Local Computability and Uncountable Structures

Russell Miller, Queens College & Graduate Center – CUNY

September 29, 2008

Connecticut Logic Seminar

Local Descriptions of Structures

Defn.: A simple cover \mathfrak{A} of a structure S is a set $\{\mathcal{A}_i : i \in I\}$ which contains the finitely generated substructures of S, up to isomorphism.

 \mathfrak{A} is *computable* if every $\mathcal{A} \in \mathfrak{A}$ is.

 \mathfrak{A} is uniformly computable if there is a single algorithm listing out all \mathcal{A}_i in \mathfrak{A} . In this case S is locally computable.

Examples:

- All fields, and all relational structures, have computable simple covers.
- The ordered field $(\mathbb{R}, <)$ does not.
- The ordered field of computable real numbers is not locally computable, but has a computable simple cover.

Embeddings

Let S be locally computable via $\{A_0, A_1, \ldots\}$. Suppose $\mathcal{B} \subseteq \mathcal{C} \subseteq S$ are finitely generated. If

commutes, we say that $f : \mathcal{A}_i \hookrightarrow \mathcal{A}_j$ lifts to the inclusion $\mathcal{B} \subseteq \mathcal{C}$ via the isomorphisms β and γ . **Defn.**: A cover of \mathcal{S} also has sets $I_{ij}^{\mathfrak{A}}$ of embeddings $\mathcal{A}_i \hookrightarrow \mathcal{A}_j$, such that every inclusion in \mathcal{S} is the lift of some f in some $I_{ij}^{\mathfrak{A}}$, and every $f \in I_{ij}^{\mathfrak{A}}$ lifts to an inclusion in \mathcal{S} . The cover is uniformly computable if all $I_{ij}^{\mathfrak{A}}$ are c.e. uniformly in i and j.

Notice that f is determined by its values on the generators of \mathcal{A}_i .

Examples

- Every infinite linear order has the same uniformly computable cover: \mathcal{A}_i is the linear order on *i* elements, and $I_{ij}^{\mathfrak{A}}$ contains all embeddings $\mathcal{A}_i \hookrightarrow \mathcal{A}_j$.
- In \mathbb{C} , the cover contains every f.g. field of characteristic 0, and every possible embedding $f: \mathcal{A}_i \hookrightarrow \mathcal{A}_j$ lifts to an inclusion. Similarly for any ACF, given its transcendence degree.
- \mathbb{R} also has a uniformly computable cover. This follows from:

Lemma: S has a uniformly computable cover iff S has a uniformly computable simple cover. Proof: Given a simple cover $\{A_i\}$, consider the cover containing all f.g. substructures of each A_i , with inclusion maps from these substructures into the original A_i .

1-Extensionality

Defn.: Every embedding from any \mathcal{A}_i into \mathcal{S} is 0-extensional. An isomorphism $\beta : \mathcal{A}_i \hookrightarrow \mathcal{B} \subseteq \mathcal{S}$ is 1-extensional if

- $(\forall j)(\forall f \in I_{ij}^{\mathfrak{A}})(\exists \mathcal{C} \subseteq \mathcal{S})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some isomorphism } \gamma]; and$
- $(\forall \text{ f.g. } \mathcal{C} \supseteq \mathcal{B})(\exists j)(\exists f \in I_{ij}^{\mathfrak{A}})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some isomorphism } \gamma].$

Intuition: A 1-extensional β is a strong pairing between \mathcal{A}_i and \mathcal{B} , in that \mathfrak{A} 's ways to extend \mathcal{A}_i are exactly the ways of extending \mathcal{B} within \mathcal{S} .

 \mathfrak{A} is a 1-*extensional cover* if every $\mathcal{A}_i \in \mathfrak{A}$ is the domain of a 1-extensional embedding and every f.g. $\mathcal{B} \subseteq \mathcal{S}$ is the range of one.

Example

Cantor Space: The linear order on 2^{ω} has a 1-extensional cover. The objects are all finite linear orders $a_0 \prec \cdots \prec a_n$ under the following specifications. a_0 may or may not be designated as the left end point; likewise a_n as the right end point. Each a_m not so designated may be called either a *left gap point* or a *right gap point* (but not both). If a_m is a LGP and a_{m+1} a RGP, then we must specify whether they belong to the same gap or not.

An embedding $f : \mathcal{A}_i \hookrightarrow \mathcal{A}_j$ belongs to $I_{ij}^{\mathfrak{A}}$ if it respects all these properties: a_m is a left end point iff $f(a_m)$ is, etc.

So, if a_m and a_{m+1} are LGP and RGP for the same gap, then there can be no element between $f(a_m)$ and $f(a_{m+1})$ in \mathcal{A}_j .

θ -Extensionality

Defn.: Let θ be an ordinal. An isomorphism $\beta : \mathcal{A}_i \hookrightarrow \mathcal{B} \subseteq \mathcal{S}$ is θ -extensional if

- $(\forall \text{ f.g. } \mathcal{C} \supseteq \mathcal{B})(\forall \zeta < \theta)(\exists j)(\exists f \in I_{ij}^{\mathfrak{A}})$ [f lifts to $\mathcal{B} \subseteq \mathcal{C}$ via β and a ζ -extensional γ].
- and $(\forall j)(\forall f \in I_{ij}^{\mathfrak{A}})(\forall \zeta < \theta)(\exists C \subseteq S)$ [f lifts to $\mathcal{B} \subseteq \mathcal{C}$ via β and a ζ -extensional γ];

Intuition: A θ -extensional β is a strong pairing between \mathcal{A}_i and \mathcal{B} , in that \mathfrak{A} 's ways to extend \mathcal{A}_i are exactly the ways of extending \mathcal{B} within \mathcal{S} while preserving the Σ_{ζ} -theory over \mathcal{B} .

 \mathfrak{A} is a θ -extensional cover if every $\mathcal{A}_i \in \mathfrak{A}$ is the domain of an θ -extensional embedding and every f.g. $\mathcal{B} \subseteq \mathcal{S}$ is the range of one.

Bad Example

Lemma: \mathbb{R} has no 1-extensional cover. Proof: If \mathfrak{A} were such a cover, fix a noncomputable $x \in \mathbb{R}$ and a 1-extensional $\beta : \mathcal{A}_i \hookrightarrow \mathbb{Q}(x) \subseteq \mathbb{R}$. Then for $q \in \mathbb{Q}$:

$$q < x \iff (\exists y \in \mathbb{R}) \ y^2 = x - q$$
$$\iff (\exists j \ \exists f \in I_{ij}^{\mathfrak{A}} \ \exists a \in \mathcal{A}_j)$$
$$[a^2 = f(\beta^{-1}(x)) - f(\beta^{-1}(q))]$$

So the lower cut defined by x would be computably enumerable, and similarly for the upper cut.

Σ_{θ} -Theory of \mathcal{S}

Theorem (Miller): Suppose S has a θ -extensional cover.

Then $(\forall \zeta \leq \theta)$, and for any finite set \vec{p} of parameters in \mathcal{S} , the Σ_{ζ} -theory of (\mathcal{S}, \vec{p}) is arithmetically Σ_{ζ}^{0} , uniformly in i and $\alpha^{-1}(\vec{p})$, where $\alpha : \mathcal{A}_{i} \hookrightarrow \langle \vec{p} \rangle$ is θ -extensional.

Moreover, this applies even to *infinitary* computable Σ_{ζ} formulas over P.

Correspondence Systems

Now we want to be able to extend our diagrams infinitely far to the right.

Defn.: A set M of embeddings $\beta : \mathcal{A}_i \hookrightarrow \mathcal{S}$ is a *correspondence system* if:

- $(\forall i)(\exists \beta \in M)\mathcal{A}_i = \operatorname{dom}(\beta);$ and
- $(\forall \text{ f.g. } \mathcal{B} \subseteq \mathcal{S})(\exists \beta \in M)\mathcal{B} = \text{range}(\beta); \text{ and }$

and for all maps $\beta : \mathcal{A}_i \cong \mathcal{B}$ in M:

- $(\forall j \forall f \in I_{ij}^{\mathfrak{A}}) (\exists \mathcal{C} \supseteq \mathcal{B})[f \text{ lifts to the inclusion} \\ \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma \in M]; \text{ and}$
- $(\forall \text{ f.g. } \mathcal{C} \supseteq \mathcal{B})(\exists j \exists f \in I_{ij}^{\mathfrak{A}})[f \text{ lifts to the inclusion } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma \in M].$

Defn.: A structure is ∞ -extensionally locally computable if it has a correspondence system over a uniformly computable cover.

Perfect Local Computability

 $M \text{ is } perfect \text{ if, for all } \beta, \gamma \in M \text{ with}$ range $(\beta) = \text{range}(\gamma)$, we have $(\gamma^{-1} \circ \beta) \in I_{ij}^{\mathfrak{A}}$, where $\mathcal{A}_i = \text{dom}(\beta)$ and $\mathcal{A}_j = \text{dom}(\gamma)$.

- The uniformly computable cover we built for C has a perfect correspondence system.
- The uniformly computable cover we built for Cantor space (as a linear order) is perfect.
- It is also possible to view Cantor space as the top level of the tree 2^{<ω+1}, as a partial order, and to build a perfect correspondence system for this structure.

Such structures are called *perfectly locally* computable.

Globally Computable Structures

Theorem (Miller): For a countable structure \mathcal{S} , TFAE:

- 1. S is computably presentable;
- 2. S is perfectly locally computable;
- 3. S has a uniformly computable cover with a correspondence system, satisfying AP.

Proof: For $(1 \implies 2)$, build the *natural cover* \mathfrak{A} containing all f.g. substructures of \mathcal{S} , under inclusion.

For $(2 \implies 3)$, all perfect covers have AP. For $(3 \implies 1)$, amalgamate the \mathcal{A}_i together over all embeddings in \mathfrak{A} , to get a computable presentation of \mathcal{S} .

∞ -Extensionality

(joint work with Dustin Mulcahey)

Lemma: Let structures C and S have correspondence systems over the same cover. Suppose that C is countable, and that P is a countable subset of S. Then there exists an elementary embedding of C into S whose image contains P.

Corollary: Any two countable structures with correspondence systems over the same cover are isomorphic.

Simulations

Defn.: A simulation C of a structure S is an elementary substructure of S which realizes the same *n*-types as S (for all *n*).

If for every $\vec{a} \in C$ there is $\vec{p} \in S$ such that C and S realize the same *n*-types over \vec{a} and \vec{p} , and likewise for every \vec{p} there is an \vec{a} , then C simulates S over parameters.

Examples: The algebraic closure of the field $\mathbb{Q}(X_0, X_1, \ldots)$ is a computably presentable simulation of \mathbb{C} over parameters.

The intersection of \mathbb{Q} with Cantor space ($\subset [0, 1]$, as linear order) is a computably presentable simulation of Cantor space over parameters.

Building Simulations

Lemma: Every ∞ -extensionally locally computable structure S has a countable simulation C over parameters with a correspondence system over the cover of S.

Proof: For each *i*, enumerate one image $\alpha(\mathcal{A}_i)$ into \mathcal{C} , with α in the correspondence system Mfor \mathcal{S} . Then close \mathcal{C} under the $\forall \exists$ conditions for a correspondence system.

Notice that if M is perfect for S, then the new system is perfect for C.

Computable Simulations

Thm. (Mulcahey-Miller): Every perfectly locally computable structure S has a computably presentable simulation C over parameters.

Moreover, if we fix a computable $\mathcal{D} \cong \mathcal{C}$, then for any countable parameter set $P \subseteq \mathcal{S}$, there exists an embedding $f_P : \mathcal{D} \hookrightarrow \mathcal{S}$ such that $P \subseteq \operatorname{range}(f_P)$ and \mathcal{S} and $f_P(\mathcal{D})$ realize exactly the same finitary types over every finite subset of the image of f_P . (We call f_P an elementary embedding over parameters.)

Computable Simulations

Thm.: A structure S has an ∞ -extensional cover with AP $\iff S$ has a computable simulation Cover parameters, such that, for all elementary embeddings $f : C \hookrightarrow S$ over parameters, all $\vec{a} \in C$, and all $x \in S$, there exists an elementary embedding $g : C \hookrightarrow S$ over parameters with $g \upharpoonright \vec{a} = f \upharpoonright \vec{a}$ and $x \in \operatorname{range}(g)$.

The cover \mathfrak{A} is the natural cover of \mathcal{C} . The correspondence system contains all restrictions (to elements of \mathfrak{A}) of elementary embeddings of \mathcal{C} into \mathcal{S} over parameters.

$\mathbb C$ and its Simulations

A computable simulation of the field \mathbb{C} must have infinite transcendence degree and be algebraically closed. Hence it must be the field $F = \overline{\mathbb{Q}(X_0, X_1, \ldots)}$. However,

Fact: The natural cover of F is *not* a perfect cover of \mathbb{C} . This follows from:

Lemma: A perfect cover of \mathbb{C} must include a set $I_{ij}^{\mathfrak{A}}$ of size > 1.

Still, the natural cover \mathfrak{A} of F is an ∞ -extensional cover of \mathbb{C} , and has AP. The correspondence system consists of all embeddings of every $\mathcal{A}_i \in \mathfrak{A}$ into \mathbb{C} .

Cardinalities

Fix any countable sequence $\kappa_0 < \kappa_1 < \cdots$ of cardinals. Let *T* be the tree of height ω with each node at level *n* having κ_n -many immediate successors.

This T is perfectly locally computable: \mathfrak{A} contains all finite substructures of $\omega^{<\omega}$, under embeddings which preserve levels, and M contains all level-preserving embeddings $\mathcal{A}_i \hookrightarrow T$.

But we can make the κ -sequence arbitrarily complex!

Local Constructivizability

Defn. (Ershov): A structure S is *locally* constructivizable if, for all finite tuples $\vec{p} \in S$, the \exists -theory of (S, \vec{p}) is arithmetically Σ_1^0 .

Cor.: Every 1-extensional structure is locally constructivizable.

Local constructivizability may be seen as a non-uniform version of 1-extensional local computability.

The field \mathbb{R} is locally computable, but not locally constructivizable.

The field of computable real numbers is locally constructivizable, and locally computable, but not 1-extensional. (The *ordered* field of computable real numbers is not even locally computable.)

Questions

- 1. Can there exist a structure S with a computable simulation (over parameters?) such that S is not perfectly locally computable? Or such that S is not ∞ -extensional with AP?
- 2. Develop a reasonable theory of maps (and computable maps) among covers.
 - Functors?
- 3. How locally computable is the structure $(\mathbb{C}, +, \cdot, 0, 1, f)$, where $f(z) = e^{z}$? (Similar questions for other holomorphic functions.)
- 4. Find θ -extensionally locally computable structures which are not $(\theta + 1)$ -extensional, and which have arbitrarily complex $\Sigma_{\theta+1}$ -theory over parameters.