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Covers of Structures

Defn.: A cover A of a structure S consists of a

set {Ai} containing all finitely generated

substructures of S, up to isomorphism (and

nothing else!), along with sets IA
ij of embeddings

Ai →֒ Aj , such that every f ∈ IA
ij lifts to an

inclusion B ⊆ C in S, and every such inclusion is

the lift of some embedding:

Ai -f Aj .

6 6β ∼= γ ∼=

B - C⊆
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Local Computability

Definition: A cover A is computable if every

A ∈ A is.

A is uniformly computable if there is a single

algorithm listing out all Ai in A and all f in each

IA
ij . In this case S is locally computable.

Examples: The fields R and C are locally

computable. The ordered field (R, <) is not,

because it has finitely generated substructures

which are not computably presentable. The

ordered field of computable real numbers has no

computable listing {Ai} of its f.g. substructures.
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Extensionality

Defn.: Every embedding from any Ai into S is

0-extensional. An isomorphism β : Ai → B ⊆ S is

(m+ 1)-extensional if

• (∀j)(∀f ∈ IA
ij)(∃C ⊆ S)[f lifts to B ⊆

C via β and some m-extensional γ]; and

• (∀ f.g. C ⊇ B)(∃j)(∃f ∈ IA
ij)[f lifts to B ⊆

C via β and some m-extensional γ].

A is an m-extensional cover if every Ai ∈ A is the

domain of an m-extensional embedding and every

f.g. B ⊆ S is the range of one.
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∞-Extensionality

Defn.: A set M of embeddings β : Ai →֒ S is a

correspondence system if:

• (∀i)(∃β ∈M)Ai = dom(β); and

• (∀ f.g. B ⊆ S)(∃β ∈M)B = range(β); and

and for all maps β : Ai → B in M :

• (∀j∀f ∈ IA
ij)(∃C ⊇ B)[f lifts to the inclusion

B ⊆ C via β and some γ ∈M ]; and

• (∀ f.g. C ⊇ B)(∃j∃f ∈ IA
ij)[f lifts to the

inclusion B ⊆ C via β and some γ ∈M ].

An S with such an M is ∞-extensional.

5



'

&

$

%

Perfect Local Computability

If S is ∞-extensional, and ~a ∈ S, then the atomic

type satisfied by ~a is computable, and in general,

for θ < ωCK
1 , the Σθ-type of ~a,

{Σθ formulas ϕ(~x) | S |= ϕ(~a)}

is arithmetically a Σθ set.

• This is also true of every (globally) computable

structure!

M is perfect, and S is perfectly locally computable,

if for all β, γ ∈M with range(β) = range(γ), we

have (γ−1 ◦ β) ∈ IA
ij , where Ai = dom(β) and

Aj = dom(γ).

Theorem (Miller, 2007): A countable structure

S is computably presentable iff S is perfectly

locally computable.
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Back and Forth with Covers

Lemma: Let structures C and S have

correspondence systems over the same cover.

Suppose that C is countable, and that P is a

countable subset of S. Then there exists an

elementary embedding of C into S whose image

contains P .

Corollary: Any two countable structures with

correspondence systems over the same cover are

isomorphic.
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Simulations

Defn.: A simulation of a structure S is an

elementary substructure of S which realizes the

same n-types as S (for all n).

Example: The algebraic closure of the field

Q(X0, X1, . . .) is a computably presentable

simulation of C.

Lemma: Every ∞-extensionally locally

computable structure S has a countable

simulation C with a correspondence system over

the cover of S.

Proof: For each i, enumerate one image α(Ai)

into C, with α in the correspondence system M

for S. Then close C under the ∀∃ conditions for a

correspondence system.

Notice that if M is perfect for S, then the new

system is perfect for C.

8



'

&

$

%

Computable Simulations

Thm. (Mulcahey-Miller): Every perfectly locally

computable structure S has a computably

presentable simulation C.

Moreover, if we fix a computable D ∼= C, then for

any countable parameter set P ⊆ S, there exists

an embedding fP : D →֒ S such that

P ⊆ range(fP ) and S and fP (D) realize exactly

the same finitary types over every finite subset

P0 ⊆ P . (We say that fP (D) simulates S over P .)
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Towards a Converse

Prop.: The computable simulation C built above

for the PLC structure S, satisfies:

∃ a set of elementary embeddings ψp : C →֒ S, for

every p : ω → dom(S), such that

• range(p) ⊆ ψp(C); and

• ψp(C) is a simulation of S over range(p); and

• if p↾n = p′↾n, then (∀k < n)

ψ−1
p (p(k)) = ψ−1

p′ (p′(k)).

Also, every structure which has a computable

simulation C with embeddings ψp satisfying these

properties is ∞-extensional over a uniformly

computable cover.
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Covers as Categories

Defn.: For a sturcture S, FGSub(S) is the

category of all finitely generated substructures of

S, with inclusion maps as morphisms. S is the

inverse limit of FGSub(S).

An ∞-extensional cover can be made into a

category by closing under composition of

morphisms and adding identity morphisms. This

is the derived cover A, and it is uniformly

computable if the original cover was.

Prop.: If A is this derived perfect cover for S,

then there exists a faithful functor R mapping

FGSub(S) into A, and there exists a natural

isomorphism

β : (IA ◦ R) → IFGSub(S).

(Here IC denotes the inclusion functor from any

category C of L-structures into the category of all

L-structures under embeddings.)
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Proof of Proposition

We may define R by choosing R(B) to be any

Ai ∈ A such that there exists an α : Ai → B in

the correspondence system. Let βB be this α.

For an inclusion B ⊆ C within S, we have

βB : Ai → B and βC : Ak → C. There must exist j

and f ∈ IA
ij and γ : Aj → C in M with γ ◦ f = βB.

But since γ and βC both have image C, perfection

of the cover shows that (β−1
C

◦ γ) ∈ IA

jk. We define

R(B ⊆ C) = β−1
C

◦ βB = β−1
C

◦ (γ ◦ f) ∈ IA

ik.

It follows that R is a functor, since this respects

composition of morphisms, and that β is a

natural isomorphism.
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