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Spectra of Countable Structures

Let S be a structure with domain ω, in a finite language.

Definition
The Turing degree of S is the join of the Turing degrees of the
functions and relations on S. If these are all computable, then S is a
computable structure.

Definition
The spectrum of S is the set of all Turing degrees of copies of S:

Spec(S) = {deg(M) : M ∼= S & dom(M) = ω}.

So the spectrum measures the level of complexity intrinsic to the
structure S.
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Spectra for Different Classes
Every spectrum of an automorphically non-trivial structure, in a
computable language, is the spectrum of a graph, a lattice, a
group, a partial order, and a field. (Results by HKSS and MPSS.)
In particular, every upper cone of degrees, { all highn degrees },
{ all non-lown degrees }, { all nonzero degrees },
{ all non-hyperarithmetic degrees } are spectra of graphs.
A Boolean algebra cannot have a low4 degree in its spectrum
unless it also has 0. (Downey-Jockusch, Thurber, Knight-Stob.)
BA’s, trees, and linear orders cannot realize an upper cone as a
spectrum (Richter). However, LO’s can have a spectrum
containing any given d > 0 and not containing 0.
The spectrum of an ACF always contains all degrees.
The spectra of models of DCF0 are precisely the preimages under
jump of the spectra of graphs. (Marker-M.)
Spectra of algebraic fields and rank-1 torsion-free abelian groups
are defined by the ability to enumerate some specific subset of ω.
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Real Closed Fields

Definition
A real closed field F is a model of the theory of the real numbers
(R,0,1,+, ·). The positive field elements are those nonzero elements
with square roots: this defines an order on F . The finite elements are
those x for which some natural number n satisfies −n < x < n.

F is archimedean if every x ∈ F is finite. If not, then F has both infinite
and infinitesimal elements.

Every finite x ∈ F defines a Dedekind cut in Q, with left side
{q ∈ Q : q < x} and right side {q ∈ Q : x ≤ q}.

The residue field F0 of (a nonarchimedean) F consists of one element
realizing each Dedekind cut realized in F . If F0 is just the real closure
of Q, then it is canonically a subfield of F . However, if F0 contains
transcendentals, then it has no canonical embedding into F .
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Computability and real closures

Theorem (Ershov; Madison)
For every d-computable ordered field F , there is a d-computable
presentation of the real closure of F .

So, to give a d-computable presentation of the real closure of F , it
suffices to present F itself using a d-oracle.
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Dedekind cuts

In any computable RCF, we can give a computable enumeration
〈An,s,Bn,s〉n,s∈ω of all Dedekind cuts (An,Bn) realized in F . We think of
each cut as a decreasing sequence of intervals (an,s,bn,s], with
an,s = max(An,s) and bn,s = min(Bn,s). It is not difficult to make this
enumeration injective.

Theorem
For an archimedean RCF F , the following are equivalent:

d ∈ Spec(F ).
d enumerates the Dedekind cuts realized in F as (An,Bn), in such
a way that the dependence relation on the realizations of these
cuts is Σd

1 .
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Upper Cones as Spectra

Proposition (folklore)
Every upper cone {d : c ≤ d} of Turing degrees is the spectrum of a
RCF.

Proof: given c, find a real number x (necessarily transcendental, when
c 6= 0) whose Dedekind cut in Q has degree c. The real closure of
Q(x) is then c-presentable, but conversely, each of its presentations
must compute the Dedekind cut of (the image of) x , hence computes c.

This distinguishes RCF’s from linear orders, trees, Boolean algebras,
algebraic fields, and models of ACF and DCF0, in terms of the spectra
they can realize.
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High degrees

Question: which families of Turing degrees are defined by the property
of being able to realize a specific collection of Dedekind cuts?

Theorem (Jockusch, 1972)
The degrees d which can enumerate the computable sets are
precisely the high degrees (i.e., those with d ′ ≥ 0′′).

Theorem (Korovina-Kudinov)
The spectrum of the field of all computable real numbers contains
precisely the high degrees.

This relativizes: the spectrum of the field of c-computable real
numbers contains precisely those degrees d with d ′ ≥ c′′.
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Proof: Spec(Rc) = { high degrees }

⇒: If d computes a copy of the field Rc of computable real numbers,
then d can list out all the Dedekind cuts realized in Rc . From this list,
one quickly gets an enumeration of all computable sets. So, by
Jockusch’s result, d is high.

⇐: If d is high, then some d-computable function can approximate 0′′.
We use this to guess, d-computably, whether each pair (Wi ,Wj) of c.e.
subsets of Q constitutes a Dedekind cut or not. When it appears to be
a cut (and when this cut becomes distinct from all previous cuts), we
start building an element xij in our presentation of Rc to realize that cut.
If the approximation changes its mind, we can always turn xij into a
nearby rational element of our presentation, consistently with the
finitely many facts so far defined about this presentation.
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Dedekind cuts are not enough

Theorem
There exists an archimedean real closed field F with a computable
enumeration of all Dedekind cuts realized in F , yet with Spec(F )
containing precisely the high degrees.

The set Inf is coded into F in such a way that with any presentation of
F and with a transcendence basis for that presentation, one can
decide Inf. We uniformly enumerate Dedekind cuts
{(ae,s,be,s) : e ∈ ω} such that, for each e, ae = lims ae,s is
transcendental over Q iff We is infinite). In fact, if We is infinite, then ae
will be transcendental over the subfield Q(a0, . . . ,ae−1).

Given any presentation of F , of degree d , a d ′-oracle allows us to find
an element realizing the cut (ae,s,be,s), and to check transcendence of
this element (which is d ′-decidable).
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Nonarchimedean real closed fields
In a nonarchimedean RCF, we partition the positive infinite elements
into multiplicative classes:

x ∼ y ⇐⇒ ∃n [x < yn & y < xn].

These classes are linearly ordered in F . Write LF for this derived linear
order, which is then presentable from the jump of each copy of F .

An RCF F is principal if it is the smallest RCF with a given residue field
F0 and with a given linear order L as LF .

Theorem (Ocasio, Ph.D. thesis)
For every L, the principal RCF F with residue field RC(Q) and derived
linear order L satisfies

Spec(F ) = {d : d ′ ∈ Spec(L)}.
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A distinction on derived orders

Proposition
Suppose that the derived linear order LF of an RCF F has a left end
point. Then the property of being finite in F is relatively intrinsically
computable. (Hence so is being infinitesimal.)

Proof: Fix an element y0 in the least positive infinite multiplicative
class. Then x is finite in F iff (∃n)[−n < x < n]; while x is infinite in F
iff (∃m > 0) y0 < xm.

Corollary
If LF has a left end point, then Spec(F ) ⊆ Spec(F0).

Proof: F0 is defined as the quotient of the ring of finite elements of F ,
modulo the ideal of infinitesimals in F .
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Spectra when LF has a left end point

Ocasio’s theorem shows that the containment in the Proposition does
not reverse: we can have Spec(F ) 6= Spec(F0).

Theorem
For every L with a left end point, and every archimedean RCF F0,
the principal RCF F with residue field F0 and derived linear order L
satisfies

Spec(F ) = Spec(F0) ∩ {d : d ′ ∈ Spec(L)}.

The proof is essentially just Ocasio’s construction, with RC(Q)
replaced by F0.
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Spectra when LF has no left end point

Theorem
There exists a computable principal RCF F whose residue field F0 has
no computable presentation. (By the previous theorem, LF has no left
end point.)

The construction of F builds a sequence of elements ye, with

e ∈ Fin ⇐⇒ (∃q ∈ Q)[(ye − q) is infinitesimal].

Use the complete binary tree T , guessing at level e whether e ∈ Inf:
At each node α we have a yα ∈ F , which remains fixed from stage to
stage. The set {yα : α ∈ T} is algebraically independent in F .
ye will equal yα for that α on the true path at level e.

At each stage s, yα is close to some qα,s ∈ Q, with xα,s = qα,s − yα
positive and potentially infinitesimal.
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0′′ Construction
Whenever We,s+1 adds an element, we make the difference xα,s
noninfinitesimal, so yα is not that close to qα,s, and choose a new
qα,s+1 < qα,s for yα to approximate. Making xα,s noninfinitesimal
makes all xβ,s > xα,s noninfinitesimal as well, injuring those β.

So we choose xα,s < xβ,s iff α ≺ β on T :

x∞∞ < x∞ < x∞f < xλ < xf∞ < xf < xf f
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Spec(F0) ⊆ {high degrees}

Given a d-computable copy E0 of F0, a d ′-oracle allows us to find the
unique element z0 ∈ E0 realizing the same cut as y0 = yλ. Since Q is
d-c.e. inside E0, d ′ then tells us whether this z0 is rational in E0. If so,
then 0 ∈ Fin; if not, then 0 ∈ Inf.

With this info, we know which α1 at level 1 lies on the true path. Set
y1 = yα1 , and find the unique z1 ∈ E0 realizing the same cut as y1. If
z1 ∈ Q, then 1 ∈ Fin; else 1 ∈ Inf.

Continuing recursively, we compute Inf from the d ′-oracle.
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Conclusions and Questions
It remains open whether RCF’s can realize all possible spectra of
automorphically nontrivial structures. This seems unlikely, but no
counterexample is known.

There appears to be a tight connection between spectra of RCF’s and
highness properties: such spectra are often defined by the ability of
the jump d ′ to compute some particular degree c. Can this be made
explicit somehow?

Problem: does the spectrum of an RCF F depend only on:
Spec(F0), where F0 is the residue field of F ; and
Spec(LF ), from the derived linear order LF of F .

This is false unless we restrict to derived linear orders with no left end
point (and allow nonprincipal RCF’s, of course).

Problem: nonprincipal RCF’s in general!
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