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Local Descriptions of Structures

Defn.: A simple cover A of a structure S is a set
{Ai : i ∈ I} which contains the finitely generated
substructures of S, up to isomorphism.

A is computable if every A ∈ A is.

A is uniformly computable if there is a single
algorithm listing out all Ai in A. In this case S is
locally computable.

Examples:

• All fields, and all relational structures, have
computable simple covers.

• The ordered field (R, <) does not.

• The ordered field of computable real numbers
is not locally computable, but has a
computable simple cover.

2



!

"

#

$

Embeddings

Let S be locally computable via {A0,A1, . . .}.
Suppose B ⊆ C ⊆ S are finitely generated. If

Ai !f Aj

" "β ∼= γ ∼=

B ! C⊆

commutes, we say that f : Ai ↪→ Aj lifts to the
inclusion B ⊆ C via the isomorphisms β and γ.
Defn.: A cover of S also has sets IA

ij of
embeddings Ai ↪→ Aj , such that every inclusion
in S is the lift of some f in some IA

ij , and every
f ∈ IA

ij lifts to an inclusion in S.
The cover is uniformly computable if all IA

ij are
c.e. uniformly in i and j.

Notice that f is determined by its values on the
generators of Ai.
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Examples

• Every infinite linear order has the same
uniformly computable cover: Ai is the linear
order on i elements, and IA

ij contains all
embeddings Ai ↪→ Aj .

• In C, the cover contains every f.g. field of
characteristic 0, and every possible embedding
f : Ai ↪→ Aj lifts to an inclusion. Similarly
for any ACF, given its transcendence degree.

• R also has a uniformly computable cover.
This follows from:
Lemma: S has a uniformly computable cover
iff S has a uniformly computable simple cover.
Proof: Given a simple cover {Ai}, consider
the cover containing all f.g. substructures of
each Ai, with inclusion maps from these
substructures into the original Ai.
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1-Extensionality

Defn.: Every embedding from any Ai into S is
0-extensional. An isomorphism β : Ai ↪→ B ⊆ S is
1-extensional if

• (∀j)(∀f ∈ IA
ij)(∃C ⊆ S)[f lifts to B ⊆

C via β and some isomorphism γ]; and

• (∀ f.g. C ⊇ B)(∃j)(∃f ∈ IA
ij)[f lifts to B ⊆

C via β and some isomorphism γ].

Intuition: A 1-extensional β is a strong pairing
between Ai and B, in that A’s ways to extend Ai

are exactly the ways of extending B within S.

A is a 1-extensional cover if every Ai ∈ A is the
domain of a 1-extensional embedding and every
f.g. B ⊆ S is the range of one.
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Example

Cantor Space: The linear order on 2ω has a
1-extensional cover. The objects are all finite
linear orders a0 ≺ · · · ≺ an under the following
specifications. a0 may or may not be designated
as the left end point; likewise an as the right end
point. Each am not so designated may be called
either a left gap point or a right gap point (but
not both). If am is a LGP and am+1 a RGP, then
we must specify whether they belong to the same
gap or not.

An embedding f : Ai ↪→ Aj belongs to IA
ij if it

respects all these properties: am is a left end
point iff f(am) is, etc.

So, if am and am+1 are LGP and RGP for the
same gap, then there can be no element between
f(am) and f(am+1) in Aj .

6



!

"

#

$

θ-Extensionality

Defn.: Let θ be an ordinal. An isomorphism
β : Ai ↪→ B ⊆ S is θ-extensional if

• (∀ f.g. C ⊇ B)(∀ζ < θ)(∃j)(∃f ∈ IA
ij)

[f lifts to B ⊆ C via β and a ζ-extensional γ].

• and (∀j)(∀f ∈ IA
ij)(∀ζ < θ)(∃C ⊆ S)

[f lifts to B ⊆ C via β and a ζ-extensional γ];

Intuition: A θ-extensional β is a strong pairing
between Ai and B, in that A’s ways to extend Ai

are exactly the ways of extending B within S
while preserving the Σζ-theory over B.

A is a θ-extensional cover if every Ai ∈ A is the
domain of an θ-extensional embedding and every
f.g. B ⊆ S is the range of one.
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Bad Example

Lemma: R has no 1-extensional cover.
Proof: If A were such a cover, fix a
noncomputable x ∈ R and a 1-extensional
β : Ai ↪→ Q(x) ⊆ R. Then for q ∈ Q:

q < x ⇐⇒ (∃y ∈ R) y2 = x − q

⇐⇒ (∃j ∃f ∈ IA
ij ∃a ∈ Aj)

[a2 = f(β−1(x)) − f(β−1(q))]

So the lower cut defined by x would be
computably enumerable, and similarly for the
upper cut.
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Σθ-Theory of S

Theorem (Miller): Suppose S has a
θ-extensional cover.
Then (∀ζ ≤ θ), and for any finite set &p of
parameters in S, the Σζ -theory of (S, &p) is
arithmetically Σ0

ζ , uniformly in i and α−1(&p),
where α : Ai ↪→ 〈&p〉 is θ-extensional.

Moreover, this applies even to infinitary
computable Σζ formulas over P .
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Correspondence Systems

Now we want to be able to extend our diagrams
infinitely far to the right.

Defn.: A set M of embeddings β : Ai ↪→ S is a
correspondence system if:

• (∀i)(∃β ∈ M)Ai = dom(β); and

• (∀ f.g. B ⊆ S)(∃β ∈ M)B = range(β); and

and for all maps β : Ai
∼= B in M :

• (∀j∀f ∈ IA
ij)(∃C ⊇ B)[f lifts to the inclusion

B ⊆ C via β and some γ ∈ M ]; and

• (∀ f.g. C ⊇ B)(∃j∃f ∈ IA
ij)[f lifts to the

inclusion B ⊆ C via β and some γ ∈ M ].

Defn.: A structure is ∞-extensionally locally
computable if it has a correspondence system over
a uniformly computable cover.
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Perfect Local Computability

M is perfect if, for all β, γ ∈ M with
range(β) = range(γ), we have (γ−1 ◦ β) ∈ IA

ij ,
where Ai = dom(β) and Aj = dom(γ).

• The uniformly computable cover we built for
C has a perfect correspondence system.

• The uniformly computable cover we built for
Cantor space (as a linear order) is perfect.

• It is also possible to view Cantor space as the
top level of the tree 2<ω+1, as a partial order,
and to build a perfect correspondence system
for this structure.

Such structures are called perfectly locally
computable.
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Globally Computable Structures

Theorem (Miller): For a countable structure S,
TFAE:

1. S is computably presentable;

2. S is perfectly locally computable;

3. S has a uniformly computable cover with a
correspondence system, satisfying AP.

Proof: For (1 =⇒ 2), build the natural cover A

containing all f.g. substructures of S, under
inclusion.
For (2 =⇒ 3), all perfect covers have AP.
For (3 =⇒ 1), amalgamate the Ai together over
all embeddings in A, to get a computable
presentation of S.
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∞-Extensionality

(joint work with Dustin Mulcahey)

Lemma: Let structures C and S have
correspondence systems over the same cover.
Suppose that C is countable, and that P is a
countable subset of S. Then there exists an
elementary embedding of C into S whose image
contains P .

Corollary: Any two countable structures with
correspondence systems over the same cover are
isomorphic.
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Simulations

Defn.: A simulation C of a structure S is an
elementary substructure of S which realizes the
same n-types as S (for all n).

If for every &a ∈ C there is &p ∈ S such that C and S
realize the same n-types over &a and &p, and
likewise for every &p there is an &a, then C simulates
S over parameters.

Examples: The algebraic closure of the field
Q(X0, X1, . . .) is a computably presentable
simulation of C over parameters.

The intersection of Q with Cantor space (⊂ [0, 1],
as linear order) is a computably presentable
simulation of Cantor space over parameters.
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Building Simulations

Lemma: Every ∞-extensionally locally
computable structure S has a countable
simulation C over parameters with a
correspondence system over the cover of S.

Proof: For each i, enumerate one image α(Ai)
into C, with α in the correspondence system M

for S. Then close C under the ∀∃ conditions for a
correspondence system.

Notice that if M is perfect for S, then the new
system is perfect for C.
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Computable Simulations

Thm. (Mulcahey-Miller): Every perfectly locally
computable structure S has a computably
presentable simulation C over parameters.

Moreover, if we fix a computable D ∼= C, then for
any countable parameter set P ⊆ S, there exists
an embedding fP : D ↪→ S such that
P ⊆ range(fP ) and S and fP (D) realize exactly
the same finitary types over every finite subset of
the image of fP . (We call fP an elementary
embedding over parameters.)
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Computable Simulations

Thm.: A structure S has an ∞-extensional cover
with AP ⇐⇒ S has a computable simulation C
over parameters, such that, for all elementary
embeddings f : C ↪→ S over parameters, all &a ∈ C,
and all x ∈ S, there exists an elementary
embedding g : C ↪→ S over parameters with
g!&a = f!&a and x ∈ range(g).

The cover A is the natural cover of C. The
correspondence system contains all restrictions
(to elements of A) of elementary embeddings of C
into S over parameters.
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C and its Simulations

A computable simulation of the field C must have
infinite transcendence degree and be algebraically
closed. Hence it must be the field
F = Q(X0, X1, . . .). However,

Fact: The natural cover of F is not a perfect
cover of C. This follows from:
Lemma: A perfect cover of C must include a set
IA
ij of size > 1.

Still, the natural cover A of F is an ∞-extensional
cover of C, and has AP. The correspondence
system consists of all embeddings of every Ai ∈ A

into C.
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Cardinalities

Fix any countable sequence κ0 < κ1 < · · · of
cardinals. Let T be the tree of height ω with each
node at level n having κn-many immediate
successors.

This T is perfectly locally computable: A contains
all finite substructures of ω<ω, under embeddings
which preserve levels, and M contains all
level-preserving embeddings Ai ↪→ T .

But we can make the κ-sequence arbitrarily
complex!
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Local Constructivizability

Defn. (Ershov): A structure S is locally
constructivizable if, for all finite tuples &p ∈ S, the
∃-theory of (S, &p) is arithmetically Σ0

1.

Cor.: Every 1-extensional structure is locally
constructivizable.

Local constructivizability may be seen as a
non-uniform version of 1-extensional local
computability.

The field R is locally computable, but not locally
constructivizable.

The field of computable real numbers is locally
constructivizable, and locally computable, but not
1-extensional. (The ordered field of computable
real numbers is not even locally computable.)
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Questions

1. Can there exist a structure S with a
computable simulation (over parameters?)
such that S is not perfectly locally
computable? Or such that S is not
∞-extensional with AP?

2. Develop a reasonable theory of maps (and
computable maps) among covers.
• Functors?

3. How locally computable is the structure
(C, +, ·, 0, 1, f), where f(z) = ez? (Similar
questions for other holomorphic functions.)

4. Find θ-extensionally locally computable
structures which are not (θ + 1)-extensional,
and which have arbitrarily complex
Σθ+1-theory over parameters.
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