Difficulty of Factoring Polynomials and Finding Roots

Russell Miller,
Queens College \& Graduate Center - CUNY

September 12, 2008
CUNY Logic Workshop

Root Set and Splitting Set

Defn.: The splitting set of a computable field F is

$$
S_{F}=\left\{p(X) \in F[X]: \exists q_{0}, q_{1} \in F[X]\left(q_{0} \cdot q_{1}=p\right)\right\}
$$

The root set of F is

$$
R_{F}=\{p(X) \in F[X]: \exists a \in F(p(a)=0)\}
$$

F has a splitting algorithm if S_{F} is computable, and a root algorithm if R_{F} is computable.

Bigger questions: find the irreducible factors of $p(X)$, and find all its roots in F.

Fact: $R_{F} \leq_{T} S_{F}$ for every computable field F.

Rabin's Theorem

Defn.: A homomorphism $g: F \rightarrow E$ of computable fields is a Rabin embedding if g is computable and E is algebraically closed and algebraic over the image $g(F)$.

Intuition: E is an effective algebraic closure of F.

Rabin's Theorem:

1. Every computable field F is the domain of some Rabin embedding g into some E.
2. F has a splitting algorithm iff that Rabin embedding has image $g(F)$ computable within E.

Relativizing Rabin

Corollary: For a computable F, the following are Turing-equivalent:

- the image $g(F)$ within E, for any Rabin embedding $g: F \rightarrow E$;
- the splitting set S_{F};
- the root set R_{F};
- the root function for F, which tells how many roots each $p(X) \in F[X]$ has in F.

Other Reduction Procedures

Defn.: A is m-reducible to $B, A \leq_{m} B$, if there exists a total computable function h such that

$$
x \in A \Longleftrightarrow h(x) \in B .
$$

A is 1-reducible to $B, A \leq_{1} B$, if this h may be taken to be 1-to-1.

Jump Theorem: $A \leq_{T} B$ iff $A^{\prime} \leq_{1} B^{\prime}$.
m-reducibility is strictly stronger than Turing reducibility - so how do R_{F} and S_{F} compare under \leq_{m} ?

Positive Result

Thm.: For any computable field F with a computable transcendence basis, $S_{F} \leq_{1} R_{F}$. In particular, this holds for any algebraic field F.

Problem: Given a polynomial $p(X) \in F[X]$, compute another polynomial $q(X) \in F[X]$ such that

$$
p(X) \text { splits } \Longleftrightarrow q(X) \text { has a root. }
$$

Let P be the c.e. subfield of F generated by its transcendence basis (so F is algebraic over P). Let F_{s} be the subfield $P[0, \ldots, s-1]$. Kronecker showed that every such F_{s} has a splitting algorithm.

Procedure: For a given $p(X)$, find an s with $p \in F_{s}[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_{s} of $p(X)$ over F_{s}, and the roots r_{1}, \ldots, r_{d} of $p(X)$ in K_{s}.

Theorems about Fields

Prop.: For $F_{s} \subseteq L \subseteq K_{s}, p(X)$ splits in $L[X]$ iff there exists $\emptyset \subsetneq I \subsetneq\left\{r_{1}, \ldots, r_{d}\right\}$ such that L contains all elementary symmetric polynomials in I.

Theorem of the Primitive Element: Every finite algebraic field extension is generated by a single element.

And we can effectively find a primitive generator x_{I} for each intermediate field L_{I} generated by the elementary symmetric polynomials in I. Let $q(X)$ be the product of the minimal polynomials $q_{I}(X) \in F_{s}[X]$ of each x_{I}.

This works!

\Rightarrow : If $p(X)$ splits in $F[X]$, then F contains some L_{I}. But then $x_{I} \in F$, and $q_{I}\left(x_{I}\right)=0$.
\Leftarrow : If $q(X)$ has a root $x \in F$, then some
$q_{I}(x)=0$, so x is F_{s}-conjugate to some x_{I}. Then some $\sigma \in \operatorname{Gal}\left(K_{s} / F_{s}\right) \operatorname{maps} x_{I}$ to x. But σ permutes the set $\left\{r_{1}, \ldots, r_{d}\right\}$, so x generates the subfield containing all elementary symmetric polynomials in $\sigma(I)$. Then F contains this subfield, so $p(X)$ splits in $F[X]$.

Reverse Reduction

Thm.: There exists an algebraic computable field F such that $R_{F} \not \mathbb{m}_{m} S_{F}$.

Strategy to show that a single φ_{e} is not an m-reduction from R_{F} to S_{F} : name a witness polynomial $q_{e}(X)=X^{5}-X-1$, say, whose Galois group over \mathbb{Q} is S_{5}, and start with $F_{0}=\mathbb{Q}$. If $\varphi_{e}\left(q_{e}\right) \downarrow$ to some polynomial $p_{e}(X) \in F_{0}[X]$, then either keep $F=F_{0}$ (if p_{e} is reducible there), or add a root of q_{e} to $F_{0}\left(\right.$ if $\left.\operatorname{deg}\left(p_{e}\right)<2\right)$, or \ldots

Defeating one φ_{e}

Let L be the splitting field of $p_{e}(X)$ over F_{0}, containing all roots x_{1}, \ldots, x_{n} of p_{e}. If $F_{0}\left[x_{1}\right]$ contains no r_{i}, then let $F=F_{0}\left[x_{1}\right]$. Else say (WLOG) $r_{1}=h\left(x_{1}\right)$ for some $h(X) \in F_{0}[X]$. Then each $h\left(x_{j}\right) \in\left\{r_{1}, \ldots, r_{d}\right\}$, and each r_{i} is $h\left(x_{j}\right)$ for some j. Let F be the fixed field of G_{12} :

$$
\left\{\sigma \in \operatorname{Gal}\left(L / F_{0}\right):\left\{\sigma\left(r_{1}\right), \sigma\left(r_{2}\right)\right\}=\left\{r_{1}, r_{2}\right\}\right\} .
$$

Then each $\sigma \in G_{12}$ fixes
$I=\left\{x_{j}: h\left(x_{j}\right) \in\left\{r_{1}, r_{2}\right\}\right\}$ setwise. So F contains all polynomials symmetric in I, and $p_{e}(X)$ splits in F.

But there is a $\tau \in G_{12}$ which fixes no r_{i}. So $q_{e}(X)$ has no root in F.

Defeating all φ_{e}

Use distinct witness polynomials $q_{e}(X)$ against each φ_{e}.
Problem: We have to wait to see whether $\varphi_{e}\left(q_{e}\right)$ ever converges. While we wait, we must keep all roots of q_{e} out of F.
Solution: An injury-priority argument. When $\varphi_{e}\left(q_{e}\right) \downarrow$, our procedure may injure any strategy for defeating $\varphi_{i}(i>e)$, but must not do anything to upset our procedure against any $\varphi_{j}(j<e)$.

Lemma (Keating): We may choose q_{e} with degree prime to all $\operatorname{deg}\left(q_{j}\right)(j<e)$, and with symmetric Galois group over F_{s}.

So adding roots of q_{e} to F will not adjoin any roots of any $q_{j}(j<e)$.

Avoiding Injury

Problem: We choose $q_{e}(X)$, and then φ_{e} chooses $p_{e}(X)$. So we can control the r_{i}, but not the x_{j}. Putting an x_{j} into F to defeat one φ_{e} may ruin our strategy against another $\varphi_{e^{\prime}}$.
Solution: If $F_{s}\left[r_{1}\right]$ contains no symmetric subfield $L_{I} \subset L$, then adjoin r_{1} to F. If some L_{I} satisfies $L_{I} \subsetneq F_{s}\left[r_{1}\right]$, adjoin L_{I} to F.
Lemma: Otherwise, at least one subgroup G_{12}, G_{13}, or G_{23} contains some symmetric subfield L_{I}. Extend F to be the fixed field of that subgroup.

