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HTP: Hilbert’s Tenth Problem

Definition
For a ring R, Hilbert’s Tenth Problem for R is the set

HTP(R) = {p ∈ R[X0,X1, . . .] : (∃~a ∈ R<ω) p(a0, . . . ,an) = 0}

of all polynomials (in several variables) with solutions in R.

So HTP(R) is c.e. relative to (the atomic diagram of) R.

Hilbert’s original formulation in 1900 demanded a decision procedure
for HTP(Z).

Thm. (Matiyasevich 1970, using Davis-Putnam-Robinson, 1961)

HTP(Z) is undecidable by Turing machines: indeed, HTP(Z) ≡1 ∅′.

The most obvious open question is the Turing degree of HTP(Q).
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Subrings RW of Q

A subring R of Q is characterized by the set of primes p such that
1
p ∈ R. For each W ⊆ ω, set

RW =
{m

n
∈ Q : all prime factors pk of n have k ∈W

}
be the subring generated by inverting the k -th prime pk for all k ∈W .

We often move effectively between W (a subset of ω) and
P = {pn : n ∈W}, the set of primes which W describes.

Notice that RW is computably presentable precisely when W is c.e.,
while RW is a computable subring of Q iff W is computable.

We will treat {f ∈ Z[~X ] : (∃~x ∈ R <ω
W ) f (~x) = 0} as HTP(RW ).
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Basic facts about HTP(RW )

HTP(RW ) ≤1 W ′.

W ≤1 HTP(RW ).
(Reason: k ∈W ⇐⇒ (pkX − 1) ∈ HTP(RW ).)

HTP(Q) ≤1 HTP(RW ). Reason:

p(X1, . . . ,Xj) ∈ HTP(Q)

=⇒
((

Y d · p
(X1

Y
, . . . ,

Xj

Y

))2
+ (pY > 0q)2

)
∈ HTP(Z)

=⇒
((

Y d · p
(X1

Y
, . . . ,

Xj

Y

))2
+ (pY > 0q)2

)
∈ HTP(RW )

=⇒ p(X1, . . . ,Xj) ∈ HTP(Q).

Russell Miller (CUNY) HTP Inside Q CiE 2016 4 / 13



Subrings with HTP(RW ) ≡T HTP(Q)

A commutative ring is local if it has a unique maximal ideal, and
semilocal if it has only finitely many maximal ideals. The semilocal
subrings RW are exactly those with W cofinite. If W = {n0, . . . ,nj},
we write Z(pn0 ,...,pnj )

for RW .

Fact (Shlapentokh, following J. Robinson)
Every semilocal subring RW has HTP(RW ) ≡1 HTP(Q). Both
reductions are uniform in (a strong index for) the finite set W .

Theorem (Eisenträger-M.-Park-Shlapentokh)
There exist coinfinite c.e. W with HTP(RW ) ≡T HTP(Q).

The proof is a priority construction: we add to RW a solution to the
polynomial fn if we can do so without putting any of the first n elements
of W into W . The above Fact then yields HTP(RW ) ≤T HTP(Q).
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HTP-generic subrings

The subrings built for the EMPS theorem have the following property:

Definition

A subring RW ⊆ Q is HTP-generic if, for every f ∈ Z[~X ], either
f ∈ HTP(RW ) or there exists some finite F0 ⊆W for which
f /∈ HTP(RF0

).

This says that the decision about whether f ∈ HTP(RW ) always stems
from a finitary fact about W . Either W contains finitely many primes
which yield a solution to f ; or else W omits a finite set F0 of primes and
thereby rules out all solutions to f .

Proposition
If RW is HTP-generic, then HTP(RW ) ≡T W ⊕ HTP(Q).
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Topology of the Cantor space of all subrings of Q
Recall: subrings RW correspond to elements W of Cantor space 2ω.
For every f , the set

A(f ) = {W ⊆ ω : f ∈ HTP(RW )}

is open in 2ω. So likewise is the set

C(f ) = {W ⊆ ω : (∃ finite F0 ⊆W ) f /∈ HTP(RF0
)}.

Definition
The boundary set B(f ) of f is the complement of A(f ) ∪ C(f ) in 2ω.

Indeed B(f ) = 2ω − (Int(A(f )) ∪ Int( A(f ) )), so this is the topological
boundary of A(f ).

If W is HTP-generic, then for all f , we have W /∈ B(f ).
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A polynomial with B(f ) nonempty
Define f (X ,Y , . . .) = (X 2 + Y 2 − 1)2 + (pX > 0q)2 + (pY > 0q)2,
and set W3 = {indices k of primes pk ≡ 3 mod 4}.

Solutions to f = 0 correspond to nonzero pairs (a
c ,

b
c ) with a2 + b2 = c2.

If an odd prime p divides c, then a2 ≡ −b2 mod p, and so −1 is a
square modulo p. Hence p ≡ 1 mod 4. This proves f /∈ HTP(RW3).

But if p ≡ 1 mod 4, then p = m2 + n2 for some m,n ∈ Z, and then(
m2 − n2

p

)2

+

(
2mn

p

)2

=
(m4 − 2m2n2 + n4) + 4m2n2

p2

=
(m2 + n2)2

p2 = 1.

So f ∈ HTP(R{p}) for all p ≡ 1 mod 4, and thus W3 ∈ B(f ).
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Baire category theory

Fact
The boundary of an open set in a Baire space is always nowhere
dense. Since all A(f ) are open, B = ∪f∈Z[~X ]

B(f ) is a meager set.

Corollary (M, 2016)
On a comeager set of subrings RW of Q, the equivalence holds:

HTP(RW ) ≡T W ⊕ HTP(Q).

In particular, this holds on the set B of all HTP-generic subrings.
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Results for HTP(Q)

Theorem (M, 2016)

For any set C ⊆ ω (such as ∅′), the following are equivalent:
1 HTP(Q) ≥T C.
2 HTP(RW ) ≥T C for all subrings RW of Q.
3 HTP(RW ) ≥T C for a non-meager set of subrings RW .

If (3) holds, then it holds on a non-meager set of HTP-generic
subrings. Therefore, W ⊕ HTP(Q) ≥T C for non-meager-many W . We
then infer (1) by applying:

Lemma (folklore)
If A 6≥T C, then {W ⊆ ω : W ⊕ A ≥T C} is meager.
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Other reductions
Theorem (M, 2016)

HTP(Q) ≥1 C ⇐⇒ {W : HTP(RW ) ≥1 C} is non-meager.
(Z,+, ·) has a Diophantine definition in Q ⇐⇒
it has a Diophantine definition in non-meager-many subrings RW .
Z is existentially definable in Q ⇐⇒
Z is existentially definable in non-meager-many subrings RW .

So one can hope to address these questions about HTP(Q) without
dealing specifically with Q itself: just show that the property holds on a
sufficiently large set of subrings of Q. Poonen and others have already
produced continuum-many subrings R ⊆ Q with HTP(R) ≥T ∅′.

On the other hand, we conjecture that those subrings of Q are not
HTP-generic, and therefore do not move us towards undecidability
results for HTP(Q). The arguments above show the necessity of
studying HTP-generic subrings to make any progress.
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What about Lebesgue measure?
There is a close analogy between measure theory and Baire category:
meager sets are often (but not always!) of measure 0, and vice versa.

Open Question

Does there exist some f ∈ Z[~X ] with µ(B(f )) > 0?

If not – or even if µ(B(f )) is computable uniformly in f – then we can
derive results for measure theory and HTP(Q) similar to the results for
Baire category.

Recently we established:

Theorem (M., 2016)
If Z has an existential definition in the field Q, then µ(B) = 1, and
indeed the measures of A(f ) and B(f ) can be arbitrary left-c.e. and
left-∅′-c.e. reals > 0 satisfying µ(A(f )) + µ(B(f )) ≤ 1.
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Conclusions?

In our example with X 2 + Y 2 = 1, B(f ) turns out to contain all subsets
of W3 ∪ {2} – and nothing else, since every p ≡ 1 mod 4 yields a
solution to f .
(Thanks to Poonen for proving this for all such p.)

However, this B(f ) has measure 0: the odds of omitting every prime
≡ 1 mod 4 are zero. So we still have the original question:

Open Question

Does there exist some f ∈ Z[~X ] with µ(B(f )) > 0?
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