Difficulty of Factoring Polynomials and Finding Roots

Russell Miller,

Queens College &

Graduate Center – CUNY

September 12, 2008

CUNY Logic Workshop

Root Set and Splitting Set

Defn.: The *splitting set* of a computable field F is $S_F = \{p(X) \in F[X] : \exists q_0, q_1 \in F[X](q_0 \cdot q_1 = p)\}.$ The *root set* of F is

$$R_F = \{ p(X) \in F[X] : \exists a \in F(p(a) = 0) \}.$$

F has a *splitting algorithm* if S_F is computable, and a *root algorithm* if R_F is computable.

Bigger questions: find the irreducible factors of p(X), and find all its roots in F.

Fact: $R_F \leq_T S_F$ for every computable field F.

Rabin's Theorem

Defn.: A homomorphism $g: F \to E$ of computable fields is a *Rabin embedding* if g is computable and E is algebraically closed and algebraic over the image g(F).

Intuition: E is an effective algebraic closure of F.

Rabin's Theorem:

 Every computable field F is the domain of some Rabin embedding g into some E.
F has a splitting algorithm iff that Rabin

embedding has image g(F) computable within E.

Relativizing Rabin

Corollary: For a computable F, the following are Turing-equivalent:

- the image g(F) within E, for any Rabin embedding $g: F \to E$;
- the splitting set S_F ;
- the root set R_F ;
- the root function for F, which tells how many roots each $p(X) \in F[X]$ has in F.

Other Reduction Procedures

Defn.: A is *m*-reducible to $B, A \leq_m B$, if there exists a total computable function h such that

$$x \in A \iff h(x) \in B.$$

A is 1-reducible to $B, A \leq_1 B$, if this h may be taken to be 1-to-1.

Jump Theorem: $A \leq_T B$ iff $A' \leq_1 B'$.

m-reducibility is strictly stronger than Turing reducibility – so how do R_F and S_F compare under \leq_m ?

Positive Result

Thm.: For any computable field F with a computable transcendence basis, $S_F \leq_1 R_F$. In particular, this holds for any algebraic field F.

Problem: Given a polynomial $p(X) \in F[X]$, compute another polynomial $q(X) \in F[X]$ such that

p(X) splits $\iff q(X)$ has a root.

 $S_F \leq_m R_F$

Let P be the c.e. subfield of F generated by its transcendence basis (so F is algebraic over P). Let F_s be the subfield $P[0, \ldots, s-1]$. Kronecker showed that every such F_s has a splitting algorithm.

Procedure: For a given p(X), find an s with $p \in F_s[X]$. Check first whether p splits there. If so, pick its q(X) to be a linear polynomial. If not, find the splitting field K_s of p(X) over F_s , and the roots r_1, \ldots, r_d of p(X) in K_s .

Theorems about Fields

Prop.: For $F_s \subseteq L \subseteq K_s$, p(X) splits in L[X] iff there exists $\emptyset \subsetneq I \subsetneq \{r_1, \ldots, r_d\}$ such that Lcontains all elementary symmetric polynomials in I.

Theorem of the Primitive Element: Every finite algebraic field extension is generated by a single element.

And we can effectively find a primitive generator x_I for each intermediate field L_I generated by the elementary symmetric polynomials in I. Let q(X) be the product of the minimal polynomials $q_I(X) \in F_s[X]$ of each x_I .

This works!

⇒: If p(X) splits in F[X], then F contains some L_I . But then $x_I \in F$, and $q_I(x_I) = 0$.

 \Leftarrow : If q(X) has a root $x \in F$, then some $q_I(x) = 0$, so x is F_s -conjugate to some x_I . Then some $\sigma \in \text{Gal}(K_s/F_s)$ maps x_I to x. But σ permutes the set $\{r_1, \ldots, r_d\}$, so x generates the subfield containing all elementary symmetric polynomials in $\sigma(I)$. Then F contains this subfield, so p(X) splits in F[X].

Reverse Reduction

Thm.: There exists an algebraic computable field F such that $R_F \not\leq_m S_F$.

Strategy to show that a single φ_e is not an *m*-reduction from R_F to S_F : name a witness polynomial $q_e(X) = X^5 - X - 1$, say, whose Galois group over \mathbb{Q} is S_5 , and start with $F_0 = \mathbb{Q}$. If $\varphi_e(q_e) \downarrow$ to some polynomial $p_e(X) \in F_0[X]$, then either keep $F = F_0$ (if p_e is reducible there), or add a root of q_e to F_0 (if $\deg(p_e) < 2$), or ...

Defeating one φ_e

Let L be the splitting field of $p_e(X)$ over F_0 , containing all roots x_1, \ldots, x_n of p_e . If $F_0[x_1]$ contains no r_i , then let $F = F_0[x_1]$. Else say (WLOG) $r_1 = h(x_1)$ for some $h(X) \in F_0[X]$. Then each $h(x_j) \in \{r_1, \ldots, r_d\}$, and each r_i is $h(x_j)$ for some j. Let F be the fixed field of G_{12} :

$$\{\sigma \in \operatorname{Gal}(L/F_0) : \{\sigma(r_1), \sigma(r_2)\} = \{r_1, r_2\}\}.$$

Then each $\sigma \in G_{12}$ fixes $I = \{x_j : h(x_j) \in \{r_1, r_2\}\}$ setwise. So F contains all polynomials symmetric in I, and $p_e(X)$ splits in F.

But there is a $\tau \in G_{12}$ which fixes no r_i . So $q_e(X)$ has no root in F.

Defeating all φ_e

Use distinct witness polynomials $q_e(X)$ against each φ_e .

Problem: We have to wait to see whether $\varphi_e(q_e)$ ever converges. While we wait, we must keep all roots of q_e out of F.

Solution: An injury-priority argument. When $\varphi_e(q_e) \downarrow$, our procedure may injure any strategy for defeating φ_i (i > e), but must not do anything to upset our procedure against any φ_j (j < e).

Lemma (Keating): We may choose q_e with degree prime to all $deg(q_j)$ (j < e), and with symmetric Galois group over F_s .

So adding roots of q_e to F will not adjoin any roots of any q_j (j < e).

Avoiding Injury

Problem: We choose $q_e(X)$, and then φ_e chooses $p_e(X)$. So we can control the r_i , but not the x_j . Putting an x_j into F to defeat one φ_e may ruin our strategy against another $\varphi_{e'}$. **Solution**: If $F_s[r_1]$ contains no symmetric subfield $L_I \subset L$, then adjoin r_1 to F. If some L_I satisfies $L_I \subsetneq F_s[r_1]$, adjoin L_I to F. **Lemma**: Otherwise, at least one subgroup G_{12} , G_{13} , or G_{23} contains some symmetric subfield L_I . Extend F to be the fixed field of that subgroup.