Degree Spectra of Differentially Closed Fields

Russell Miller

Queens College & CUNY Graduate Center

Recursion Theory Seminar University of California – Berkeley 14 April 2014

Joint work with Dave Marker.

Spectra of Countable Structures

Let S be a structure with domain ω , in a finite language.

Definition

The *Turing degree* of S is the join of the Turing degrees of the functions and relations on S. If these are all computable, then S is a *computable structure*.

Definition

The *spectrum* of S is the set of all Turing degrees of copies of S:

 $\operatorname{Spec}(\mathcal{S}) = \{ \operatorname{deg}(\mathfrak{M}) : \mathfrak{M} \cong \mathcal{S} \& \operatorname{dom}(\mathfrak{M}) = \omega \}.$

So the spectrum measures the level of complexity intrinsic to the structure $\ensuremath{\mathcal{S}}.$

Facts About Spectra

Theorem (Knight 1986)

For all countable structures S but the automorphically trivial ones, the spectrum of S is upwards-closed under Turing reducibility.

Many interesting spectra can be built using graphs, including upper cones, α -th jump cones { $\boldsymbol{d} : \boldsymbol{d}^{(\alpha)} \geq_T \boldsymbol{c}$ }, and more exotic sets of Turing degrees. (Greenberg, Montalbán, and Slaman recently constructed a graph whose spectrum contains exactly the nonhyperarithmetic degrees.) Indeed, graphs are *complete*, in the following sense:

Theorem (Hirschfeldt-Khoussainov-Shore-Slinko 2002)

For every countable structure S in any finite language, there exists a countable graph G which has the same spectrum as S.

Spectra of Algebraically Closed Fields

Russell Miller (CUNY)

Spectra of Algebraically Closed Fields

 $\{ all Turing degrees \}.$

Differentially Closed Fields

A *differential field* is a field along with a differential operator δ on the field elements, respecting addition $(\delta(x + y) = \delta x + \delta y)$ and satisfying the product rule $\delta(x \cdot y) = (x \cdot \delta y) + (y \cdot \delta x)$.

Such a field *K* is *differentially closed* if it also satisfies the *Blum axioms*: for all differential polynomials $p, q \in K\{Y\}$,

$$\operatorname{ord}(q) < \operatorname{ord}(p) \implies (\exists x \in K) \ [p(x) = 0 \& q(x) \neq 0],$$

where the order r = ord(p) is the largest derivative $\delta^r Y$ used in p. This theory **DCF**₀ is complete and decidable and has quantifier elimination. Moreover, it has computable models:

Theorem (Harrington, 1974)

For every computable differential field k, there exists a computable model K of **DCF**₀ and a computable embedding g of k into K such that K is a differential closure of the image g(k).

Noncomputable Differentially Closed Fields

By analogy to ACF_0 , one may guess that all countable models of DCF_0 have computable presentations. However, it is known that there exist 2^{ω} -many (non-isomorphic) countable models of DCF_0 . Indeed:

Theorem (Marker-M.)

For every countable graph *G*, there exists a countable $K \models \mathsf{DCF}_0$ with

 $\operatorname{Spec}(K) = \{ \boldsymbol{d} : \boldsymbol{d}' \text{ can enumerate the edges in some } G^* \cong G \}.$

Noncomputable Differentially Closed Fields

By analogy to ACF_0 , one may guess that all countable models of DCF_0 have computable presentations. However, it is known that there exist 2^{ω} -many (non-isomorphic) countable models of DCF_0 . Indeed:

Theorem (Marker-M.)

For every countable graph *G*, there exists a countable $K \models \mathsf{DCF}_0$ with

 $\operatorname{Spec}(K) = \{ \boldsymbol{d} : \boldsymbol{d}' \text{ can enumerate the edges in some } G^* \cong G \}.$

It is not difficult to show that, for every G, there is another graph H s.t.

 $\{\boldsymbol{d}: \boldsymbol{d}' \text{ enumerates the edges in some } \boldsymbol{G}^* \cong \boldsymbol{G}\} = \{\boldsymbol{d}: \boldsymbol{d}' \in \operatorname{Spec}(\boldsymbol{H})\},\$

and that conversely, for each *H*, there is some such *G*. So the theorem proves that every countable graph *H* yields a $K \models \mathbf{DCF}_0$ with

$$\operatorname{Spec}(K) = \{ \boldsymbol{d} : \boldsymbol{d}' \in \operatorname{Spec}(H) \}.$$

Coding a Graph *G* **into** $K \models \mathsf{DCF}_0$

Start with a copy $\hat{\mathbb{Q}}$ of the differential closure of \mathbb{Q} . Let *A* be the following infinite set of indiscernibles in $\hat{\mathbb{Q}}$:

$$A = \{a_0, a_1, \ldots\} = \{y \in \hat{\mathbb{Q}} : \delta y = y^3 - y^2 \& y \neq 0 \& y \neq 1\}.$$

Each $a_m \in A$ will represent the node *m* from *G*.

Let $E_{a_m a_n}$ be the elliptic curve defined by the equation

$$y^2 = x(x-1)(x-a_m-a_n).$$

The coordinates of all solutions to this curve in $(\hat{\mathbb{Q}})^2$ are algebraic over $\mathbb{Q}\langle a_m + a_n \rangle$ and $E_{a_m a_n}$ forms an abelian group, with exactly $j^2 j$ -torsion points for every j, and with no non-torsion points. There is a homomorphism of differential algebraic groups from $E_{a_m a_n}$ into a vector group, whose kernel $E_{a_m a_n}^{\sharp}$ is called the *Manin kernel* of $E_{a_m a_n}$.

Coding a Graph *G* **into** $K \models \mathsf{DCF}_0$

For each m < n with an edge in *G* from *m* to *n*, add a generic point of $E_{a_m+a_n}^{\sharp}$ to our differential field. The coordinates of this point will each be transcendental over $\mathbb{Q}\langle a_m + a_n \rangle$. Let *K* be the differential closure of the resulting differential field.

Thus the coding is:

G has an edge from m to $n \iff$ $(\exists (x, y) \in E_{a_m a_n}^{\sharp})[x \text{ is transcendental over } \mathbb{Q}\langle a_m + a_n \rangle].$

In particular, the points we added do *not* accidentally give rise to any transcendental solutions to any other $E_{a_{n'}a_{n'}}^{\sharp}$.

$Spec(K) = \{ d : d' \text{ enumerates some } G^* \cong G \}$

Now if **d** is the degree of a copy $K^* \cong K$, then with a **d**'-oracle, we enumerate the edges in some G^* as follows. Find all elements a_m^* of the set A^* of indiscernibles in K^* , go through all solutions to $E_{a_m^*a_n^*}$ for each m < n, and ask whether each is transcendental over $\mathbb{Q}\langle a_m^*, a_n^* \rangle$ and lies in $E_{a_m^*a_n^*}^{\sharp}$. If we ever get an answer "YES," we enumerate (m, n)into the edge relation of the graph G^* . Thus $G^* \cong G$: the isomorphism comes from restricting the isomorphism $K^* \to K$ to $A^* \to A$.

Conversely, if $D \in d$ and D' enumerates the edges in some $G^* \cong G$, we build $K^* \cong K$ using a *d*-oracle. Start building $\hat{\mathbb{Q}}^*$, finitely much at each step. At stage *s*, if it appears (from *D*) that *D'* has enumerated an edge (m, n) in G^* , add a point $x_{mn} \in E_{a_m^* a_n^*}^{\sharp}$ which is not (yet) algebraic over $\mathbb{Q}\langle a_m, a_n \rangle$. If *D'* later changes and wipes out this enumeration, we can still make x_{mn} a *t*-torsion point for some large *t*, hence algebraic. Finally, use Harrington's theorem to build a *D*-computable differential closure K^* of the *D*-computable differential field defined here.

Low and Nonlow Degrees

For every d' > 0', there exists a graph *G* such that d' enumerates a copy of *G*, but 0' does not. Therefore:

Corollary

For every nonlow degree **d** (i.e., with d' > 0'), there exists some $K \models \text{DCF}_0$ of degree **d** such that K is not computably presentable.

We now prove the converse:

```
Theorem (Marker-M.)
```

Every low model of **DCF**₀ is isomorphic to a computable one.

This recalls the famous theorem of Downey-Jockusch that every low Boolean algebra is isomorphic to a computable one.

Principal Types over k

Over a field *E*, the principal 1-types are generated by the formulas p(X) = 0, where $p \in E[X]$ is irreducible. Over a differential field *k*, this is not enough! Over \mathbb{Q} , the differential polynomial ($\delta Y - Y$) is irreducible, but only the following formula generates a principal type:

$$\delta Y - Y = 0 \& Y \neq 0.$$

In general, we need pairs (p, q) from $k\{Y\}$, with ord(p) > ord(q). If the formula $p(Y) = 0 \neq q(Y)$ generates a principal type, then (p, q) is a *constrained pair*, and *p* is *constrainable*. Every principal type is generated by a constrained pair, but not all irreducible p(Y) are constrainable. $p(Y) = \delta Y$ is a simple counterexample.

Fact

 $p \in k\{Y\}$ is constrainable $\iff p$ is the minimal differential polynomial of some *x* in the differential closure *K* of *k*.

It is Π_1^k for (p, q) to be constrained, and Σ_2^k for p to be constrainable.

Low Differentially Closed Fields K

If *K* is low, then the (computable infinitary) Π_1^0 -theory of *K* has degree **0**', hence is computably approximable. This allows us to "guess" effectively at the minimal differential polynomial of any $x \in K$ over the differential subfield $\mathbb{Q}\langle x_{i_0}, \ldots, x_{i_n} \rangle \subseteq K$ generated by an arbitrary finite tuple from *K*.

Writing $K = \{x_0, x_1, ...\}$ and guessing thus, we build a computable differential field $F = \{y_0, y_1, ...\}$ and finite partial maps $h_s : K \to F$ such that:

- $(\forall n) \lim_{s} h_{s}(x_{n})$ exists; and
- $(\forall m) \lim_{s} h_s^{-1}(y_m)$ exists; and
- ∀s h_s is a partial isomorphism, based on the approximations in K to the minimal differential polynomials of its domain elements.

Thus $h = \lim_{s} h_{s}$ will be an isomorphism from *K* onto *F*.

Differences from Boolean Algebras

The Downey-Jockusch Theorem has been extended.

Theorem (Downey-Jockusch; Thurber; Knight-Stob)

Every low₄ Boolean algebra is isomorphic to a computable one.

In contrast, the first Marker-M theorem established that every nonlow Turing degree computes some $K \models \mathsf{DCF}_0$ with $\mathbf{0} \notin \mathsf{Spec}(K)$.

Fact

There exists a low Boolean algebra which is not $\mathbf{0}'$ -computably isomorphic to any computable Boolean algebra. (Downey-Jockusch always gives a $\mathbf{0}''$ -computable isomorphism.)

But the theorem for low differentially closed fields built a Δ_2 isomorphism onto the computable copy.

Relativizing the Result

Relativizing the previous theorem yields:

Corollary

For every $K \models \mathsf{DCF}_0$, $\mathsf{Spec}(K)$ respects the equivalence relation $\boldsymbol{c} \sim_1 \boldsymbol{d}$ defined by $\boldsymbol{c}' = \boldsymbol{d}'$.

Proof: If $c \in \text{Spec}(K)$ and d' = c', then d can guess effectively at the minimal differential polynomials in the c-computable copy of K, and the process in the theorem builds a d-computable copy of K.

Corollary (cf. Andrews, Montalbán, unpublished, using Richter) For every $K \models \text{DCF}_0$, Spec(K) cannot be contained within any upper cone of Turing degrees, except the cone above **0**.

Proof: no other upper cone respects \sim_1 .

Why Is This a Converse?

Corollary (Marker-M.)

For a set S of Turing degrees, TFAE:

- S is the spectrum of some $K \models \mathsf{DCF}_0$.
- **2** S is the spectrum of some ANT graph and S respects \sim_1 .

S is the preimage under jump of the spectrum of some ANT graph.
(ANT: automorphically non-trivial.)

 $(1 \implies 2)$ was the relativized version of the second theorem (plus the HKSS theorem), and $(3 \implies 1)$ was the first theorem. For $(2 \implies 3)$, if S = Spec(G), let *H* be the jump of the structure *G* (defined in work of Montalbán and Soskov-Soskova). By HKSS, we may take *H* to be a graph. Then $\text{Spec}(H) = \{ \mathbf{c}' : \mathbf{c} \in \text{Spec}(G) \}$, and so

$$\operatorname{Spec}(G) \subseteq \{ \boldsymbol{d} : \boldsymbol{d}' \in \operatorname{Spec}(H) \}.$$

For \supseteq , if $d' \in \operatorname{Spec}(H)$, then d' = c' for some $c \in \operatorname{Spec}(G)$, and $d \in \operatorname{Spec}(G)$ since $\operatorname{Spec}(G) = S$ respects \sim_1 .