Adapting Rabin's Theorem for Differential Fields

Russell Miller \& Alexey Ovchinnikov

Queens College \& CUNY Graduate Center
New York, NY

Computability in Europe

Sofia University

28 June 2011

Computable Fields: the Basics

- A computable field F is a field with domain ω, for which the addition and multiplication functions are Turing-computable.
- An element $x \in F$ is algebraic if it satisfies some polynomial over the prime subfield \mathbb{Q} or \mathbb{F}_{p}; otherwise x is transcendental. F itself is algebraic if all of its elements are algebraic.
- Let $E \models \mathbf{A C F}_{0}$ be the algebraic closure of F. The type over F of an $x \in E$ is determined by its minimal polynomial $p(X)$ over F. The formula " $p(X)=0$ " generates a principal type over F iff $p(X)$ is irreducible in $F[X]$. Conversely, every principal 1-type in $\mathbf{A C F}_{0}$ over F is generated by such a formula.
- $S_{F}=\left\{p \in F[X]:\left(\exists\right.\right.$ nonconstant $\left.\left.p_{0}, p_{1} \in F[X]\right) p=p_{0} \cdot p_{1}\right\}$ is the splitting set of F. Kronecker showed that $S_{\mathbb{Q}}$ is computable, as is S_{F} for all finitely generated field extensions F of \mathbb{Q}.

Rabin's Theorem, for Fields

Definition

Let F be a computable field. A Rabin embedding of F is a computable field embedding $g: F \hookrightarrow E$ such that E is computable, is algebraically closed, and is algebraic over the image $g(F)$.

Rabin's Theorem, for Fields

Definition

Let F be a computable field. A Rabin embedding of F is a computable field embedding $g: F \hookrightarrow E$ such that E is computable, is algebraically closed, and is algebraic over the image $g(F)$.

Rabin's Theorem (Trans. AMS, 1960)

I. Every computable field F has a Rabin embedding.
II. If $g: F \hookrightarrow E$ is a Rabin embedding, then the following c.e. sets are all Turing-equivalent:
(1) The Rabin image $g(F)$, within the domain ω of E.
(2) The splitting set S_{F} of F.
(3) The root set R_{F} of F :

$$
R_{F}=\{p \in F[X]:(\exists a \in F) p(a)=0\} .
$$

Differential Fields

Definition

A differential field K is a field with one or more additional unary operations δ satisfying:

$$
\delta(x+y)=\delta x+\delta y \quad \text { and } \quad \delta(x y)=x \delta y+y \delta x .
$$

K is computable if both δ and the underlying field are.

Examples

- The field $\mathbb{Q}(X)$ of rational functions in one variable over \mathbb{Q}, with $\delta(y)=\frac{d}{d X}(y)$.
- The field $\mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$, with n commuting derivations $\delta_{i}(y)=\frac{\partial y}{\partial X_{i}}$.
- Any field, with the trivial derivation $\delta \boldsymbol{y}=0$.

Every K has a differential subfield $C_{K}=\{y \in K: \delta y=0\}$, the constant field of K.

Adapting the Notions of Fields

Most field-theoretic concepts have analogues over differential fields.

- $K\{Y\}=K\left[Y, \delta Y, \delta^{2} Y, \delta^{3} Y, \ldots\right]$ is the differential ring of all differential polynomials over K.
Examples of polynomial differential equations:

$$
\delta Y=Y, \quad\left(\delta^{4} Y\right)^{7}-2 Y^{3}=0, \quad\left(\delta^{4} Y\right)^{3}(\delta Y)^{2} Y^{8}=6
$$

These are ranked according to their order and degree.

- The theory DCF $_{0}$ of differentially closed fields was axiomatized by Blum, using:

$$
\forall p, q \in K\{Y\}[\operatorname{ord}(p)>\operatorname{ord}(q) \Longrightarrow \exists x(p(x)=0 \neq q(x))]
$$

The differential closure \hat{K} of K is the prime model of $\mathbf{D C F}_{0}^{K}=\mathbf{D C F}_{0} \cup \operatorname{AtDiag}(K)$.

Rabin's Theorem, for Differential Fields

Definition

Let K be a computable differential field. A (differential) Rabin embedding of K is a computable embedding $g: K \hookrightarrow L$ of differential fields, such that L is a differential closure of the image $g(K)$.

Rabin's Theorem, for Differential Fields

Definition

Let K be a computable differential field. A (differential) Rabin embedding of K is a computable embedding $g: K \hookrightarrow L$ of differential fields, such that L is a differential closure of the image $g(K)$.

Theorem (Harrington, JSL 1974)

I. Every computable differential field K has a differential Rabin embedding.

Rabin's Theorem, for Differential Fields

Definition

Let K be a computable differential field. A (differential) Rabin embedding of K is a computable embedding $g: K \hookrightarrow L$ of differential fields, such that L is a differential closure of the image $g(K)$.

Theorem (Harrington, JSL 1974)

I. Every computable differential field K has a differential Rabin embedding.
II. ?????

So Harrington proved the first half of Rabin's Theorem for differential fields. However, his proof does not give any insight into what the generators of principal types may be, or what set should be analogous to the splitting set S_{F} of a field F.

Differential Closures are Different!

If $\operatorname{ord}(p)>0$, then the equation $p(Y)=0$ will have infinitely many solutions in the differential closure \hat{K}. (If $p\left(x_{1}\right)=\cdots=p\left(x_{n}\right)=0$, then by Blum, $p(Y)=0 \neq\left(Y-x_{1}\right) \cdots\left(Y-x_{n}\right)$ has a solution.
Therefore, \hat{K} is not minimal: it is isomorphic to some proper subfield of itself.

Differential Closures are Different!

If $\operatorname{ord}(p)>0$, then the equation $p(Y)=0$ will have infinitely many solutions in the differential closure \hat{K}. (If $p\left(x_{1}\right)=\cdots=p\left(x_{n}\right)=0$, then by Blum, $p(Y)=0 \neq\left(Y-x_{1}\right) \cdots\left(Y-x_{n}\right)$ has a solution.
Therefore, \hat{K} is not minimal: it is isomorphic to some proper subfield of itself.
\hat{K} also fails to realize certain 1-types, e.g. the type of an X transcendental over K, but with $\delta X=0$.

Differential Closures are Different!

If $\operatorname{ord}(p)>0$, then the equation $p(Y)=0$ will have infinitely many solutions in the differential closure \hat{K}. (If $p\left(x_{1}\right)=\cdots=p\left(x_{n}\right)=0$, then by Blum, $p(Y)=0 \neq\left(Y-x_{1}\right) \cdots\left(Y-x_{n}\right)$ has a solution.
Therefore, \hat{K} is not minimal: it is isomorphic to some proper subfield of itself.
\hat{K} also fails to realize certain 1 -types, e.g. the type of an X transcendental over K, but with $\delta X=0$.

With $K=\mathbb{Q}(X)$, the equation $\delta Y=Y$ certainly has solutions in \hat{K}, but the solution $Y=0$ is different from all the other solutions. All solutions are of the form $c y_{0}$, where $c \in K$ with $\delta \boldsymbol{c}=0$ and $y_{0} \neq 0$ is a single fixed solution, and for $c_{1} \neq 0 \neq c_{2}$, the solutions $c_{1} y_{0}$ and $c_{2} y_{0}$ are interchangeable. So the formula " $\delta Y=Y$ " does not generate a principal type - but the formula " $\delta Y-Y=0 \& Y \neq 0$ " does!

Constraints

Definition (from model theory)

For a differential field K, a pair (p, q) from $K\{Y\}$ is a constraint if p is monic and algebraically irreducible and $\operatorname{ord}(p)>\operatorname{ord}(q)$ and

$$
\forall x, y \in \hat{K}\left[(p(x)=0 \neq q(x) \& p(y)=0 \neq q(y)) \Longrightarrow x \cong_{K} y\right] .
$$

Facts:

- Every principal type over DCF $_{0}^{K}$ is generated by some constraint. (So every $x \in \hat{K}$ satisfies some constraint.)
- (p, q) is a constraint iff, for all $x, y \in \hat{K}$ satisfying $(p, q), x$ and y are zeroes of exactly the same polynomials in $K\{Y\}$. Thus, being a constraint is Π_{1}^{0}.

Constraints

Definition (from model theory)

For a differential field K, a pair (p, q) from $K\{Y\}$ is a constraint if p is monic and algebraically irreducible and $\operatorname{ord}(p)>\operatorname{ord}(q)$ and

$$
\forall x, y \in \hat{K}\left[(p(x)=0 \neq q(x) \& p(y)=0 \neq q(y)) \Longrightarrow x \cong_{K} y\right] .
$$

Facts:

- Every principal type over $\mathbf{D C F}_{0}^{K}$ is generated by some constraint. (So every $x \in \hat{K}$ satisfies some constraint.)
- (p, q) is a constraint iff, for all $x, y \in \hat{K}$ satisfying $(p, q), x$ and y are zeroes of exactly the same polynomials in $K\{Y\}$. Thus, being a constraint is Π_{1}^{0}.

Definition

T_{K} is the set of pairs (p, q) from $K\{Y\}$ which are not constraints over K. (So T_{K} is Σ_{1}^{0}, just like S_{F}.) $\overline{T_{K}}$ is called the constraint set.

Does Rabin's Theorem Carry Over?

Let $g: L \hookrightarrow \hat{K}$ be a Rabin embedding, so $K=g(L)$ is c.e. Assume K is nonconstant. Then the following are computable from an oracle for $T_{K}\left(\equiv{ }_{T} T_{L}\right)$:

- K itself, as a subset of \hat{K}.
- Algebraic independence over K : the set D_{K} is decidable:

$$
D_{K}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \hat{K}^{<\omega}: \exists h \in K\left[X_{1}, \ldots, X_{n}\right] h\left(x_{1}, \ldots, x_{n}\right)=0\right\} .
$$

- The minimal differential polynomial over K of arbitrary $y \in \hat{K}$. This is the unique monic $p \in K\{Y\}$ of least order r and of least degree in $\delta^{r} Y$ such that $p(y)=0$. It is the only $p \in K\{Y\}$ for which $\exists q \in K\{Y\}\left[y\right.$ satisfies $\left.(p, q) \&(p, q) \notin T_{K}\right]$.
So half of Rabin's Theorem holds: $g(L) \leq T_{L}$.

Failure of Rabin's Theorem

Theorem

There exists a computable differential field L with Rabin embedding $g: L \hookrightarrow \hat{L}$ such that $T_{L} \not Z_{T} g(L)$

We set $L_{0}=\mathbb{Q}\left(t_{0}, t_{1}, \ldots\right)$ with $\left\{t_{i}\right\}_{i \in \omega}$ differentially independent over \mathbb{Q}. Let g be a Rabin embedding of L_{0} into \hat{L}, and enumerate $K \supseteq K_{0}=g\left(L_{0}\right)$ inside \hat{L} as follows.
(1) Set $p_{n}(Y)=\delta Y-t_{n}\left(Y^{3}-Y^{2}\right)$ (as invented by Rosenlicht).
(2) If n enters \emptyset^{\prime} at stage s, find an $x_{n} \in \hat{L}$ with $p_{n}\left(x_{n}\right)=0$, such that

$$
K_{s}\left\langle x_{n}\right\rangle \cap\{0,1, \ldots, s\} \subseteq K_{s} . \text { Set } K_{s+1}=K_{s}\left\langle x_{n}\right\rangle
$$

So $n \in \emptyset^{\prime}$ iff $\left(p_{n}, 1\right) \in T_{K}$. But each $x \in \hat{L}$ lies in K iff $x \in K_{x}$, so K is computable. (Moreover, \hat{L} really is a differential closure of K, so the identity map on K is a Rabin embedding into $\hat{K}=\hat{L}$.)

Constrainability

The Rosenlicht polynomials $p_{n}(Y)$ have another purpose. Let $K_{0}=g(L) \subseteq K \subseteq \hat{L}$, still with $L=\mathbb{Q}\left(t_{0}, t_{1}, \ldots\right)$.

- If $p_{n}(Y)$ has no zeros in K, then $(p, 1) \in \overline{T_{K}}$.
- If $p_{n}(Y)$ has just one zero x_{0} in K, then $\left(p, Y-x_{0}\right) \in \overline{T_{K}}$.
- If $p_{n}(Y)$ has just two zeros x_{0}, x_{1}, then $\left(p,\left(Y-x_{0}\right)\left(Y-x_{1}\right)\right) \in \overline{T_{K}}$.
- If p_{n} has infinitely many zeros in K, then p is unconstrainable: there is no $q \in K\{Y\}$ with $(p, q) \in \overline{T_{K}}$.

Constrainability

The Rosenlicht polynomials $p_{n}(Y)$ have another purpose. Let $K_{0}=g(L) \subseteq K \subseteq \hat{L}$, still with $L=\mathbb{Q}\left(t_{0}, t_{1}, \ldots\right)$.

- If $p_{n}(Y)$ has no zeros in K, then $(p, 1) \in \overline{T_{K}}$.
- If $p_{n}(Y)$ has just one zero x_{0} in K, then $\left(p, Y-x_{0}\right) \in \overline{T_{K}}$.
- If $p_{n}(Y)$ has just two zeros x_{0}, x_{1}, then $\left(p,\left(Y-x_{0}\right)\left(Y-x_{1}\right)\right) \in \overline{T_{K}}$.
- If p_{n} has infinitely many zeros in K, then p is unconstrainable: there is no $q \in K\{Y\}$ with $(p, q) \in \overline{T_{K}}$.
In this last case, what if K contains only half of the (infinitely many) zeros of p_{n} in \hat{K} ? The remaining half no longer satisfy any constraint over K. So, although they lie in \hat{L}, they fail to lie in \hat{K}. That is:

$$
g(L) \subsetneq K \subsetneq \hat{K} \subsetneq \hat{L} .
$$

Constrainability is Σ_{2}^{0}

Recall: $p \in K\{Y\}$ is constrainable over K iff:

$$
(\exists q \in K\{Y\})(p, q) \in \overline{T_{K}} .
$$

Since $\overline{T_{K}}$ is Π_{1}^{0}, constrainability is Σ_{2}^{0}. The same follows from the equivalent condition: p is constrainable iff p is the minimal differential polynomial over K of some $x \in \hat{K}$.

$$
(\exists x \in \hat{K})\left[p(x)=0 \&\left\{x, \delta x, \delta^{2} x, \ldots, \delta^{\operatorname{ord}(p)-1} x\right\}\right. \text { is alg. indep./K]. }
$$

Using Rosenlicht's polynomials, one readily proves:

Theorem

There exists a computable differential field K such that the set of constrainable polynomials in $K\{Y\}$ is Σ_{2}^{0}-complete.

A Stronger Result

Theorem

There exists a computable differential field K such that the constraint set T_{K} is Π_{1}^{0}-complete and the algebraic dependence set

$$
D_{K}=\left\{\vec{x} \in K^{<\omega}:(\exists p \in K[\vec{X}]) p(\vec{x})=0\right\}
$$

has high degree $<\mathbf{0}^{\prime}=\operatorname{deg}\left(T_{K}\right)$.
Proof: We use the same strategy as above to make the set of constrainable polynomials Σ_{2}^{0}-complete. Since D_{K} can enumerate this set, D_{K} is high. Simultaneously, we code \emptyset^{\prime} into T_{K} as before. When we want to enumerate a pair $\left(p_{n}, q\right)$ into T_{K}, we choose from among infinitely many zeros of $p(Y)$ in \hat{K}. This can therefore be mixed with a Sacks preservation strategy, to ensure that D_{K} cannot compute T_{K}.

Kronecker's Theorem for Fields

Theorem (Kronecker, 1882)

I. The field \mathbb{Q} has a splitting algorithm (i.e. $S_{\mathbb{Q}}$ is computable).
II. If F has a splitting algorithm and x is algebraic over F, then $F(x)$ has a splitting algorithm, uniformly in the minimal polynomial of x over F. III. If F has a splitting algorithm and x is transcendental over F, then $F(x)$ has a splitting algorithm.

Parts I and II are crucial for building isomorphisms between algebraic fields. If F has domain $\left\{x_{0}, x_{1}, \ldots\right\}$, then we find the minimal polynomial of x_{0} over \mathbb{Q} (using I), then the minimal polynomial of x_{1} over $\mathbb{Q}\left(x_{0}\right)$ (using II), and so on.

Kronecker's Theorem for Fields

Theorem (Kronecker, 1882)

I. The field \mathbb{Q} has a splitting algorithm (i.e. $S_{\mathbb{Q}}$ is computable).
II. If F has a splitting algorithm and x is algebraic over F, then $F(x)$ has a splitting algorithm, uniformly in the minimal polynomial of x over F. III. If F has a splitting algorithm and x is transcendental over F, then $F(x)$ has a splitting algorithm.

Parts I and II are crucial for building isomorphisms between algebraic fields. If F has domain $\left\{x_{0}, x_{1}, \ldots\right\}$, then we find the minimal polynomial of x_{0} over \mathbb{Q} (using I), then the minimal polynomial of x_{1} over $\mathbb{Q}\left(x_{0}\right)$ (using II), and so on.

For differential fields, we can now prove the analogue of II. Parts I and III remain open for differential fields. (In I, \mathbb{Q} should be replaced by some simple differential field, such as $\mathbb{Q}(t)$ under $\frac{d}{d t}$.)

Kronecker II: $T_{K\langle z\rangle} \leq_{T} T_{K}$

Theorem

For any computable differential field K with nonzero derivation, and any $z \in \hat{K}$, we have $T_{K\langle z\rangle} \leq_{T} T_{K}$, uniformly in z.
\hat{K} is also a differential closure of $K\langle z\rangle$, and the identity map on $K\langle z\rangle$ is a Rabin embedding.
$T_{K\langle z\rangle}$ is c.e., so we will show that its complement is c.e. in T_{K}. Find some $\left(p_{z}, q_{z}\right) \in \overline{T_{K}}$ satisfied by z, say of order r_{z}. Then $K\langle z\rangle=K\left(z,, \delta z, \ldots, \delta^{r_{z}-1} z, \delta^{r} z\right)$, and a tuple $\vec{x} \in \hat{K}<\omega$ is algebraically independent over $K\langle z\rangle$ iff $\left\{\vec{x}, z, \delta z, \ldots, \delta^{r_{z}-1} z\right\}$ is algebraically independent over K, which is decidable in T_{K}.

Kronecker II: $T_{K\langle z\rangle} \leq_{T} T_{K}$

Theorem

For any computable differential field K with nonzero derivation, and any $z \in \hat{K}$, we have $T_{K\langle z\rangle} \leq_{T} T_{K}$, uniformly in z.
\hat{K} is also a differential closure of $K\langle z\rangle$, and the identity map on $K\langle z\rangle$ is a Rabin embedding.
$T_{K\langle z\rangle}$ is c.e., so we will show that its complement is c.e. in T_{K}. Find some $\left(p_{z}, q_{z}\right) \in \overline{T_{K}}$ satisfied by z, say of order r_{z}. Then $K\langle z\rangle=K\left(z,, \delta z, \ldots, \delta^{r_{z}-1} z, \delta^{r} z\right)$, and a tuple $\vec{x} \in \hat{K}<\omega$ is algebraically independent over $K\langle z\rangle$ iff $\left\{\vec{x}, z, \delta z, \ldots, \delta^{r_{z}-1} z\right\}$ is algebraically independent over K, which is decidable in T_{K}.

For the proof, we are given (p, q) from $K\langle z\rangle\{Y\}$. The following T_{K}-computable process halts iff $(p, q) \notin T_{K\langle z\rangle}$.

$(p, q) \notin T_{K\langle z\rangle}$ is $\Sigma_{1}^{T_{K}}$

(1) Search for $x \in \hat{K}$ with $\left\{x, \delta x, \ldots, \delta^{\operatorname{ord}(p)-1} x\right\} \notin D_{K\langle z\rangle}$, such that x satisfies (p, q). Then find $\left(p_{X}, q_{x}\right) \in \overline{T_{K}}$ satisfied by x.

$(p, q) \notin T_{K\langle z\rangle}$ is $\Sigma_{1}^{T_{K}}$

(1) Search for $x \in \hat{K}$ with $\left\{x, \delta x, \ldots, \delta^{\operatorname{ord}(p)-1} x\right\} \notin D_{K\langle z\rangle}$, such that x satisfies (p, q). Then find $\left(p_{x}, q_{x}\right) \in \overline{T_{K}}$ satisfied by x.
(2) Find some $u \in \hat{K}$ such that $K\langle x, z\rangle=K\langle u\rangle$, and find $\left(p_{u}, q_{u}\right) \in \overline{T_{K}}$ satisfied by u. Say $u=f(x, z), x=g(u), z=h(u)$.

$(p, q) \notin T_{K\langle z\rangle}$ is $\Sigma_{1}^{T_{K}}$

(1) Search for $x \in \hat{K}$ with $\left\{x, \delta x, \ldots, \delta^{\operatorname{ord}(p)-1} x\right\} \notin D_{K\langle z\rangle}$, such that x satisfies (p, q). Then find $\left(p_{x}, q_{x}\right) \in T_{K}$ satisfied by x.
(2) Find some $u \in \hat{K}$ such that $K\langle x, z\rangle=K\langle u\rangle$, and find $\left(p_{u}, q_{u}\right) \in \overline{T_{K}}$ satisfied by u. Say $u=f(x, z), x=g(u), z=h(u)$.
(3) Let $\tilde{q}(X)$ be the product of the separant and the initial of $p(X)$, the numerator of $q_{u}(f(X, z))$, and the denominators of $f(X, z)$, $g(f(X, z))$, and $h(f(X, z))$. So $\tilde{q}(x) \neq 0$.
Fact: If $\tilde{x} \in \hat{K}$ satisfies (p, \tilde{q}), then $x \cong_{K\langle z\rangle} \tilde{x}$.
$(p, q) \notin T_{K\langle z\rangle}$ is $\Sigma_{1}^{T_{K}}$
(1) Search for $x \in \hat{K}$ with $\left\{x, \delta x, \ldots, \delta^{\circ r d(p)-1} x\right\} \notin D_{K\langle z\rangle}$, such that x satisfies (p, q). Then find $\left(p_{x}, q_{x}\right) \in \overline{T_{K}}$ satisfied by x.
(2) Find some $u \in \hat{K}$ such that $K\langle x, z\rangle=K\langle u\rangle$, and find $\left(p_{u}, q_{u}\right) \in \overline{T_{K}}$ satisfied by u. Say $u=f(x, z), x=g(u), z=h(u)$.
(3) Let $\tilde{q}(X)$ be the product of the separant and the initial of $p(X)$, the numerator of $q_{u}(f(X, z))$, and the denominators of $f(X, z)$, $g(f(X, z))$, and $h(f(X, z))$. So $\tilde{q}(x) \neq 0$.
Fact: If $\tilde{x} \in \hat{K}$ satisfies (p, \tilde{q}), then $x \cong_{K\langle z\rangle} \tilde{x}$.
(1) By the Differential Nullstellensatz, we can decide whether $V(p, \tilde{q}) \subseteq V(p, q)$. If so, then every \tilde{x} satisfying (p, q) satisfies (p, \tilde{q}), and so $(p, q) \notin T_{K\langle z\rangle}$. If not, then some y satisfies (p, q) but has $\tilde{q}(y)=0 \neq \tilde{q}(x)$, so $y \not \not_{K\langle z\rangle} x$, and thus $(p, q) \in T_{K\langle z\rangle}$.

(p, \tilde{q}) Has the Constraint Property

Suppose $p(\tilde{x})=0 \neq \tilde{q}(\tilde{x})$, and set $\tilde{u}=f(\tilde{x}, z)$. Then $q_{u}(\tilde{u}) \neq 0$. However, every $j \in K\langle z\rangle\{X\}$ with $j(x)=0$ has $j(\tilde{x})=0$, and we know $p_{u}(f(x, z))=0$. So ũ satisfies $\left(p_{u}, q_{u}\right)$, and $u \cong \cong_{K} \tilde{u}$, say via σ.

(p, \tilde{q}) Has the Constraint Property

Suppose $p(\tilde{x})=0 \neq \tilde{q}(\tilde{x})$, and set $\tilde{u}=f(\tilde{x}, z)$. Then $q_{u}(\tilde{u}) \neq 0$.
However, every $j \in K\langle z\rangle\{X\}$ with $j(x)=0$ has $j(\tilde{x})=0$, and we know $p_{u}(f(x, z))=0$. So uu satisfies $\left(p_{u}, q_{u}\right)$, and $u \cong{ }_{K} \tilde{u}$, say via σ.

Now $0=h(u)-z=h(f(x, z))-z=h(f(\tilde{x}, z))-z=h(\tilde{u})-z$, so $\sigma(z)=\sigma(h(u))=h(\sigma(u))=h(\tilde{u})=z$.

(p, \tilde{q}) Has the Constraint Property

Suppose $p(\tilde{x})=0 \neq \tilde{q}(\tilde{x})$, and set $\tilde{u}=f(\tilde{x}, z)$. Then $q_{u}(\tilde{u}) \neq 0$. However, every $j \in K\langle z\rangle\{X\}$ with $j(x)=0$ has $j(\tilde{x})=0$, and we know $p_{u}(f(x, z))=0$. So \tilde{u} satisfies $\left(p_{u}, q_{u}\right)$, and $u \cong_{K} \tilde{u}$, say via σ.

Now $0=h(u)-z=h(f(x, z))-z=h(f(\tilde{x}, z))-z=h(\tilde{u})-z$, so $\sigma(z)=\sigma(h(u))=h(\sigma(u))=h(\tilde{u})=z$.

And $0=g(u)-x=g(f(x, z))-x=g(f(\tilde{x}, z))-\tilde{x}=g(\tilde{u})-\tilde{x}$, so $\sigma(x)=\sigma(g(u))=g(\sigma(u))=g(\tilde{u})=\tilde{x}$.

(p, \tilde{q}) Has the Constraint Property

Suppose $p(\tilde{x})=0 \neq \tilde{q}(\tilde{x})$, and set $\tilde{u}=f(\tilde{x}, z)$. Then $q_{u}(\tilde{u}) \neq 0$.
However, every $j \in K\langle z\rangle\{X\}$ with $j(x)=0$ has $j(\tilde{x})=0$, and we know $p_{u}(f(x, z))=0$. So \tilde{u} satisfies $\left(p_{u}, q_{u}\right)$, and $u \cong_{K} \tilde{u}$, say via σ.

Now $0=h(u)-z=h(f(x, z))-z=h(f(\tilde{x}, z))-z=h(\tilde{u})-z$, so $\sigma(z)=\sigma(h(u))=h(\sigma(u))=h(\tilde{u})=z$.

And $0=g(u)-x=g(f(x, z))-x=g(f(\tilde{x}, z))-\tilde{x}=g(\tilde{u})-\tilde{x}$, so $\sigma(x)=\sigma(g(u))=g(\sigma(u))=g(\tilde{u})=\tilde{x}$.

So this σ maps $K\langle z, x\rangle$ isomorphically onto $K\langle z, \tilde{x}\rangle$, fixing $K\langle z\rangle$ and sending x to \tilde{x}.

Questions

- What about Kronecker I and III? If z is differentially transcendental over K, must $T_{K\langle z\rangle} \leq_{T} T_{K}$? And more importantly: is there a decision procedure for $T_{\mathbb{Q}}$, or for $T_{\mathbb{Q}(a)}$ with $\delta a=1$?
- Rabin's Theorem for fields showed that $S_{F} \equiv{ }_{T} g(F)$. We know that $T_{K} \equiv g(K)$ fails in general for differential fields. What join of sets or properties of differential fields could be used to replace $g(K)$ and make the statement true? Likewise, what join of sets or properties is $\equiv_{T} g(K)$?
- Give a more intuitive description of the differential closures of $\mathbb{Q}(a)$, of $\mathbb{Q}(t)$, and of $\mathbb{Q}\left(t_{0}, t_{1}, \ldots\right)$.

