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Degree Spectra

Defns: For a countable structure S with domain
ω, the Turing degree of S is the Turing degree of
the atomic diagram of S. The spectrum of S is

Spec(S) = {deg(A) : A ∼= S}

of all Turing degrees of copies of S.

For a relation R on a computable structure M,
the spectrum of R, DgSpM(R), is

{deg(f(R)) : f : M ∼= N & N is computable}.
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Algebraic Fields

Defn: A field F is algebraic if it is an algebraic
(but possibly infinite) extension of its prime
subfield. Equivalently, F is a subfield of either Q
or Z/(p), the algebraic closures of the prime
fields.

Thm. (Frolov-Kalimullin-M.): The spectra of
algebraic fields of characteristic 0 are precisely the
sets of the form

{d : T is c.e. in d}

where T ranges over all subsets of ω.

The same holds for infinite algebraic fields of
characteristic > 0, and also (by work of Coles,
Downey, and Slaman) for torsion-free abelian
groups of rank 1.
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Normal Extensions of Q

A simple case: let F ⊇ Q be a normal algebraic
extension. Enumerate the irreducible polynomials
p0(X), p1(X), . . . in Q[X ]. (So for each i, F

contains either all roots of pi, or no roots of pi.)
Define

T ∗
F = {i : (∃a ∈ F )pi(a) = 0}.

Claim: Spec(F ) = {d : T ∗
F is c.e. in d}.

⊆ is clear: any presentation of F allows us to
enumerate T ∗

F .
⊇: Given a d-oracle, start with E0 = Q.
Whenever an i enters T ∗

F , check whether Es yet
contains any root of pi(X). If so, do nothing; if
not, enumerate all roots of pi into Es+1. (Use a
computable presentation of Q as a guide.) This
builds E ∼= F with E ≤T d.
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Converse

Problem: Not all T ⊆ ω can be T ∗
F . If (X2 − 2)

and (X2 − 3) both have roots in F , then so does
(X2 − 6).

Solution: Consider only polynomials (X2 − p)
with p prime. Given T , let F be generated over Q
by {√pn : n ∈ T}. Then

Spec(F ) = {d : T is c.e. in d}.

So, for every T ⊆ ω, this spectrum can be
realized.
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All Algebraic Fields

Defn: Given F , define TF similarly to T ∗
F , but

reflecting non-normality:

TF :1 0 0︸ ︷︷ ︸ 1 1 0 0︸ ︷︷ ︸ 0 0 0︸ ︷︷ ︸ · · ·

pi : X3 − 7 X4 − X2 + 1 · · ·

Problem: Suppose that first (X2 − 3) requires a
root

√
3 in F , and later (X4 − X2 + 1) requires a

root x in F . But

X4 − X2 + 1 = (X2 + X
√

3 + 1)(X2 − X
√

3 + 1),

and TF does not say which factor should have x

as a root.
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Solution

We follow work of Ershov on computable fields.

Let 〈qj0(X), qj1(X, Y )〉j∈ω list all pairs in
(Q[X ] × Q[X, Y ]) s.t.:

• Q[X ]/(qj0) is a field, and

• qj1, viewed as a polynomial in Y , is
irreducible in (Q[X ]/(qj0))[Y ].

In the example above, qj0 would be (X2 − 3) and
qj1 could be either factor of (X4 − X2 + 1).

Defn: Given F , let UF be the set:

{j : (∃x, y ∈ F )[qj0(x) = 0 = qj1(x, y)]}

and let VF = TF ⊕ UF . So every presentation of
F can enumerate VF .

7



!

"

#

$

Construction of E ∼= F

Fix F , and suppose d enumerates VF . When TF

demands that k roots of some pi(X) enter E, we
find j ∈ UF such that qj0 is the minimal
polynomial of a primitive generator x of Es over
Q (so that Es

∼= Q[X ]/(qj0)), and qj1(Y ) divides
pi(Y ) in (Q[X ]/(qj0))[Y ]. Extend our Es to Es+1

by adjoining a root of qj1(Y ). Since j ∈ UF , Es+1

embeds into F via some fs+1.

Now all fs agree on Q (⊆ Es). The least element
x0 ∈ E = ∪sEs has only finitely many possible
images in F , so some infinite subsequence of
〈fs〉s∈ω agrees on Q[x0]. Likewise, some infinite
subsequence of this subsequence agrees on
Q[x0, x1], etc. This embeds E into F . But TF

ensures that E has as many roots of each pi(X)
as F does, so the embedding is an isomorphism.
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Corollaries

Thm. (Richter): There exists A ⊆ ω such that
there is no least degree d which enumerates A.
Cor. (Calvert-Harizanov-Shlapentokh): There
exists an algebraic field whose spectrum has no
least degree.

Thm. (Coles-Downey-Slaman): For every T ⊆ ω

there is a degree b which enumerates T , such that
all d enumerating T satisfy b′ ≤ d′.
Cor.: Every algebraic field F has a jump degree,
i.e. a degree c such that all d ∈ Spec(F ) have
d′ ≤ c and some d ∈ Spec(F ) has d′ = c. In
particular, c is the degree of the enumeration
jump of VF .

Cor.: No algebraic field has spectrum
{d : 0 < d}. Indeed, (∀d0)(∃d1 /≤ d0) s.t. every
algebraic field F with {d0, d1} ⊆ Spec(F ) is
computably presentable.
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Rabin’s Theorem

Defn.: A homomorphism g : F → K of
computable fields is a Rabin embedding if g is
computable and K is algebraically closed and
algebraic over the image g(F ).

Idea: K is an effective algebraic closure of F .

Rabin’s Theorem:
1. Every computable field F is the domain of
some Rabin embedding g into some K.
2. SF = {reducible polynomials in F [X ]} is
computable iff that Rabin embedding has image
g(F ) computable within K.
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Normal Subfields of Q

Now we consider spectra of subfields F of Q,
viewed as unary relations.
Lemma: If K ∼= Q is computable and L ⊆ K,
then there is a subfield E ⊆ Q with
(Q, E) ∼= (K, L) and E ≡T L.
Proof : Q is computably categorical.

Prop.: If F is a normal algebraic extension of Q,
then DgSpQ(F ) = {deg(T ∗

F )}.
Proof : A normal field F has only one possible
homomorphic image in Q.

DgSpQ(F ) = {deg(T ∗
F )} also holds if Q ⊆ E ⊆ F

with E finite over Q and F normal over E.
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Arbitrary Subfields of Q

Thm. (Frolov-Kalimullin-M.): If there is no finite
extension Q ⊆ E with E ⊆ F normal, then
DgSpQ(F ) is the cone of degrees ≥ deg(VF ).

Idea:
⊆: If F̃ ∼= F with F̃ ⊆ Q, then from F̃ we can
compute TF and UF .

Notice how this uses the ambient field Q. If
p(X) ∈ TF , there are only finitely many elements
of Q which can be roots of p(X), so finitely many
questions for the F̃ -oracle.
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Coding into a Subfield

Recall: there is no finite extension Q ⊆ E such
that E ⊆ F is normal.
⊇: If VF ≤T D, we build a subfield F̃ ⊆ Q coding
D, and an isomorphism g : F → F̃ . Start with
F0 = F̃0 = Q.

• Search for the first irreducible pi ∈ Fs[X ]
such that pi(X) has a root in F , but not all
its roots. (Use VF -oracle.)

• Let r ∈ Q be the <-least root of pg
i ∈ F̃s[X ].

Adjoin to F̃s the same number of roots as pi

has in F . Make s ∈ D iff r ∈ F̃s+1.

• Fs+1 contains all roots in F of some
irreducible p0, . . . , pi ∈ Fs[X ]. Adjoin to F̃

the needed roots of those pg
j to form F̃s+1.
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Infinite Transcendence Degree

If F has finite transcendence basis B over Q, just
replace Q by Q(B) to get the same results. (In
characteristic > 0, F must be separable over
Z/(p).)

New spectra do arise when we allow an infinite
transcendence basis.
Example: Fix r0 = e and ri+1 = eri . Given
S ⊆ ω, let FS be the closure of Q(rt | t ∈ S) under
square roots of positive elements. We claim that

Spec(FS) = {d : S is Σ0
2 in d}.

Cor.: For any A ⊆ ω, there is a field whose
spectrum contains precisely those d with A ≤ d′.

Spec(FA′) = {d : (∃D ∈ d)A′ ≤1 D′′}

= {d : (∃D ∈ d)A ≤T D′}

So the high degrees form the spectrum of a field.
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Spec(FS) = {d : S is Σ0
2 in d}.

⊆: If E ∼= FS , then S is the set

{t ∈ ω : (∃x ∈ E)(∀q ∈ Q)[q < rt ↔ q ≺ x in E]}.

The order ≺ on E is E-computable, by the closure
of E under square roots of positive elements.

⊇: If S ≤1 FinD, let t ∈ S iff W D
h(t) is finite. Start

building Fω (the field containing all rt). Each
time W D

h(t) receives an element, make the old rt

become rational and add a new rt to replace it.
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News Flash

Prop.: If FS is viewed as a subfield of its
computable algebraic closure E, then

DgSpE(FS) = {d : S is Σ0
2 in d}.

So when this FS embeds into its algebraic closure,
the image has the same spectrum as the original
structure.

This can also happen for algebraic fields, such as

Q[
√

p2n : n ∈ S][
√

p2n+1 : n /∈ S],

where the relevant set VF is 1-equivalent to VF .
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