q].$$

Current Work: Noncomputable Infinitary Formulas

Question: What about interpretations by arbitrary $L_{\omega_1\omega}$ formulas?

If the interpretation uses *X*-computable infinitary Σ_1 formulas, then by relativizing, the earlier arguments show that we have an *X*-computable functor, given by Turing functionals $\Phi^{X \oplus A}$ and $\Phi^{X \oplus A \oplus f \oplus \widehat{A}}_*$. So an $L_{\omega_1 \omega}$ interpretation yields a continuous functor.

It is natural to argue that this should be computable "on the cone above *X*," but this is not the case. Even if $X \leq_T A$, a single functional Φ cannot decide *X* from *A* without knowing the index *e* for which $X = \Phi_e^A$. This index may vary for different copies of *A* above *X*.