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BSS Computation on R
Roughly, a BSS machine M on R operates like a Turing machine, but
with a real number in each cell, rather than a bit.

M can compute full-precision +. −. ·, and ÷ on numbers in its
cells.
M can compare 0 to the number in any cell, using = or <, and fork
according to the answer.
M is allowed finitely many real numbers z0, . . . , zm as parameters
in its program. The input and output (if M halts) are tuples
~y ∈ R∞ = { finite tuples from R }.

A subset S ⊆ R∞ is BSS-decidable iff its characteristic function χS is
computable by a BSS machine, and BSS-semidecidable iff S is the
domain of some BSS-computable function.
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Basic Facts about BSS Computation

For a machine M with parameters ~z, running on input ~y , only elements
of the field Q(~z, ~y) can ever appear in the cells of M.

Cell:
0 · · · m m + 1 · · · m + n m + n + 1 · · ·
z0 · · · zm y1 · · · yn
z0 · · · zm y1 · · · yn zm + yn
...

...
...

...
...

f0,s(~y) · · · fm,s(~y) fm+1,s(~y) · · · fm+n,s(~y) fm+n+1,s(~y) · · ·
...

...
...

...
...

For each input ~y , every fi,s(Y1, . . . ,Yn) is a rational function with
coefficients from the field Q(~z). If the input {y1, . . . , yn} is algebraically
independent over Q(~z), then each fi,s(~Y ) is uniquely defined.
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Restrictions on BSS Computation

Given a machine M with parameters ~z, choose any input ~y
algebraically independent over Q(~z). If M(~y) halts after t steps, then
only finitely many functions fi,s appear. So there is an ε > 0 such that
for all inputs ~x within ε of ~y , M at stage s contains:

f0,s(~x) · · · fm,s(~x) fm+1,s(~x) · · · fm+n,s(~x) fm+n+1,s(~x) · · ·

with the same functions fi,s as for ~y .
Therefore, on an ε-ball around ~y in Rn, M always halts after t steps,
and computes the function 〈f0,t(~x), . . . , fm+n+t ,t(~x)〉.

Corollary: No BSS-decidable set can be dense and codense within
any nonempty open subset of Rn.
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Oracle BSS-Machines

To do the same for a machine M with parameters ~z and an oracle
C ⊆ R∞, we would have to ensure that |~x − ~y | < ε and also, for all s,

(∀i0, . . . , im)
[
〈fik ,s(~x) : k ≤ m〉 ∈ C ⇐⇒ 〈fik ,s(~y) : k ≤ m〉 ∈ C

]
.

Then the computation will fork exactly the same for ~x as for ~y , and will
output 〈fi,t(~x)〉.

Theorem: Let

H = {〈~p;~x〉 : Program ~p halts on input ~x}

be the BSS Halting Problem. If χH is computable by a BSS program
with oracle C ⊆ R∞, then |C| = 2ℵ0 .

This answers a question from Meer and Ziegler.
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Proving the Theorem

Assume that the oracle C ⊆ R∞ has |C| < 2ℵ0 . For any oracle
machine M with parameters ~z and oracle C, we claim that MC does
not compute χH.

Let p be the program which, on input 〈a,b〉, halts iff b is algebraic over
Q(a). Fix any y0, y1 ∈ R algebraically independent over the field E (of
size < 2ℵ0) generated by ~z and p and all tuples in C. Let R be the finite
set of rational functions f ∈ E(Y0,Y1) such that f (y0, y1) appears in a
cell during this computation. Fix n ∈ N such that each f ∈ R is a
quotient of polynomials of degree < n.

Now 〈p, y0, y1〉 /∈ H, by algebraic independence, so MC(p, y0, y1) = 0.
We want to choose 〈p, x0, x1〉 ∈ H close to 〈p, y0, y1〉 to fool MC into
computing MC(p, x0, x1) = 0 as well.
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Proving the Theorem

Recall: y0, y1 ∈ R independent over E ; finite set R ⊂ E(Y0,Y1); all
f ∈ R have f = g

h of degree < n.

Now choose x0 transcendental over E , and x1 = m
√

x0 + q, with m > n
prime and q ∈ Q so that x0, x1 are sufficiently close to y0, y1. So x1 has
degree m over E(x0). Now for f = g

h ∈ R,

f (~x) = c ∈ E =⇒ g(~x)− ch(~x) = 0 =⇒ (g − ch) = 0 in E [Y0,Y1].

So f = g
h = c is constant. Thus

f (x0, x1) ∈ E ⇐⇒ f is constant ⇐⇒ f (y0, y1) ∈ E .

So the computation by MC on input 〈p, x0, x1〉 follows the same path as
on 〈p, y0, y1〉, and outputs the same answer: 〈p, x0, x1〉 /∈ H. This is
wrong!
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Shall We Generalize?

When can a countable set decide an uncountable (and
co-uncountable) set?

Easy answer: {x ∈ R : x > 0} is BSS-decidable.
(Is there a similar subset of C, for BSS-computation on C?)

Indeed, {x ∈ R : x ∈ (0,1] & x begins with an even number of 0’s} is
BSS-decidable. This is the set

· · ·
[

1
32
,

1
16

]
∪
[

1
8
,
1
4

]
∪
[

1
2
,1

]
.
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Local Bicardinality

Defn.: A set S ⊆ R is locally of bicardinality ≤ κ if there exist two open
subsets U and V of R with |R− (U ∪ V )| ≤ κ and |U ∩ S| ≤ κ and
|V ∩ S| ≤ κ.
The local bicardinality of S is the least cardinal κ such that S is locally
of bicardinality ≤ κ.

So both S and S are open, up to a set of size κ. Notice that the open
set (U ∩ V ) is empty, since

|U ∩ V | ≤ |U ∩ S|+ |V ∩ S| ≤ κ.

(Question: is there an equivalent but simpler definition?)

Example: The Cantor middle-thirds set has local bicardinality 2ℵ0 .
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Local Bicardinality and Oracle Computation

Thm.: If C ⊆ R∞ is an oracle set of infinite cardinality κ < 2ℵ0 , and
S ⊆ R is a set with S ≤BSS C, then S must be locally of bicardinality
≤ κ. The same holds for oracles C of infinite co-cardinality κ < 2ℵ0 .

Proof: Consider χS(y) = MC(y) for any y transcendental over the
subfield E generated by C. On some open interval B(y), χs(x) = χs(y)
for every x ∈ B(y) transcendental over E , so either |S ∩ B(y)| ≤ κ or
|S ∩ B(y)| ≤ κ. Also, if B(y) ∩ B(y ′) 6= ∅, then χS(y) = χS(y ′). So let

U = ∪{B(y) : y /∈ S} V = ∪{B(y) : y ∈ S}.

So |U ∪ V | ≤ |E | = κ. If we assume all B(y) to have rational end
points, then these are both countable unions, and hence (U ∩ S) is a
countable union of sets (B(y) ∩ S) of size ≤ κ; likewise for (V ∩ S).
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Complex Numbers

A BSS-machine on C can perform the field operations, but there is no
instruction for deciding whether “z > 0.” Here the theorem is nicer (and
easily proven):
Thm.: If C ⊆ C∞ is an oracle set of infinite cardinality κ, and S ⊆ C
with S ≤BSS C, then either |S| ≤ κ or |S| ≤ κ. In particular, for all x , y
transcendental over C, we have

x ∈ S ⇐⇒ y ∈ S.

This fails for sets S ⊆ C2: just consider the BSS-decidable set
{〈z, z〉 : z ∈ C}. Similarly for subsets of R2, the theorem on local
bicardinality fails. We believe that this can be fixed by considering
size-κ unions of Zariski-closed subsets of C2 and R2, and generally for
C∞ and R∞.
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Other Results

Thm.: Let

A=d = {y ∈ R : y is algebraic of degree d over Q}.

Then for all d ≥ 0, A=d+1 6≤BSS A=d . Indeed A=d+1 6≤BSS ∪c≤dAc .

Prop.: Let p and r be any positive integers. Then A=p ≤BSS A=r if
and only if p divides r .
Prop.: Let P be the set of all prime numbers in ω and let S ⊆ P
and T ⊆ P, Then AS ≤BSS AT if and only if S ⊆ T .
(Here AS = ∪d∈SA=d .)
Cor.: There exists a subset L of the BSS-semidecidable degrees
such that (L,≤BSS) ∼= (P(ω),⊆).
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Online Help

Introduction to BSS computation:
L. Blum, F. Cucker, M. Shub, and S. Smale; Complexity and Real
Computation (Berlin: Springer-Verlag, 1997).
Relevant papers:
C. Gassner; A hierarchy below the halting problem for additive
machines, Theory of Computing Systems 43 (2008) 3–4,
464–470.
K. Meer & M. Ziegler; An explicit solution to Post’s Problem over
the reals, Journal of Complexity 24 (2008) 3–15.
Full version of these results, joint with Calvert & Kramer, available
at qc.edu/˜rmiller/BSSfull.pdf
These slides available at qc.edu/˜rmiller/slides.html
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