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/ ‘ Real Computability I \

Defn.: A BSS-machine has an infinite tape,
indexed by w. At each stage, cofinitely many cells
are blank, and finitely many contain one number
each. In a single step, the machine can copy one
cell into another, or perform a field operation (+,
—, -, or =) on two cells, or compare any cell to 0

(using < or =) and fork, or halt.

The machine starts with a tuple g € R<% of
parameters in its cells, and the input consists of a
tuple ¥ € R<%, written in the cells immediately
following p. The machine runs according to a
finite program, and if it halts within finitely many
steps, the output is the tuple of numbers in the
cells when it halts.

So BSS programs naturally compute partial
functions R* — R*, and can be indexed by
elements of R*. When R = R, these are the

\real- computable functions. /
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/ ‘Real-Computable Manifolds' \

A real-computable d-manifold M consists of
countably many charts U,,, each homeomorphic to
R? via some a,,, such that {U,} is closed under
intersection and covers M. Formally, M is given
by real-computable inclusion functions i, j, j’,
and k such that:

e i(m,n)=1iff U, CU,. Then ©;, n)

computes the inclusion map:

047;1 ©Pji(m,n) © Um - Um — Un

and ;1 (m,n) = P;(mn)
e i(m,n)=0iff 0 C U,, NU,, € U,. Then
Uk(m,n) gives the intersection Uy, N U,.
e i(m,n)=—-1ifU,,NU, = 0.
All this is formalized by conditions on i, j, j', and

k. The manifold M itself never appears.
It is possible to define connectedness of M just by

\Conditions on 7 and k. /




4 N
Paths through M I

Classically, a path ~ is a continuous map:

0,1] — M. In our setting, a path in M is given
by g:[0,1] — w and h : [0,1] — R%. Then ~(t) is
the point h(t) in Uyy). We require that there
exist 0 =ty < --- < t,, = 1 with:

e g constant and h continuous on each [¢;,%;11)

and on |t,_1,1].

e The point h(t;) in Uy, is the limit of h(t) in
U

g(t) as t — ¢, for each i < n.

This path is real-computable if g and h are.
n and (tg,...,t,) are finitely much info, but are

not normally assumed to be given.
A path is a loop if g(0) = g(1) and h(0) = h(1)
(so 7(0) =~(1)).
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Paths and Homotopy.

Fact: Every path in M is homotopic to a
computable path: the straight lines in each Ug(y,)
from h(t;) to limt—>t;+1 h(t). Indeed, the path is
determined up to homotopy by the sequence

(g(to),g(t1),...,g(tn)) € w=¥.

An index for a homotopic computable path can
be real-computed from n and an index for g,
provided g(t;) # g(t;4+1) for all i < n.

This relies on our convention that all charts U,,
are connected. Classically, this convention is easy;

but how effective is the classical argument?
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Noncomputable Nullhomotopy'

However, indices for g and h (without n) are

insufficient to decide whether the path is

nullhomotopic, unless M is simply connected.

Proof: For any real-computable ¢, let f = (g, h)
be a loop not homotopic to a constant. Define the

computable loop vg :

;

f+E-1)27Th), ifvs(e)]=1&

s __ s+1
gOg(t): 9 S [223172254-11)

| base point of f,  if not, or if £ = 1.

So gz goes around f once iff ¢ says g is

nullhomotopic.

This uses the Recursion Theorem for real
computability.

N /




/ ‘ Simple Connectedness I \

Likewise, no real-computable 1) can decide
whether the manifold given by (indices for) 7, j,
4, and k is simply connected. We can define
these functions to produce six charts forming an
M with 71 (M) = Z. Then, if ¥ ever halts on
those indices, they put a new chart in the middle,

making M simply connected.

Thus the property of not being simply connected
is not even real-semidecidable (= domain of a
real-computable function). Nor is simple
connectedness real-semidecidable, by a similar
argument. Indeed, these properties are not
decidable by any function of the form

\lims 0(i, 7,5, k,s) with 0 real-computable. /
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4 N

Computing (M)

Modulo homotopy, a path (g, h) can be described
completely by the sequence
(g(t0),9(t1),...,9(tn)). So we think of elements
T € w<¥ as (possible) loops. To be a loop, & must
have x¢g = x,, (= some particular m, where U,
contains our base point) and i(x,, zp4+1) # —1 for
all p < n. All this is real-computable.

In real-computability, a single real may now be
given which codes all necessary information for
determining a set of homotopy class
representatives and computing 71 (M ). In truth,
this is now a problem for Turing machines, not

BSS-machines.
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4 N
Computing Homotopy I

Lemma: Homotopy of two paths o and 3 from x

to y in M is computably enumerable, relative to
the inclusion functions ¢ and k.

Proof: By compactness, the image of the set of
all paths used in a homotopy must be contained
in finitely many charts. The proof is then just an
induction, using:

Fact: For o and (8 as shown, o ~ 5 within
UnUU,UU, iff U, NU, NU, # 0.

Cf. work of Brown, Annals of Math. 1957.
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4 N

Presentation of 7 (M)

The inclusion functions ¢ and k are functions on
w, and j and j’ are not needed. Relative to i and
k, m1(M) is presentable as the quotient of a
Turing-computable subset of w<* by the c.e.

equivalence relation of homotopy.

Likewise, the operation of concatenation is

Turing-computable on this set.

The question remains: how difficult is it to start
with a more general real-computable presentation
of a manifold and produce a presentation which
has all charts connected and is closed under
intersection of charts? And is this an appropriate
question for real computability, or for Turing

computability?

N /
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