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Classes of countable structures

A structure A with domain ω (in a fixed language) is identified with its
atomic diagram ∆(A), making it an element of 2ω. We consider
classes of such structures, e.g.:

Alg = {D ∈ 2ω : D is an algebraic field of characteristic 0}.

ACF0 = {D ∈ 2ω : D is an ACF of characteristic 0}.

T = {D ∈ 2ω : D is an infinite finite-branching tree}.

On each class, we have the equivalence relation ∼= of isomorphism.
The theory ACF0 is usually considered to be straightforward, yet ∼= is a
Π3 relation on ACF0, whereas ∼= is only Π2 on Alg and on T .
(For computable structures, it is complete at these levels.)
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Topology on Alg and Alg/∼=

Alg inherits the subspace topology from 2ω: basic open sets are

Uσ = {D ∈ Alg : σ ⊂ D},

determined by finite fragments σ of the atomic diagram D.

We then endow the quotient space Alg/∼= of ∼=-classes [D], modulo
isomorphism, with the quotient topology:

V ⊆ Alg/∼= is open ⇐⇒ {D ∈ Alg : [D] ∈ V} is open in Alg.

Thus a basic open set in Alg/∼= is determined by a finite set of
polynomials in Q[X ] which must each have a root (or several roots) in
the field.
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Examining this topology

The quotient topology on Alg/∼= is not readily recognizable. The
isomorphism class of the algebraic closure Q (which is universal for
the class Alg) lies in every nonempty open set U , since if F ∈ U , then
some finite piece of the atomic diagram of F suffices for membership
in U , and that finite piece can be extended to a copy of Q.

In contrast, the prime model [Q] lies in no open set U except the entire
space Alg/∼=. If Q ∈ U , then some finite piece of the atomic diagram of
Q suffices for membership in U , and this piece can be extended to a
copy of any algebraic field.

This does not noticeably illuminate the situation.
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Expanding the language for Alg
Classifying Alg/ ∼= properly requires a jump, or at least a fraction of a
jump. For each d > 1, add to the language of fields a predicate Rd :

|=F Rd (a0, . . . ,ad−1) ⇐⇒ X d + ad−1X d−1 + · · ·+ a0 has a root in F .

Write Alg∗ for the class of atomic diagrams of algebraic fields of
characteristic 0 in this expanded language.

Now we have computable reductions in both directions between
Alg∗/ ∼= and Cantor space 2ω, and these reductions are inverses of
each other. Hence Alg∗/ ∼= is homeomorphic to 2ω.

2ω is far more recognizable than the original topological space Alg/∼=
(without the root predicates Rd ). We consider this computable
homeomorphism to be a legitimate classification of the class Alg, and
therefore view the root predicates (or an equivalent) as essential for
effective classification of Alg.
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What do the Rd add?

We do not have the same reductions between Alg/ ∼= and 2ω: these
are not homeomorphic. This seems strange: all Rd are definable in the
smaller language, so how can they change the isomorphism relation?

The answer is that they do not change the underlying set: we have a
bijection between Alg and Alg∗ which respects ∼=. However, the
relations Rd change the topology on Alg∗/ ∼= from that on Alg/ ∼=.
(These are both the quotient topologies of the subspace topologies
inherited from 2ω.)

We do have a continuous map from Alg∗/ ∼= onto Alg/ ∼=, by taking
reducts, and so Alg/ ∼= is also compact. This map is bijective, but its
inverse is not continuous.
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Too much information

Now suppose that, instead of merely adding the dependence relations
Rd , we add all computable Σc

1 predicates to the language. That is,
instead of the algebraic field F , we now have its jump F ′.

Fact

F ∼= K ⇐⇒ F ′ ∼= K ′.

However, the class Alg′ of all (atomic diagrams of) jumps of algebraic
extensions of Q, modulo ∼=, is no longer homeomorphic to 2ω. In
particular, the Σc

1 property

(∃p ∈ Q[X ])(∃x ∈ F ) [p irreducible of degree > 1 & p(x) = 0]

holds just in those fields 6∼= Q. Therefore, the isomorphism class of Q
forms a singleton open set in the space Alg′/∼= .
(Additionally, Alg′/∼= is not compact.)
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Related spaces

From the preceding discussion, we infer that the root predicates are
exactly the information needed for a nice classification of Alg.

(What does “nice” mean here? To be discussed....)

For another example, consider the class T of all finite-branching
infinite trees, under the predecessor function P. As before, we get a
topological space T /∼=, which is not readily recognizable. (There is
still a prime model, with a single node at each level, but no universal
model.)

The obvious predicates to add are the branching predicates Bn:

|=T Bn(x) ⇐⇒ ∃=ny (P(y) = x).
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Which yield...

The enhanced class T ∗, in the language with the branching predicates,
again has a nice classification. Let Tm,0,Tm,1, . . . list all finite trees of
height exactly m. Given T ∈ T ∗, we can find the unique number f (0)
with T1,f (0)

∼= T<2, where T<2 is just T chopped off after level 1.

Next consider those trees in T2,0,T2,1, . . . with T<2
2,i
∼= T<2. Choose

f (1) so that T<3 is isomorphic to the f (1)-th tree on this list. Continue
choosing f (2), f (3), . . . recursively this way.

This yields a computable reduction of T ∗/∼= to Baire space ωω, whose
inverse is also a computable reduction.

So T ∗/∼= and Alg∗/∼= are not homeomorphic. In fact, there are
computable reductions in both directions between these spaces, but
none is bijective.
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What constitutes a nice classification?
With both Alg and T , we found very satisfactory classifications, by
adding just the right predicates to the language. But it is not always so
simple.

Let TFAb1 be the class of torsion-free abelian groups G of rank exactly
1. We usually view these as being classified by tuples (α0, α1, . . .) from
(ω + 1)ω, saying that an arbitrary nonzero x ∈ G is divisible by pn
exactly f (n) times. To account for the arbitrariness of x , we must
identify tuples ~α and ~β with only finite differences:

∃k [(∀j > k αj = βj) & (∀j |αj − βj | < k)].

The space TFAb1/∼= has the indiscrete topology: no finite piece of an
atomic diagram rules out any isomorphism type. More info needed!

If, for all primes p, we add Dp(x) and Dp∞(x), saying that x is divisible
by p and infinitely divisible by p, then we get the classification above.
However, it is not homeomorphic to Baire space itself.
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Reducibility on equivalence relations
To broaden our notion of classification, we apply descriptive set theory.

Definition
Let E and F be equivalence relations on 2ω (or on ωω, or other
spaces). A reduction of E to F is a function g : 2ω → 2ω satisfying:

(∀x0, x1 ∈ 2ω) [x0 E x1 ⇐⇒ g(x0) F g(x1)].

Original context: E ≤B F if there is a reduction which is a Borel
function on 2ω.

Definition

A continuous reduction g is given by an oracle Turing functional ΦS:

(∀A ∈ 2ω)(∀x ∈ ω) ΦA⊕S(x) = χg(A)(x).

If S = ∅, then the reduction is computable.
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Borel reducibility for 2ω: the basics
Standard Borel ERs are defined using the columns Ak of A ∈ 2ω:

A E0 B ⇐⇒ |A∆B| <∞.
A E1 B ⇐⇒ ∀∞k (Ak = Bk ).

A E2 B ⇐⇒
∑

n∈A4B
1

n+1 <∞.
A E3 B ⇐⇒ ∀k (Ak E0 Bk ).

A Eset B ⇐⇒ (∀j∃k) Aj = Bk & (∀j∃k) Bj = Ak .

A Z0 B ⇐⇒ A4B has asymptotic density 0.

Picture of ≤B:
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Glimm-Effros Dichotomy!→ (All these are computable reductions.)
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Additional ER’s on 2ω

A Ecard B ⇐⇒ |A| = |B|.
A =e B ⇐⇒ π1(A) = π1(B), where π1(A) = {x : 〈x , y〉 ∈ A}.
A =f B ⇐⇒ (∀x) |{y : 〈x , y〉 ∈ A}| = |{y : 〈x , y〉 ∈ B}|.

More ER’s can be built from these. For example, let A E∀card B iff

|{x : ∀y 〈x , y〉 ∈ A}| = |{x : ∀y 〈x , y〉 ∈ B}|.

Then 2ω/E∀card is homeomorphic to the isomorphism space for
algebraically closed fields of characteristic 0.

If we adjoin independence predicates to the language of ACF0, then
this isomorphism space becomes homeomorphic to 2ω/Ecard.
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Classifying other classes of structures

Also, 2ω/=f effectively classifies the class of (countable or finite)
equivalence structures in the language with unary predicates
C1,C2, . . . ,C∞ for the size of the equivalence class of an element.
Just count the number of classes of each size ≤ ∞ in the structure.
(Equivalence structures can be classified by elements of ωω, but this
requires Π0

4 predicates in the language, much stronger than our Ci ’s
and C∞.)

2ω/=e effectively classifies the subrings of Q: given a subring, just
enumerate the set of those n such that the n-th prime pn has a
multiplicative inverse in the subring. Thus the subring Z

[
1

pi0
, 1

pi1
, . . .

]
gives an enumeration of the set {i0, i1, . . .}.

These two spaces, 2ω/=e and 2ω/=f , are not homeomorphic.
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Back to Alg∗

Since Alg∗/∼= is homeomorphic to 2ω it seems natural to transfer the
Lebesgue measure from 2ω to Alg/∼=. But this requires care.

Fix a computable Q, and enumerate Q[X ] = {f0, f1, . . .}. Let Fλ = Q.
Given Fσ ⊂ Q, we find the least i , with fi irreducible in Fσ[X ] of prime
degree, for which it is not yet determined whether fi has a root in Fσ.
Adjoin such a root to Fσˆ1, but not to Fσˆ0. This gives a
homeomorphism from 2ω onto Alg∗/∼=, via h 7→ ∪nFh�n.

If we transfer standard Lebesgue measure to Alg∗/∼=, we get a
measure in which the odds of 2 having a 1297-th root are 1

2 , but the
odds of 2 having a 16-th root are much smaller.

Better: the odds of Fσ having a root of the next polynomial fi (of prime
degree d) should be 1

d . This gives the measure on Alg∗/∼=
corresponding to the Haar measure on Aut(Q).
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Measuring properties of algebraic fields
Using either of these measures, for (the isomorphism type of) an
algebraic field, the property of being normal has measure 0. So does
the property of having relatively intrinsically computable predicates Rd .

In Alg∗, the property of being relatively computably categorical has
measure 1: given two roots x1, x2 of the same irreducible polynomial,
one can wait for them to become distinct, since with probability 1 there
will be an f for which f (x1,Y ) has a root in the field but f (x2,Y ) does
not. This allows computation of isomorphisms between copies of the
field. The process works uniformly except on a measure-0 set of fields.

Surprisingly, measure-1-many fields (and all random fields) in Alg
remain relatively computably categorical even when the root
predicates are removed from the language. However, the procedures
for computing isomorphisms are not uniform. A single procedure can
succeed only for measure-(1− ε)-many fields.
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Things to consider

Question
Is there any way to put Haar measure or similar measures on other
classes of countable structures? (Most classes do not have universal
structures like Q with compact automorphism groups.)

Question
For Alg∗ and T ∗, the homeomorphisms onto 2ω and ωω allow one to
transfer notions of randomness to structures in these classes: an
isomorphism type is random if and only if it maps to a random real in
2ω or ωω. Do these correspond to other notions of random structures?

Question
Are there computable reductions in either direction between classes
with Π0

4 isomorphism problems? E.g., the classes of equivalence
structures and of trees which are finite-branching except at the root?
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