Real Computable Manifolds and Homotopy Groups

Wesley Calvert Murray State University

Russell Miller,
Queens College \& Graduate Center - CUNY

September 10, 2009
Unconventional Computation 2009
Universidade dos Açores

Real Computability

Defn.: A BSS-machine has an infinite tape, indexed by ω. At each stage, cofinitely many cells are blank, and finitely many contain one number each. In a single step, the machine can copy one cell into another, or perform a field operation $(+$, ,$- \cdot$, or \div) on two cells, or compare any cell to 0 (using $<$ or $=$) and fork, or halt.

The machine starts with a tuple $\vec{p} \in R^{<\omega}$ of parameters in its cells, and the input consists of a tuple $\vec{x} \in R^{<\omega}$, written in the cells immediately following \vec{p}. The machine runs according to a finite program, and if it halts within finitely many steps, the output is the tuple of numbers in the cells when it halts.

So BSS programs naturally compute partial functions $R^{*} \rightarrow R^{*}$, and can be indexed by elements of R^{*}. When $R=\mathbb{R}$, these are the real-computable functions.

Real-Computable Manifolds

A real-computable d-manifold M consists of countably many charts U_{n}, each homeomorphic to \mathbb{R}^{d} via some α_{n}, such that $\left\{U_{n}\right\}$ is closed under intersection and covers M. Formally, M is given by real-computable inclusion functions i, j, j^{\prime}, and k such that:

- $i(m, n)=1$ iff $U_{m} \subseteq U_{n}$. Then $\varphi_{j(m, n)}$
computes the inclusion map:

$$
\alpha_{n}^{-1} \circ \varphi_{j(m, n)} \circ \alpha_{m}: U_{m} \hookrightarrow U_{n}
$$

and $\varphi_{j^{\prime}(m, n)}=\varphi_{j(m, n)}^{-1}$.

- $i(m, n)=0$ iff $\emptyset \subsetneq U_{m} \cap U_{n} \subsetneq U_{n}$. Then $U_{k(m, n)}$ gives the intersection $U_{m} \cap U_{n}$.
- $i(m, n)=-1$ iff $U_{m} \cap U_{n}=\emptyset$.

All this is formalized by conditions on i, j, j^{\prime}, and k. The manifold M itself never appears.

It is possible to define connectedness of M just by conditions on i and k.

Paths through M

Classically, a path γ is a continuous map:
$[0,1] \rightarrow M$. In our setting, a path in M is given by $g:[0,1] \rightarrow \omega$ and $h:[0,1] \rightarrow \mathbb{R}^{d}$. Then $\gamma(t)$ is the point $h(t)$ in $U_{g(t)}$. We require that there exist $0=t_{0}<\cdots<t_{n}=1$ with:

- g constant and h continuous on each $\left[t_{i}, t_{i+1}\right)$ and on $\left[t_{n-1}, 1\right]$.
- The point $h\left(t_{i}\right)$ in $U_{g\left(t_{i}\right)}$ is the limit of $h(t)$ in $U_{g(t)}$ as $t \rightarrow t_{i}^{-}$, for each $i<n$.

This path is real-computable if g and h are. n and $\left\langle t_{0}, \ldots, t_{n}\right\rangle$ are finitely much info, but are not normally assumed to be given.

A path is a loop if $g(0)=g(1)$ and $h(0)=h(1)$ (so $\gamma(0)=\gamma(1)$).

Paths and Homotopy

Fact: Every path in M is homotopic to a computable path: the straight lines in each $U_{g\left(t_{i}\right)}$ from $h\left(t_{i}\right)$ to $\lim _{t \rightarrow t_{i+1}^{-}} h(t)$. Indeed, the path is determined up to homotopy by the sequence

$$
\left\langle g\left(t_{0}\right), g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right\rangle \in \omega^{<\omega} .
$$

An index for a homotopic computable path can be real-computed from n and an index for g, provided $g\left(t_{i}\right) \neq g\left(t_{i+1}\right)$ for all $i<n$.

This relies on our convention that all charts U_{m} are connected. Classically, this convention is easy; but how effective is the classical argument?

Noncomputable Nullhomotopy

However, indices for g and h (without n) are insufficient to decide whether the path is nullhomotopic, unless M is simply connected.

Proof: For any real-computable ψ, let $f=\langle g, h\rangle$ be a loop not homotopic to a constant. Define the computable loop $\varphi_{\vec{e}}$:

$$
\varphi_{\vec{e}}(t)= \begin{cases}f\left(2+(t-1) 2^{s+1}\right), & \text { if } \psi=s(\vec{e}) \downarrow=1 \& \\ & t \in\left[\frac{2^{-1}}{2^{s}}, \frac{2^{s+1}-1}{2^{s+1}}\right)\end{cases}
$$

base point of f, \quad if not, or if $t=1$.
So $\varphi_{\vec{e}}$ goes around f once iff ψ says $\varphi_{\vec{e}}$ is nullhomotopic.

This uses the Recursion Theorem for real computability.

Simple Connectedness

Likewise, no real-computable ψ can decide whether the manifold given by (indices for) i, j, j^{\prime}, and k is simply connected. We can define these functions to produce six charts forming an M with $\pi_{1}(M) \cong \mathbb{Z}$. Then, if ψ ever halts on those indices, they put a new chart in the middle, making M simply connected.

Thus the property of not being simply connected is not even real-semidecidable ($=$ domain of a real-computable function). Nor is simple connectedness real-semidecidable, by a similar argument. Indeed, these properties are not decidable by any function of the form $\lim _{s} \theta\left(i, j, j^{\prime}, k, s\right)$ with θ real-computable.

Computing $\pi_{1}(M)$

Modulo homotopy, a path $\langle g, h\rangle$ can be described completely by the sequence
$\left\langle g\left(t_{0}\right), g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right\rangle$. So we think of elements $\vec{x} \in \omega^{<\omega}$ as (possible) loops. To be a loop, \vec{x} must have $x_{0}=x_{n}$ (= some particular m, where U_{m} contains our base point) and $i\left(x_{p}, x_{p+1}\right) \neq-1$ for all $p<n$. All this is real-computable.

In real-computability, a single real may now be given which codes all necessary information for determining a set of homotopy class
representatives and computing $\pi_{1}(M)$. In truth, this is now a problem for Turing machines, not BSS-machines.

Computing Homotopy

Lemma: Homotopy of two paths α and β from x to y in M is computably enumerable, relative to the inclusion functions i and k.
Proof: By compactness, the image of the set of all paths used in a homotopy must be contained in finitely many charts. The proof is then just an induction, using:
Fact: For α and β as shown, $\alpha \simeq \beta$ within $U_{m} \cup U_{n} \cup U_{p}$ iff $U_{m} \cap U_{n} \cap U_{p} \neq \emptyset$.

Cf. work of Brown, Annals of Math. 1957.

Presentation of $\pi_{1}(M)$

The inclusion functions i and k are functions on ω, and j and j^{\prime} are not needed. Relative to i and $k, \pi_{1}(M)$ is presentable as the quotient of a Turing-computable subset of $\omega^{<\omega}$ by the c.e. equivalence relation of homotopy.

Likewise, the operation of concatenation is Turing-computable on this set.

The question remains: how difficult is it to start with a more general real-computable presentation of a manifold and produce a presentation which has all charts connected and is closed under intersection of charts? And is this an appropriate question for real computability, or for Turing computability?

