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Root Set and Splitting Set

Defn.: The splitting set of a computable field F is

SF = {p(X) ∈ F [X ] : ∃q0, q1 ∈ F [X ](q0 · q1 = p)}.

The root set of F is

RF = {p(X) ∈ F [X ] : ∃a ∈ F (p(a) = 0)}.

F has a splitting algorithm if SF is computable,

and a root algorithm if RF is computable.

Bigger questions: find the irreducible factors of

p(X), and find all its roots in F .

Fact: RF ≤T SF for every computable field F .
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Rabin’s Theorem

Defn.: A homomorphism g : F → E of

computable fields is a Rabin embedding if g is

computable and E is algebraically closed and

algebraic over the image g(F ).

Intuition: E is an effective algebraic closure of

F .

Rabin’s Theorem:

1. Every computable field F is the domain of

some Rabin embedding g into some E.

2. F has a splitting algorithm iff that Rabin

embedding has image g(F ) computable within E.
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Relativizing Rabin

Corollary: For a computable F , the following

are Turing-equivalent:

• the image g(F ) within E, for any Rabin

embedding g : F → E;

• the splitting set SF ;

• the root set RF ;

• the root function for F , which tells how many

roots each p(X) ∈ F [X ] has in F .
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Other Reduction Procedures

Defn.: A is m-reducible to B, A ≤m B, if there

exists a total computable function h such that

x ∈ A ⇐⇒ h(x) ∈ B.

A is 1-reducible to B, A ≤1 B, if this h may be

taken to be 1-to-1.

Jump Theorem: A ≤T B iff A′ ≤1 B′.

m-reducibility is strictly stronger than Turing

reducibility – so how do RF and SF compare

under ≤m?
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Positive Result

Thm.: For any computable field F with a

computable transcendence basis, SF ≤1 RF . In

particular, this holds for any algebraic field F .

Problem: Given a polynomial p(X) ∈ F [X ],

compute another polynomial q(X) ∈ F [X ] such

that

p(X) splits ⇐⇒ q(X) has a root.

6



'

&

$

%

SF ≤m RF

Let P be the c.e. subfield of F generated by its

transcendence basis (so F is algebraic over P ).

Let Fs be the subfield P [0, . . . , s − 1]. Kronecker

showed that every such Fs has a splitting

algorithm.

Procedure: For a given p(X), find an s with

p ∈ Fs[X ]. Check first whether p splits there. If

so, pick its q(X) to be a linear polynomial. If not,

find the splitting field Ks of p(X) over Fs, and

the roots r1, . . . , rd of p(X) in Ks.
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Theorems about Fields

Prop.: For Fs ⊆ L ⊆ Ks, p(X) splits in L[X ] iff

there exists ∅ ( I ( {r1, . . . , rd} such that L

contains all elementary symmetric polynomials in

I.

Theorem of the Primitive Element: Every

finite algebraic field extension is generated by a

single element.

And we can effectively find a primitive generator

xI for each intermediate field LI generated by the

elementary symmetric polynomials in I. Let q(X)

be the product of the minimal polynomials

qI(X) ∈ Fs[X ] of each xI .
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This works!

⇒: If p(X) splits in F [X ], then F contains some

LI . But then xI ∈ F , and qI(xI) = 0.

⇐: If q(X) has a root x ∈ F , then some

qI(x) = 0, so x is Fs-conjugate to some xI . Then

some σ ∈ Gal(Ks/Fs) maps xI to x. But σ

permutes the set {r1, . . . , rd}, so x generates the

subfield containing all elementary symmetric

polynomials in σ(I). Then F contains this

subfield, so p(X) splits in F [X ].
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Reverse Reduction

Thm.: There exists an algebraic computable field

F such that RF 6≤m SF .

Strategy to show that a single ϕe is not an

m-reduction from RF to SF : name a witness

polynomial qe(X) = X5 − X − 1, say, whose

Galois group over Q is S5, and start with F0 = Q.

If ϕe(qe)↓ to some polynomial pe(X) ∈ F0[X ],

then either keep F = F0 (if pe is reducible there),

or add a root of qe to F0 (if deg(pe) < 2), or . . .
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Defeating one ϕe

Let L be the splitting field of pe(X) over F0,

containing all roots x1, . . . , xn of pe. If F0[x1]

contains no ri, then let F = F0[x1]. Else say

(WLOG) r1 = h(x1) for some h(X) ∈ F0[X ].

Then each h(xj) ∈ {r1, . . . , rd}, and each ri is

h(xj) for some j. Let F be the fixed field of G12:

{σ ∈ Gal(L/F0) : {σ(r1), σ(r2)} = {r1, r2}}.

Then each σ ∈ G12 fixes

I = {xj : h(xj) ∈ {r1, r2} } setwise. So F contains

all polynomials symmetric in I, and pe(X) splits

in F .

But there is a τ ∈ G12 which fixes no ri. So qe(X)

has no root in F .
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Defeating all ϕe

Use distinct witness polynomials qe(X) against

each ϕe.

Problem: We have to wait to see whether ϕe(qe)

ever converges. While we wait, we must keep all

roots of qe out of F .

Solution: An injury-priority argument. When

ϕe(qe)↓, our procedure may injure any strategy

for defeating ϕi (i > e), but must not do anything

to upset our procedure against any ϕj (j < e).

Lemma (Keating): We may choose qe with

degree prime to all deg(qj) (j < e), and with

symmetric Galois group over Fs.

So adding roots of qe to F will not adjoin any

roots of any qj (j < e).
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Avoiding Injury

Problem: We choose qe(X), and then ϕe chooses

pe(X). So we can control the ri, but not the xj .

Putting an xj into F to defeat one ϕe may ruin

our strategy against another ϕe′ .

Solution: If Fs[r1] contains no symmetric

subfield LI ⊂ L, then adjoin r1 to F . If some LI

satisfies LI ( Fs[r1], adjoin LI to F .

Lemma: Otherwise, at least one subgroup G12,

G13, or G23 contains some symmetric subfield LI .

Extend F to be the fixed field of that subgroup.
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