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Spectra of Countable Structures

Let S be a structure with domain ω, in a finite language.

Definition
The Turing degree of S is the join of the Turing degrees of the functions
and relations on S. If these are all computable, then S is a computable
structure.

Definition
The spectrum of S is the set of all Turing degrees of copies of S:

Spec(S) = {deg(M) : M ∼= S & dom(M) = ω}.

So the spectrum measures the level of complexity intrinsic to the
structure S.
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Facts About Spectra

Theorem (Knight 1986)
For all countable structures S but the automorphically trivial ones, the
spectrum of S is upwards-closed under Turing reducibility.

Many interesting spectra can be built using graphs, including upper
cones, α-th jump cones {d : d (α) ≥T c}, and more exotic sets of Turing
degrees. (Greenberg, Montalbán, and Slaman recently constructed a
graph whose spectrum contains exactly the nonhyperarithmetic
degrees.) Indeed, graphs are complete, in the following sense:

Theorem (Hirschfeldt-Khoussainov-Shore-Slinko 2002)
For every countable structure S in any finite language, there exists a
countable graph G which has the same spectrum as S.
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Spectra of Algebraically Closed Fields

{ all Turing degrees }.
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Differentially Closed Fields
A differential field is a field along with a differential operator δ on the
field elements, respecting addition (δ(x + y) = δx + δy ) and satisfying
the product rule δ(x · y) = (x · δy) + (y · δx).
Such a field K is differentially closed if it also satisfies the Blum
axioms: for all differential polynomials p,q ∈ K{Y},

ord(q) < ord(p) =⇒ (∃x ∈ K ) [p(x) = 0 & q(x) 6= 0],

where the order r = ord(p) is the largest derivative δr Y used in p.
This theory DCF0 is complete and decidable and has quantifier
elimination. Moreover, it has computable models:

Theorem (Harrington, 1974)
For every computable differential field k , there exists a computable
model K of DCF0 and a computable embedding g of k into K such that
K is a differential closure of the image g(k).
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Noncomputable Differentially Closed Fields
By analogy to ACF0, one may guess that all countable models of DCF0
have computable presentations. However, it is known that there exist
2ω-many (non-isomorphic) countable models of DCF0. Indeed:

Theorem (Marker-M.)
For every countable graph G, there exists a countable K |= DCF0 with

Spec(K ) = {d : d ′ can enumerate the edges in some G∗ ∼= G}.

It is not difficult to show that, for every G, there is another graph H s.t.

{d : d ′ enumerates the edges in some G∗ ∼= G} = {d : d ′ ∈ Spec(H)},

and that conversely, for each H, there is some such G. So the theorem
proves that every countable graph H yields a K |= DCF0 with

Spec(K ) = {d : d ′ ∈ Spec(H)}.
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Coding a Graph G into K |= DCF0

Start with a copy Q̂ of the differential closure of Q. Let A be the
following infinite set of indiscernibles in Q̂:

A = {a0,a1, . . .} = {y ∈ Q̂ : δy = y3 − y2 & y 6= 0 & y 6= 1}.

Each am ∈ A will represent the node m from G.

Let Eaman be the elliptic curve defined by the equation

y2 = x(x − 1)(x − am − an).

The coordinates of all solutions to this curve in (Q̂)2 are algebraic over
Q〈am + an〉 and Eaman forms an abelian group, with exactly j2 j-torsion
points for every j , and with no non-torsion points. There is a
homomorphism of differential algebraic groups from Eaman into a vector
group, whose kernel E ]

aman is called the Manin kernel of Eaman .
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Coding a Graph G into K |= DCF0

For each m < n with an edge in G from m to n, add a generic point of
E ]

am+an
to our differential field. The coordinates of this point will each

be transcendental over Q〈am + an〉. Let K be the differential closure of
the resulting differential field.

Thus the coding is:

G has an edge from m to n ⇐⇒

(∃(x , y) ∈ E ]
aman )[x is transcendental over Q〈am + an〉].

In particular, the points we added do not accidentally give rise to any
transcendental solutions to any other E ]

am′an′
.
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Spec(K ) = {d : d ′ enumerates some G∗ ∼= G}
Now if d is the degree of a copy K ∗ ∼= K , then with a d ′-oracle, we
enumerate the edges in some G∗ as follows. Find all elements a∗m of
the set A∗ of indiscernibles in K ∗, go through all solutions to Ea∗ma∗n for
each m < n, and ask whether each is transcendental over Q〈a∗m,a∗n〉
and lies in E ]

a∗ma∗n
. If we ever get an answer ”YES,” we enumerate (m,n)

into the edge relation of the graph G∗. Thus G∗ ∼= G: the isomorphism
comes from restricting the isomorphism K ∗ → K to A∗ → A.

Conversely, if D ∈ d and D′ enumerates the edges in some G∗ ∼= G,
we build K ∗ ∼= K using a d-oracle. Start building Q̂∗, finitely much at
each step. At stage s, if it appears (from D) that D′ has enumerated an
edge (m,n) in G∗, add a point xmn ∈ E ]

a∗ma∗n
which is not (yet) algebraic

over Q〈am,an〉. If D′ later changes and wipes out this enumeration, we
can still make xmn a t-torsion point for some large t , hence algebraic.
Finally, use Harrington’s theorem to build a D-computable differential
closure K ∗ of the D-computable differential field defined here.

Russell Miller (CUNY) Spectra of DCF0 Recursion Theory Seminar 9 / 15



Low and Nonlow Degrees

For every d ′ > 0′, there exists a graph G such that d ′ enumerates a
copy of G, but 0′ does not. Therefore:

Corollary

For every nonlow degree d (i.e., with d ′ > 0′), there exists some
K |= DCF0 of degree d such that K is not computably presentable.

We now prove the converse:

Theorem (Marker-M.)
Every low model of DCF0 is isomorphic to a computable one.

This recalls the famous theorem of Downey-Jockusch that every low
Boolean algebra is isomorphic to a computable one.
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Principal Types over k
Over a field E , the principal 1-types are generated by the formulas
p(X ) = 0, where p ∈ E [X ] is irreducible. Over a differential field k , this
is not enough! Over Q, the differential polynomial (δY − Y ) is
irreducible, but only the following formula generates a principal type:

δY − Y = 0 & Y 6= 0.

In general, we need pairs (p,q) from k{Y}, with ord(p) > ord(q). If the
formula p(Y ) = 0 6= q(Y ) generates a principal type, then (p,q) is a
constrained pair, and p is constrainable. Every principal type is
generated by a constrained pair, but not all irreducible p(Y ) are
constrainable. p(Y ) = δY is a simple counterexample.

Fact
p ∈ k{Y} is constrainable ⇐⇒ p is the minimal differential polynomial
of some x in the differential closure K of k .

It is Πk
1 for (p,q) to be constrained, and Σk

2 for p to be constrainable.
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Low Differentially Closed Fields K

If K is low, then the (computable infinitary) Π0
1-theory of K has degree

0′, hence is computably approximable. This allows us to “guess”
effectively at the minimal differential polynomial of any x ∈ K over the
differential subfield Q〈xi0 , . . . , xin〉 ⊆ K generated by an arbitrary finite
tuple from K .
Writing K = {x0, x1, . . .} and guessing thus, we build a computable
differential field F = {y0, y1, . . .} and finite partial maps hs : K → F
such that:

(∀n) lims hs(xn) exists; and
(∀m) lims h−1

s (ym) exists; and
∀s hs is a partial isomorphism, based on the approximations in K
to the minimal differential polynomials of its domain elements.

Thus h = lims hs will be an isomorphism from K onto F .
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Differences from Boolean Algebras

The Downey-Jockusch Theorem has been extended.

Theorem (Downey-Jockusch; Thurber; Knight-Stob)
Every low4 Boolean algebra is isomorphic to a computable one.

In contrast, the first Marker-M theorem established that every nonlow
Turing degree computes some K |= DCF0 with 0 /∈ Spec(K ).

Fact
There exists a low Boolean algebra which is not 0′-computably
isomorphic to any computable Boolean algebra. (Downey-Jockusch
always gives a 0′′-computable isomorphism.)

But the theorem for low differentially closed fields built a ∆2
isomorphism onto the computable copy.
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Relativizing the Result

Relativizing the previous theorem yields:

Corollary
For every K |= DCF0, Spec(K ) respects the equivalence relation
c ∼1 d defined by c′ = d ′.

Proof: If c ∈ Spec(K ) and d ′ = c′, then d can guess effectively at the
minimal differential polynomials in the c-computable copy of K , and
the process in the theorem builds a d-computable copy of K .

Corollary (cf. Andrews, Montalbán, unpublished, using Richter)
For every K |= DCF0, Spec(K ) cannot be contained within any upper
cone of Turing degrees, except the cone above 0.

Proof: no other upper cone respects ∼1.

Russell Miller (CUNY) Spectra of DCF0 Recursion Theory Seminar 14 / 15



Why Is This a Converse?
Corollary (Marker-M.)
For a set S of Turing degrees, TFAE:

1 S is the spectrum of some K |= DCF0.
2 S is the spectrum of some ANT graph and S respects ∼1.
3 S is the preimage under jump of the spectrum of some ANT graph.

(ANT: automorphically non-trivial.)

(1 =⇒ 2) was the relativized version of the second theorem (plus the
HKSS theorem), and (3 =⇒ 1) was the first theorem. For (2 =⇒ 3),
if S = Spec(G), let H be the jump of the structure G (defined in work of
Montalbán and Soskov-Soskova). By HKSS, we may take H to be a
graph. Then Spec(H) = {c′ : c ∈ Spec(G)}, and so

Spec(G) ⊆ {d : d ′ ∈ Spec(H)}.

For ⊇, if d ′ ∈ Spec(H), then d ′ = c′ for some c ∈ Spec(G), and
d ∈ Spec(G) since Spec(G) = S respects ∼1.
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