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Local Descriptions of Structures'

Defn.: A simple cover 2 of a structure S is a set
{A; : i € I} which contains the finitely generated

substructures of S, up to isomorphism.

A is computable if every A € A is.

2 is uniformly computable if there is a single
algorithm listing out all A; in 2. In this case § is

locally computable.

Examples:

o All fields, and all relational structures, have

computable simple covers.
e The ordered field (R, <) does not.

e The ordered field of computable real numbers
is not locally computable, but has a

computable simple cover.

\_ /




-

Embeddings I

Let S be locally computable via {Ag, A1, ...}
Suppose B C C C § are finitely generated. If

commutes, we say that f: A; — A, lifts to the
inclusion B C C via the isomorphisms 3 and ~.
Defn.: A cover of S also has sets I,?} of
embeddings A; — A;, such that every inclusion

in S is the lift of some f in some I*, and every

YE
fel f; lifts to an inclusion in S.
The cover is uniformly computable if all I fjl are

c.e. uniformly in 7 and j.

Notice that f is determined by its values on the

generators of A;.
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Examples I

e Every infinite linear order has the same
uniformly computable cover: A; is the linear

order on ¢ elements, and [ % contains all
embeddings A; — A;.

e In C, the cover contains every f.g. field of
characteristic 0, and every possible embedding
f A — A; lifts to an inclusion. Similarly

for any ACF, given its transcendence degree.

e R also has a uniformly computable cover.
This follows from:
Lemma: § has a uniformly computable cover
iff S has a uniformly computable simple cover.
Proof: Given a simple cover {A;}, consider
the cover containing all f.g. substructures of
each A;, with inclusion maps from these

substructures into the original A;.
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I-Extensionality I

Defn.: Every embedding from any A; into S is

0-extensional. An isomorphism (3 : A; — B C S is

1-extensional if

o (V)(Vf € I2)(3C C S)[f lifts to B C

C via 0 and some isomorphism +]|; and

o (Vfg C2B)(3j)3f e[S lifts to B C

C via 8 and some isomorphism ~|.

Intuition: A 1-extensional 3 is a strong pairing
between A; and B, in that A’s ways to extend A;
are exactly the ways of extending B within S.

A is a 1-extensional cover if every A; € 2 is the
domain of a 1-extensional embedding and every

f.g. B C S is the range of one.
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Example I

Cantor Space: The linear order on 2% has a

1-extensional cover. The objects are all finite
linear orders ag < - -- < a, under the following
specifications. ag may or may not be designated
as the lett end point; likewise a,, as the right end
point. Each a,, not so designated may be called
either a left gap point or a right gap point (but
not both). If a,, is a LGP and a,,+1 a RGP, then
we must specify whether they belong to the same

gap or not.

An embedding f : A; — A, belongs to I% if it
respects all these properties: a,, is a left end

point iff f(a,,) is, etc.
So, if a,, and a,,+1 are LGP and RGP for the

same gap, then there can be no element between

flam) and f(apm41) in A;.
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‘ f-Extensionality I

Defn.: Let 0 be an ordinal. An isomorphism
6:A; — BCS is #-extensional if

o (Vig. C2B)(V¢<0)(3Fj)3f el
|f lifts to B C C via 8 and a (-extensional ~|.

o and (Vj)(Vf € I})(V¢ < 0)(3C C S)
|f lifts to B C C via 8 and a (-extensional 7|;

Intuition: A f-extensional 3 is a strong pairing
between A; and B, in that A’s ways to extend A;
are exactly the ways of extending B within S
while preserving the X.-theory over B.

A is a O-extensional cover if every A; € 2 is the
domain of an #-extensional embedding and every

f.g. B C S is the range of one.
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Bad Example I

Lemma: R has no l-extensional cover.
Proof: If 2 were such a cover, fix a

noncomputable x € R and a 1-extensional
B:A; — Q(x) C R. Then for q € Q:
<z <= (IycR)y>’=a—¢q
— (Fj3f €I} Fa € A))
0 = f(67 () — £(B7 ()]

So the lower cut defined by x would be
computably enumerable, and similarly for the

upper cut.
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Y9-Theory of SI

Theorem (Miller): Suppose S has a
f-extensional cover.

Then (V¢ < 0), and for any finite set p’ of
parameters in S, the ¥.-theory of (S,p) is
arithmetically X2, uniformly in ¢ and a1 (p),

where «a : A; — (p) is f-extensional.

Moreover, this applies even to infinitary

computable Y formulas over P.
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/ Correspondence Systems I \

Now we want to be able to extend our diagrams
infinitely far to the right.

Defn.: A set M of embeddings 3 : A; — S is a

correspondence system if:

o (Vi)(38 € M)A; = dom(f3); and

o (Vfg. BCS)(3B e M)B =range(3); and
and for all maps B : A; = B in M:

o (VjVf e I3)(3C 2 B)[f lifts to the inclusion
B C C via § and some v € M]; and

o (Vfg C2B)(3j3f € I))[f lifts to the
inclusion B C C via # and some v € M].

Defn.: A structure is oco-extensionally locally

computable if it has a correspondence system over

Quniformly computable cover. /
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‘Perfect Local Computability.

M is perfect if, for all 3,~v € M with
range(() = range(y), we have (y~! o ) € I3,
where A4; = dom(f) and A; = dom(7y).

e The uniformly computable cover we built for

C has a perfect correspondence system.

e The uniformly computable cover we built for
Cantor space (as a linear order) is perfect.

e It is also possible to view Cantor space as the
top level of the tree 2<“*1 as a partial order,
and to build a perfect correspondence system

for this structure.

Such structures are called perfectly locally

computable.
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Globally Computable Structures.

Theorem (Miller): For a countable structure S,
TFAE:

1. S is computably presentable;
2. § is perfectly locally computable;

3. S has a uniformly computable cover with a

correspondence system, satisfying AP.

Proof: For (1 = 2), build the natural cover 2
containing all f.g. substructures of S, under
inclusion.

For (2 = 3), all perfect covers have AP.

For (3 = 1), amalgamate the A; together over
all embeddings in 2, to get a computable

presentation of S.
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‘ oco-Extensionality I

(joint work with Dustin Mulcahey)

Lemma: Let structures C and S have
correspondence systems over the same cover.
Suppose that C is countable, and that P is a
countable subset of S. Then there exists an
elementary embedding of C into & whose image
contains P.

Corollary: Any two countable structures with
correspondence systems over the same cover are

isomorphic.
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‘ Simulations '

Defn.: A simulation C of a structure S is an

elementary substructure of & which realizes the
same n-types as S (for all n).

If for every a € C there is p € S such that C and S
realize the same n-types over a and p, and
likewise for every p there is an @, then C simulates

S over parameters.

Examples: The algebraic closure of the field
Q(Xg, X1,...) is a computably presentable

simulation of C over parameters.

The intersection of Q with Cantor space (C [0, 1],
as linear order) is a computably presentable

simulation of Cantor space over parameters.
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‘ Building Simulations I

Lemma: Every oo-extensionally locally
computable structure S has a countable
simulation C over parameters with a

correspondence system over the cover of S.

Proof: For each i, enumerate one image a(A;)
into C, with « in the correspondence system M

for §. Then close C under the Y4 conditions for a

correspondence system.

Notice that if M is perfect for S, then the new
system is perfect for C.

\_ /
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‘ Computable Simulations I

Thm. (Mulcahey-Miller): Every perfectly locally
computable structure S has a computably

presentable simulation C over parameters.

Moreover, if we fix a computable D = C, then for
any countable parameter set P C S, there exists
an embedding fp : D — S such that

P Crange(fp) and S and fp(D) realize exactly
the same finitary types over every finite subset of
the image of fp. (We call fp an elementary

embedding over parameters.)

\_ /
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‘ Computable Simulations I

Thm.: A structure S has an oo-extensional cover
with AP <— S has a computable simulation C
over parameters, such that, for all elementary
embeddings f : C — & over parameters, all a € C,
and all x € §, there exists an elementary
embedding ¢ : C — § over parameters with

gld = flad and x € range(g).

The cover 2l is the natural cover of C. The
correspondence system contains all restrictions
(to elements of 2A) of elementary embeddings of C

into S over parameters.

\_ /
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‘C and its Simulations'

A computable simulation of the field C must have
infinite transcendence degree and be algebraically
closed. Hence it must be the field

F =Q(Xy, X1,...). However,

Fact: The natural cover of F' is not a perfect
cover of C. This follows from:

Lemma: A perfect cover of C must include a set
Iz%! of size > 1.

Still, the natural cover 2 of F' is an oco-extensional
cover of C, and has AP. The correspondence
system consists of all embeddings of every A; € 2
into C.

\_ /
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Cardinalities '

Fix any countable sequence kg < k1 < --- of
cardinals. Let T' be the tree of height w with each
node at level n having x,-many immediate

SUCCESSOIS.

This T is perfectly locally computable: 2l contains
all finite substructures of w<%*, under embeddings
which preserve levels, and M contains all
level-preserving embeddings A; — T

But we can make the x-sequence arbitrarily

complex!

\_ /
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‘ Local Constructivizability I

Defn. (Ershov): A structure S is locally
constructivizable if, for all finite tuples p € S, the
J-theory of (S, p) is arithmetically 9.

Cor.: Every l-extensional structure is locally

constructivizable.

Local constructivizability may be seen as a
non-uniform version of 1-extensional local

computability.

The field R is locally computable, but not locally

constructivizable.

The field of computable real numbers is locally
constructivizable, and locally computable, but not
l-extensional. (The ordered field of computable

real numbers is not even locally computable.)
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Questions I

. Can there exist a structure S with a

computable simulation (over parameters?)
such that S is not perfectly locally
computable? Or such that S is not

oo-extensional with AP?

. Develop a reasonable theory of maps (and

computable maps) among covers.

e Functors?

. How locally computable is the structure

(C,+,-,0,1, f), where f(z) = e*7 (Similar

questions for other holomorphic functions.)

. Find #-extensionally locally computable

structures which are not (6 + 1)-extensional,
and which have arbitrarily complex
Y91 1-theory over parameters.

~
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