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Root Set and Splitting Set'

Defn.: The splitting set of a computable field F' is
Sr={p(X) € F[X]:3q0,q1 € F[X](q0-q1 = D)}
The root set of F' is

Rp ={p(X) € F|X]:3Ja € F(p(a) =0)}.

F' has a splitting algorithm if S is computable,
and a root algorithm if Ry is computable.

Bigger questions: find the irreducible factors of
p(X), and find all its roots in F.

Fact: Rrp <p S for every computable field F'.
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Rabin’s Theorem '

Defn.: A homomorphism g : F' — E of
computable fields is a Rabin embedding if g is
computable and E is algebraically closed and
algebraic over the image g(F').

Intuition: FE' is an effective algebraic closure of
F.

Rabin’s Theorem:

1. Every computable field F' is the domain of
some Rabin embedding ¢ into some F.

2. F' has a splitting algorithm iff that Rabin
embedding has image g(F') computable within F.
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‘ Relativizing Rabin I

Corollary: For a computable F', the following

are Turing-equivalent:

e the image g(F') within F, for any Rabin
embedding g : F' — E;

e the splitting set Sg;
e the root set Rp;

e the root function for F', which tells how many
roots each p(X) € F'|X]| has in F.
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‘Other Reduction Procedures'

Defn.: A is m-reducible to B, A <,,, B, if there

exists a total computable function h such that
re A < h(x) e B.

A is 1-reducible to B, A <; B, if this h may be
taken to be 1-to-1.

Jump Theorem: A <y Biff A’ <; B’.

m-reducibility is strictly stronger than Turing
reducibility — so how do Rr and Sy compare

under <,,,7

\_ /




Positive Result I

Thm.: For any computable field F' with a

computable transcendence basis, Sp <; Rp. In

particular, this holds for any algebraic field F.

Problem: Given a polynomial p(X) € F|[X],
compute another polynomial ¢(X) € F|[X] such

that

p(X) splits <= ¢(X) has a root.




‘SF <m RFI

Let P be the c.e. subfield of F' generated by its
transcendence basis (so F' is algebraic over P).
Let F§ be the subfield P[0, ...,s — 1]. Kronecker
showed that every such F; has a splitting

algorithm.

Procedure: For a given p(X), find an s with

p € F5|X]. Check first whether p splits there. If
so, pick its ¢(X) to be a linear polynomial. If not,
find the splitting field K, of p(X) over Fj, and
the roots r1,...,74 of p(X) in K.
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Theorems about Fields'

Prop.: For F;, C L C K, p(X) splits in L|X] iff
there exists 0 C I C {ry,...,rq} such that L

contains all elementary symmetric polynomials in
I.

Theorem of the Primitive Element: Every
finite algebraic field extension is generated by a

single element.

And we can effectively find a primitive generator
x7 for each intermediate field L; generated by the
elementary symmetric polynomials in I. Let q(X)

be the product of the minimal polynomials
qr(X) € Fs[X] of each x;.
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This works! '

=: If p(X) splits in F[X], then F contains some
L. But then z; € F, and g;(x7) = 0.

«: If ¢(X) has a root x € F, then some

qr(x) =0, so x is Fs-conjugate to some x;. Then
some o € Gal(K,/F,) maps xy to x. But o
permutes the set {ry,...,r4}, so x generates the
subfield containing all elementary symmetric

polynomials in o(I). Then F contains this
subfield, so p(X) splits in F'[X].
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Reverse Reduction '

Thm.: There exists an algebraic computable field
F such that Rp £,, SE.

Strategy to show that a single ¢, is not an
m-reduction from Rr to Sg: name a witness
polynomial g.(X) = X° — X — 1, say, whose
Galois group over Q is S5, and start with Fy = Q.
If ve(ge) ] to some polynomial p.(X) € Fp|X],
then either keep F' = Fj (if p. is reducible there),
or add a root of g. to Fy (if deg(p.) < 2), or ...
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Defeating one gpeI

Let L be the splitting field of p.(X) over Fy,

containing all roots x1,...,x, of p.. If Fy|zq]

contains no r;, then let F' = Fy|x1]. Else say
(WLOG) r1 = h(x1) for some h(X) € Fy|X].
Then each h(x;) € {r1,...,74}, and each r; is
h(z;) for some j. Let F' be the fixed field of G1a:

{O’ < G&l(L/FQ) . {0'(7“1),0'(7“2)} = {7“1,7“2}}.

Then each o € G159 fixes

I ={z;:h(zx;) € {r1,r2} } setwise. So F' contains
all polynomials symmetric in I, and p.(X) splits
in F.

But there is a 7 € G152 which fixes no r;. So g.(X)

has no root in F..

\_ /

11




4 N
‘Defeating all gpel

Use distinct witness polynomials g.(X) against

each ..

Problem: We have to wait to see whether ¢.(q.)
ever converges. While we wait, we must keep all
roots of ¢, out of F.

Solution: An injury-priority argument. When
©ve(qe) |, our procedure may injure any strategy
for defeating ¢; (i > e), but must not do anything

to upset our procedure against any ¢; (j < e).

Lemma (Keating): We may choose g, with
degree prime to all deg(q;) (5 < e), and with
symmetric Galois group over Fj.

So adding roots of ¢, to F' will not adjoin any
roots of any ¢; (5 < e).
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Avoiding Injury I

Problem: We choose ¢.(X), and then ¢, chooses

Pe(X). So we can control the r;, but not the z;.

Putting an z; into F' to defeat one ¢, may ruin

our strategy against another ..

Solution: If F[r{] contains no symmetric

subfield L; C L, then adjoin 1 to F'. If some Lj
satisfies Ly C Fs|r1], adjoin L to F.

Lemma: Otherwise, at least one subgroup Gio,

(G13, or (Go3 contains some symmetric subfield L.

Extend F' to be the fixed field of that subgroup.
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