Spectra of Algebraic Fields and Subfields

Andrey Frolov
Kazan State University
Iskander Kalimullin
Kazan State University
Russell Miller,
Queens College \& Graduate Center C.U.N.Y.

July 20, 2009
Computability in Europe
Ruprecht-Karls-Universität Heidelberg

Degree Spectra

Defns: For a countable structure \mathcal{S} with domain ω, the Turing degree of \mathcal{S} is the Turing degree of the atomic diagram of \mathcal{S}. The spectrum of \mathcal{S} is

$$
\operatorname{Spec}(\mathcal{S})=\{\operatorname{deg}(\mathcal{A}): \mathcal{A} \cong \mathcal{S}\}
$$

of all Turing degrees of copies of \mathcal{S}.
For a relation R on a computable structure \mathcal{M}, the spectrum of $R, \operatorname{DgSp}_{\mathcal{M}}(R)$, is

$$
\{\operatorname{deg}(f(R)): f: \mathcal{M} \cong \mathcal{N} \& \mathcal{N} \text { is computable }\} .
$$

Algebraic Fields

Defn: A field F is algebraic if it is an algebraic (but possibly infinite) extension of its prime subfield. Equivalently, F is a subfield of either $\overline{\mathbb{Q}}$ or $\overline{\mathbb{Z} /(p)}$, the algebraic closures of the prime fields.

Thm. (Frolov-Kalimullin-M.): The spectra of algebraic fields of characteristic 0 are precisely the sets of the form

$$
\{\boldsymbol{d}: T \text { is c.e. in } \boldsymbol{d}\}
$$

where T ranges over all subsets of ω.
The same holds for infinite algebraic fields of characteristic >0, and also (by work of Coles, Downey, and Slaman) for torsion-free abelian groups of rank 1 .

Normal Extensions of \mathbb{Q}

A simple case: let $F \supseteq \mathbb{Q}$ be a normal algebraic extension. Enumerate the irreducible polynomials $p_{0}(X), p_{1}(X), \ldots$ in $\mathbb{Q}[X]$. (So for each i, F contains either all roots of p_{i}, or no roots of p_{i}.) Define

$$
T_{F}^{*}=\left\{i:(\exists a \in F) p_{i}(a)=0\right\} .
$$

Claim: $\operatorname{Spec}(F)=\left\{\boldsymbol{d}: T_{F}^{*}\right.$ is c.e. in $\left.\boldsymbol{d}\right\}$.
\subseteq is clear: any presentation of F allows us to enumerate T_{F}^{*}.
\supseteq : Given a \boldsymbol{d}-oracle, start with $E_{0}=\mathbb{Q}$. Whenever an i enters T_{F}^{*}, check whether E_{s} yet contains any root of $p_{i}(X)$. If so, do nothing; if not, enumerate all roots of p_{i} into E_{s+1}. (Use a computable presentation of $\overline{\mathbb{Q}}$ as a guide.) This builds $E \cong F$ with $E \leq_{T} \boldsymbol{d}$.

Converse

Problem: Not all $T \subseteq \omega$ can be T_{F}^{*}. If $\left(X^{2}-2\right)$ and $\left(X^{2}-3\right)$ both have roots in F, then so does $\left(X^{2}-6\right)$.

Solution: Consider only polynomials $\left(X^{2}-p\right)$ with p prime. Given T, let F be generated over \mathbb{Q} by $\left\{\sqrt{p_{n}}: n \in T\right\}$. Then

$$
\operatorname{Spec}(F)=\{\boldsymbol{d}: T \text { is c.e. in } \boldsymbol{d}\} .
$$

So, for every $T \subseteq \omega$, this spectrum can be realized.

All Algebraic Fields

Defn: Given F, define T_{F} similarly to T_{F}^{*}, but reflecting non-normality:

$$
\begin{gathered}
T_{F}: \underbrace{1}_{X^{3}-7} 000 \\
p_{i}:
\end{gathered} \underbrace{1}_{X^{4}-X^{2}+1} 1 \begin{array}{lll}
1 & 0 & 0 \\
\underbrace{0} \quad 0 & 0
\end{array} \cdots
$$

Problem: Suppose that first $\left(X^{2}-3\right)$ requires a root $\sqrt{3}$ in F, and later $\left(X^{4}-X^{2}+1\right)$ requires a root x in F. But
$X^{4}-X^{2}+1=\left(X^{2}+X \sqrt{3}+1\right)\left(X^{2}-X \sqrt{3}+1\right)$,
and T_{F} does not say which factor should have x as a root.

Solution

We follow work of Ershov on computable fields.
Let $\left\langle q_{j 0}(X), q_{j 1}(X, Y)\right\rangle_{j \in \omega}$ list all pairs in $(\mathbb{Q}[X] \times \mathbb{Q}[X, Y])$ s.t.:

- $\mathbb{Q}[X] /\left(q_{j 0}\right)$ is a field, and
- $q_{j 1}$, viewed as a polynomial in Y, is irreducible in $\left(\mathbb{Q}[X] /\left(q_{j 0}\right)\right)[Y]$.

In the example above, $q_{j 0}$ would be $\left(X^{2}-3\right)$ and $q_{j 1}$ could be either factor of $\left(X^{4}-X^{2}+1\right)$.

Defn: Given F, let U_{F} be the set:

$$
\left\{j:(\exists x, y \in F)\left[q_{j 0}(x)=0=q_{j 1}(x, y)\right]\right\}
$$

and let $V_{F}=T_{F} \oplus U_{F}$. So every presentation of F can enumerate V_{F}.

Construction of $E \cong F$

Fix F, and suppose \boldsymbol{d} enumerates V_{F}. When T_{F} demands that k roots of some $p_{i}(X)$ enter E, we find $j \in U_{F}$ such that $q_{j 0}$ is the minimal polynomial of a primitive generator x of E_{s} over \mathbb{Q} (so that $\left.E_{s} \cong \mathbb{Q}[X] /\left(q_{j 0}\right)\right)$, and $q_{j 1}(Y)$ divides $p_{i}(Y)$ in $\left(\mathbb{Q}[X] /\left(q_{j 0}\right)\right)[Y]$. Extend our E_{s} to E_{s+1} by adjoining a root of $q_{j 1}(Y)$. Since $j \in U_{F}, E_{s+1}$ embeds into F via some f_{s+1}.

Now all f_{s} agree on $\mathbb{Q}\left(\subseteq E_{s}\right)$. The least element $x_{0} \in E=\cup_{s} E_{s}$ has only finitely many possible images in F, so some infinite subsequence of $\left\langle f_{s}\right\rangle_{s \in \omega}$ agrees on $\mathbb{Q}\left[x_{0}\right]$. Likewise, some infinite subsequence of this subsequence agrees on $\mathbb{Q}\left[x_{0}, x_{1}\right]$, etc. This embeds E into F. But T_{F} ensures that E has as many roots of each $p_{i}(X)$ as F does, so the embedding is an isomorphism.

Corollaries

Thm. (Richter): There exists $A \subseteq \omega$ such that there is no least degree \boldsymbol{d} which enumerates A. Cor. (Calvert-Harizanov-Shlapentokh): There exists an algebraic field whose spectrum has no least degree.

Thm. (Coles-Downey-Slaman): For every $T \subseteq \omega$ there is a degree \boldsymbol{b} which enumerates T, such that all \boldsymbol{d} enumerating T satisfy $\boldsymbol{b}^{\prime} \leq \boldsymbol{d}^{\prime}$.
Cor.: Every algebraic field F has a jump degree, i.e. a degree \boldsymbol{c} such that all $\boldsymbol{d} \in \operatorname{Spec}(F)$ have $\boldsymbol{d}^{\prime} \leq \boldsymbol{c}$ and some $\boldsymbol{d} \in \operatorname{Spec}(F)$ has $\boldsymbol{d}^{\prime}=\boldsymbol{c}$. In particular, \boldsymbol{c} is the degree of the enumeration jump of V_{F}.

Cor.: No algebraic field has spectrum $\{\boldsymbol{d}: \mathbf{0}<\boldsymbol{d}\}$. Indeed, $\left(\forall \boldsymbol{d}_{0}\right)\left(\exists \boldsymbol{d}_{1} \not \leq \boldsymbol{d}_{0}\right)$ s.t. every algebraic field F with $\left\{\boldsymbol{d}_{0}, \boldsymbol{d}_{1}\right\} \subseteq \operatorname{Spec}(F)$ is computably presentable.

Rabin's Theorem

Defn.: A homomorphism $g: F \rightarrow K$ of computable fields is a Rabin embedding if g is computable and K is algebraically closed and algebraic over the image $g(F)$.

Idea: K is an effective algebraic closure of F.
Rabin's Theorem:

1. Every computable field F is the domain of some Rabin embedding g into some K.
2. $S_{F}=$ \{reducible polynomials in $\left.F[X]\right\}$ is computable iff that Rabin embedding has image $g(F)$ computable within K.

Normal Subfields of $\overline{\mathbb{Q}}$

Now we consider spectra of subfields F of $\overline{\mathbb{Q}}$, viewed as unary relations.
Lemma: If $K \cong \overline{\mathbb{Q}}$ is computable and $L \subseteq K$, then there is a subfield $E \subseteq \overline{\mathbb{Q}}$ with
$(\overline{\mathbb{Q}}, E) \cong(K, L)$ and $E \equiv_{T} L$.
Proof: $\overline{\mathbb{Q}}$ is computably categorical.
Prop.: If F is a normal algebraic extension of \mathbb{Q}, then $\operatorname{DgSp}_{\overline{\mathbb{Q}}}(F)=\left\{\operatorname{deg}\left(T_{F}^{*}\right)\right\}$.
Proof: A normal field F has only one possible homomorphic image in $\overline{\mathbb{Q}}$.
$\operatorname{DgSp}_{\overline{\mathbb{Q}}}(F)=\left\{\operatorname{deg}\left(T_{F}^{*}\right)\right\}$ also holds if $\mathbb{Q} \subseteq E \subseteq F$ with E finite over \mathbb{Q} and F normal over E.

Arbitrary Subfields of $\overline{\mathbb{Q}}$

Thm. (Frolov-Kalimullin-M.): If there is no finite extension $\mathbb{Q} \subseteq E$ with $E \subseteq F$ normal, then $\operatorname{DgSp}_{\overline{\mathbb{Q}}}(F)$ is the cone of degrees $\geq \operatorname{deg}\left(V_{F}\right)$.

Idea:
$\subseteq:$ If $\tilde{F} \cong F$ with $\tilde{F} \subseteq \overline{\mathbb{Q}}$, then from \tilde{F} we can compute T_{F} and U_{F}.

Notice how this uses the ambient field $\overline{\mathbb{Q}}$. If $p(X) \in T_{F}$, there are only finitely many elements of $\overline{\mathbb{Q}}$ which can be roots of $p(X)$, so finitely many questions for the \tilde{F}-oracle.

Coding into a Subfield

Recall: there is no finite extension $\mathbb{Q} \subseteq E$ such that $E \subseteq F$ is normal.
\supseteq : If $V_{F} \leq_{T} D$, we build a subfield $\tilde{F} \subseteq \overline{\mathbb{Q}}$ coding D, and an isomorphism $g: F \rightarrow \tilde{F}$. Start with $F_{0}=\tilde{F}_{0}=\mathbb{Q}$.

- Search for the first irreducible $p_{i} \in F_{s}[X]$ such that $p_{i}(X)$ has a root in F, but not all its roots. (Use V_{F}-oracle.)
- Let $r \in \overline{\mathbb{Q}}$ be the $<$-least root of $p_{i}^{g} \in \tilde{F}_{s}[X]$. Adjoin to \tilde{F}_{s} the same number of roots as p_{i} has in F. Make $s \in D$ iff $r \in \tilde{F}_{s+1}$.
- F_{s+1} contains all roots in F of some irreducible $p_{0}, \ldots, p_{i} \in F_{s}[X]$. Adjoin to \tilde{F} the needed roots of those p_{j}^{g} to form \tilde{F}_{s+1}.

Infinite Transcendence Degree

If F has finite transcendence basis B over \mathbb{Q}, just replace \mathbb{Q} by $\mathbb{Q}(B)$ to get the same results. (In characteristic $>0, F$ must be separable over $\mathbb{Z} /(p)$.

New spectra do arise when we allow an infinite transcendence basis.
Example: Fix $r_{0}=e$ and $r_{i+1}=e^{r_{i}}$. Given $S \subseteq \omega$, let F_{S} be the closure of $\mathbb{Q}\left(r_{t} \mid t \in S\right)$ under square roots of positive elements. We claim that

$$
\operatorname{Spec}\left(F_{S}\right)=\left\{\boldsymbol{d}: S \text { is } \Sigma_{2}^{0} \text { in } \boldsymbol{d}\right\} .
$$

Cor.: For any $A \subseteq \omega$, there is a field whose spectrum contains precisely those \boldsymbol{d} with $A \leq \boldsymbol{d}^{\prime}$.

$$
\begin{aligned}
\operatorname{Spec}\left(F_{A^{\prime}}\right) & =\left\{\boldsymbol{d}:(\exists D \in \boldsymbol{d}) A^{\prime} \leq_{1} D^{\prime \prime}\right\} \\
& =\left\{\boldsymbol{d}:(\exists D \in \boldsymbol{d}) A \leq_{T} D^{\prime}\right\}
\end{aligned}
$$

So the high degrees form the spectrum of a field.

$\operatorname{Spec}\left(F_{S}\right)=\left\{d: S\right.$ is Σ_{2}^{0} in $\left.d\right\}$.

$\subseteq:$ If $E \cong F_{S}$, then S is the set
$\left\{t \in \omega:(\exists x \in E)(\forall q \in \mathbb{Q})\left[q<r_{t} \leftrightarrow q \prec x\right.\right.$ in $\left.\left.E\right]\right\}$.
The order \prec on E is E-computable, by the closure of E under square roots of positive elements.
\supseteq : If $S \leq_{1}$ Fin D, let $t \in S$ iff $W_{h(t)}^{D}$ is finite. Start building F_{ω} (the field containing all r_{t}). Each time $W_{h(t)}^{D}$ receives an element, make the old r_{t} become rational and add a new r_{t} to replace it.

News Flash

Prop.: If F_{S} is viewed as a subfield of its computable algebraic closure E, then

$$
\operatorname{DgSp}_{E}\left(F_{S}\right)=\left\{\boldsymbol{d}: S \text { is } \Sigma_{2}^{0} \text { in } \boldsymbol{d}\right\} .
$$

So when this F_{S} embeds into its algebraic closure, the image has the same spectrum as the original structure.

This can also happen for algebraic fields, such as

$$
\mathbb{Q}\left[\sqrt{p_{2 n}}: n \in S\right]\left[\sqrt{p_{2 n+1}}: n \notin S\right],
$$

where the relevant set V_{F} is 1-equivalent to $\overline{V_{F}}$.

