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Real Computability

Defn.: A BSS-machine has an infinite tape,

indexed by ω. At each stage, cofinitely many cells

are blank, and finitely many contain one number

each. In a single step, the machine can copy one

cell into another, or perform a field operation (+,

−, ·, or ÷) on two cells, or compare any cell to 0

(using < or =) and fork, or halt.

The machine starts with a tuple ~p ∈ R<ω of

parameters in its cells, and the input consists of a

tuple ~x ∈ R<ω, written in the cells immediately

following ~p. The machine runs according to a

finite program, and if it halts within finitely many

steps, the output is the tuple of numbers in the

cells when it halts.

So BSS programs naturally compute partial

functions R∗ → R∗, and can be indexed by

elements of R∗. When R = R, these are the

real-computable functions.
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Real-Computable Manifolds

A real-computable d-manifold M consists of

countably many charts Un, each homeomorphic to

Rd via some αn, such that {Un} is closed under

intersection and covers M . Formally, M is given

by real-computable inclusion functions i, j, j′,

and k such that:

• i(m,n) = 1 iff Um ⊆ Un. Then ϕj(m,n)

computes the inclusion map:

α−1
n ◦ ϕj(m,n) ◦ αm : Um →֒ Un

and ϕj′(m,n) = ϕ−1
j(m,n).

• i(m,n) = 0 iff ∅ ( Um ∩ Un ( Un. Then

Uk(m,n) gives the intersection Um ∩ Un.

• i(m,n) = −1 iff Um ∩ Un = ∅.

All this is formalized by conditions on i, j, j′, and

k. The manifold M itself never appears.

It is possible to define connectedness of M just by

conditions on i and k.
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Paths through M

Classically, a path γ is a continuous map:

[0, 1] →M . In our setting, a path in M is given

by g : [0, 1] → ω and h : [0, 1] → Rd. Then γ(t) is

the point h(t) in Ug(t). We require that there

exist 0 = t0 < · · · < tn = 1 with:

• g constant and h continuous on each [ti, ti+1)

and on [tn−1, 1].

• The point h(ti) in Ug(ti) is the limit of h(t) in

Ug(t) as t→ t−i , for each i < n.

This path is real-computable if g and h are.

n and 〈t0, . . . , tn〉 are finitely much info, but are

not normally assumed to be given.

A path is a loop if g(0) = g(1) and h(0) = h(1)

(so γ(0) = γ(1)).
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Paths and Homotopy

Fact: Every path in M is homotopic to a

computable path: the straight lines in each Ug(ti)

from h(ti) to limt→t
−

i+1

h(t). Indeed, the path is

determined up to homotopy by the sequence

〈g(t0), g(t1), . . . , g(tn)〉 ∈ ω<ω.

An index for a homotopic computable path can

be real-computed from n and an index for g,

provided g(ti) 6= g(ti+1) for all i < n.

This relies on our convention that all charts Um

are connected. Classically, this convention is easy;

but how effective is the classical argument?
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Noncomputable Nullhomotopy

However, indices for g and h (without n) are

insufficient to decide whether the path is

nullhomotopic, unless M is simply connected.

Proof : For any real-computable ψ, let f = 〈g, h〉

be a loop not homotopic to a constant. Define the

computable loop ϕ~e :

ϕ~e(t) =















f(2 + (t− 1)2s+1), if ψ=s(~e)↓= 1 &

t ∈ [ 2
s
−1
2s , 2s+1

−1
2s+1 )

base point of f, if not, or if t = 1.

So ϕ~e goes around f once iff ψ says ϕ~e is

nullhomotopic.

This uses the Recursion Theorem for real

computability.
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Simple Connectedness

Likewise, no real-computable ψ can decide

whether the manifold given by (indices for) i, j,

j′, and k is simply connected. We can define

these functions to produce six charts forming an

M with π1(M) ∼= Z. Then, if ψ ever halts on

those indices, they put a new chart in the middle,

making M simply connected.

Thus the property of not being simply connected

is not even real-semidecidable (= domain of a

real-computable function). Nor is simple

connectedness real-semidecidable, by a similar

argument. Indeed, these properties are not

decidable by any function of the form

lims θ(i, j, j
′, k, s) with θ real-computable.
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Computing π1(M)

Modulo homotopy, a path 〈g, h〉 can be described

completely by the sequence

〈g(t0), g(t1), . . . , g(tn)〉. So we think of elements

~x ∈ ω<ω as (possible) loops. To be a loop, ~x must

have x0 = xn (= some particular m, where Um

contains our base point) and i(xp, xp+1) 6= −1 for

all p < n. All this is real-computable.

In real-computability, a single real may now be

given which codes all necessary information for

determining a set of homotopy class

representatives and computing π1(M). In truth,

this is now a problem for Turing machines, not

BSS-machines.
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Computing Homotopy

Lemma: Homotopy of two paths α and β from x

to y in M is computably enumerable, relative to

the inclusion functions i and k.

Proof : By compactness, the image of the set of

all paths used in a homotopy must be contained

in finitely many charts. The proof is then just an

induction, using:

Fact: For α and β as shown, α ≃ β within

Um ∪ Un ∪ Up iff Um ∩ Un ∩ Up 6= ∅.

Cf. work of Brown, Annals of Math. 1957.
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Presentation of π1(M)

The inclusion functions i and k are functions on

ω, and j and j′ are not needed. Relative to i and

k, π1(M) is presentable as the quotient of a

Turing-computable subset of ω<ω by the c.e.

equivalence relation of homotopy.

Likewise, the operation of concatenation is

Turing-computable on this set.

The question remains: how difficult is it to start

with a more general real-computable presentation

of a manifold and produce a presentation which

has all charts connected and is closed under

intersection of charts? And is this an appropriate

question for real computability, or for Turing

computability?
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