Perfect Local Computability and Computable Simulations

Russell Miller,

Queens College & Graduate Center CUNY

Dustin Mulcahey, Graduate Center, CUNY

18 June 2008

Covers of Structures

Defn.: A cover \mathfrak{A} of a structure S consists of a set $\{\mathcal{A}_i\}$ containing all finitely generated substructures of S, up to isomorphism (and nothing else!), along with sets $I_{ij}^{\mathfrak{A}}$ of embeddings $\mathcal{A}_i \hookrightarrow \mathcal{A}_j$, such that every $f \in I_{ij}^{\mathfrak{A}}$ lifts to an inclusion $\mathcal{B} \subseteq \mathcal{C}$ in S, and every such inclusion is the lift of some embedding:

Local Computability

Definition: A cover \mathfrak{A} is *computable* if every $\mathcal{A} \in \mathfrak{A}$ is.

 \mathfrak{A} is uniformly computable if there is a single algorithm listing out all \mathcal{A}_i in \mathfrak{A} and all f in each $I_{ij}^{\mathfrak{A}}$. In this case \mathcal{S} is locally computable.

Examples: The fields \mathbb{R} and \mathbb{C} are locally computable. The ordered field $(\mathbb{R}, <)$ is not, because it has finitely generated substructures which are not computably presentable. The ordered field of computable real numbers has no computable listing $\{\mathcal{A}_i\}$ of its f.g. substructures.

Extensionality

Defn.: Every embedding from any \mathcal{A}_i into \mathcal{S} is 0-extensional. An isomorphism $\beta : \mathcal{A}_i \to \mathcal{B} \subseteq \mathcal{S}$ is (m+1)-extensional if

- $(\forall j)(\forall f \in I_{ij}^{\mathfrak{A}})(\exists \mathcal{C} \subseteq \mathcal{S})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } m\text{-extensional } \gamma]; and$
- $(\forall \text{ f.g. } \mathcal{C} \supseteq \mathcal{B})(\exists j)(\exists f \in I_{ij}^{\mathfrak{A}})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } m\text{-extensional } \gamma].$

 \mathfrak{A} is an *m*-extensional cover if every $\mathcal{A}_i \in \mathfrak{A}$ is the domain of an *m*-extensional embedding and every f.g. $\mathcal{B} \subseteq \mathcal{S}$ is the range of one.

∞ -Extensionality

Defn.: A set M of embeddings $\beta : \mathcal{A}_i \hookrightarrow \mathcal{S}$ is a *correspondence system* if:

- $(\forall i)(\exists \beta \in M)\mathcal{A}_i = \operatorname{dom}(\beta);$ and
- $(\forall \text{ f.g. } \mathcal{B} \subseteq \mathcal{S})(\exists \beta \in M)\mathcal{B} = \text{range}(\beta); \text{ and }$

and for all maps $\beta : \mathcal{A}_i \to \mathcal{B}$ in M:

- $(\forall j \forall f \in I_{ij}^{\mathfrak{A}}) (\exists \mathcal{C} \supseteq \mathcal{B})[f \text{ lifts to the inclusion} \\ \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma \in M]; \text{ and}$
- $(\forall \text{ f.g. } \mathcal{C} \supseteq \mathcal{B})(\exists j \exists f \in I_{ij}^{\mathfrak{A}})[f \text{ lifts to the inclusion } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma \in M].$

An \mathcal{S} with such an \mathcal{M} is ∞ -extensional.

Perfect Local Computability

If S is ∞ -extensional, and $\vec{a} \in S$, then the atomic type satisfied by \vec{a} is computable, and in general, for $\theta < \omega_1^{CK}$, the Σ_{θ} -type of \vec{a} ,

{ Σ_{θ} formulas $\varphi(\vec{x}) \mid \mathcal{S} \models \varphi(\vec{a})$ }

is arithmetically a Σ_{θ} set.

• This is also true of every (globally) computable structure!

M is perfect, and *S* is perfectly locally computable, if for all $\beta, \gamma \in M$ with range $(\beta) = \operatorname{range}(\gamma)$, we have $(\gamma^{-1} \circ \beta) \in I_{ij}^{\mathfrak{A}}$, where $\mathcal{A}_i = \operatorname{dom}(\beta)$ and $\mathcal{A}_j = \operatorname{dom}(\gamma)$. **Theorem** (Miller, 2007): A countable structure *S* is computably presentable iff *S* is perfectly locally computable.

Back and Forth with Covers

Lemma: Let structures C and S have correspondence systems over the same cover. Suppose that C is countable, and that P is a countable subset of S. Then there exists an elementary embedding of C into S whose image contains P.

Corollary: Any two countable structures with correspondence systems over the same cover are isomorphic.

Simulations

Defn.: A simulation of a structure S is an elementary substructure of S which realizes the same *n*-types as S (for all *n*).

Example: The algebraic closure of the field $\mathbb{Q}(X_0, X_1, \ldots)$ is a computably presentable simulation of \mathbb{C} .

Lemma: Every ∞ -extensionally locally computable structure S has a countable simulation C with a correspondence system over the cover of S.

Proof: For each *i*, enumerate one image $\alpha(\mathcal{A}_i)$ into \mathcal{C} , with α in the correspondence system Mfor \mathcal{S} . Then close \mathcal{C} under the $\forall \exists$ conditions for a correspondence system.

Notice that if M is perfect for S, then the new system is perfect for C.

Computable Simulations

Thm. (Mulcahey-Miller): Every perfectly locally computable structure S has a computably presentable simulation C.

Moreover, if we fix a computable $\mathcal{D} \cong \mathcal{C}$, then for any countable parameter set $P \subseteq \mathcal{S}$, there exists an embedding $f_P : \mathcal{D} \hookrightarrow \mathcal{S}$ such that $P \subseteq \operatorname{range}(f_P)$ and \mathcal{S} and $f_P(\mathcal{D})$ realize exactly the same finitary types over every finite subset $P_0 \subseteq P$. (We say that $f_P(\mathcal{D})$ simulates \mathcal{S} over P.)

Towards a Converse

Prop.: The computable simulation \mathcal{C} built above for the PLC structure \mathcal{S} , satisfies: \exists a set of elementary embeddings $\psi_p : \mathcal{C} \hookrightarrow \mathcal{S}$, for every $p : \omega \to \operatorname{dom}(\mathcal{S})$, such that

- range $(p) \subseteq \psi_p(\mathcal{C})$; and
- $\psi_p(\mathcal{C})$ is a simulation of \mathcal{S} over range(p); and
- if $p \upharpoonright n = p' \upharpoonright n$, then $(\forall k < n)$ $\psi_p^{-1}(p(k)) = \psi_{p'}^{-1}(p'(k)).$

Also, every structure which has a computable simulation C with embeddings ψ_p satisfying these properties is ∞ -extensional over a uniformly computable cover.

Covers as Categories

Defn.: For a sturcture S, **FGSub**(S) is the category of all finitely generated substructures of S, with inclusion maps as morphisms. S is the inverse limit of **FGSub**(S).

An ∞ -extensional cover can be made into a category by closing under composition of morphisms and adding identity morphisms. This is the *derived cover* \mathfrak{A} , and it is uniformly computable if the original cover was.

Prop.: If \mathfrak{A} is this derived perfect cover for \mathcal{S} , then there exists a faithful functor \mathbf{R} mapping $\mathbf{FGSub}(\mathcal{S})$ into \mathfrak{A} , and there exists a natural isomorphism

$\beta: (I_{\mathfrak{A}} \circ \mathbf{R}) \to I_{\mathbf{FGSub}(\mathcal{S})}.$

(Here $I_{\mathfrak{C}}$ denotes the inclusion functor from any category \mathfrak{C} of \mathcal{L} -structures into the category of all \mathcal{L} -structures under embeddings.)

Proof of Proposition

We may define \mathbf{R} by choosing $\mathbf{R}(\mathcal{B})$ to be any $\mathcal{A}_i \in \mathfrak{A}$ such that there exists an $\alpha : \mathcal{A}_i \to \mathcal{B}$ in the correspondence system. Let $\beta_{\mathcal{B}}$ be this α .

For an inclusion $\mathcal{B} \subseteq \mathcal{C}$ within \mathcal{S} , we have $\beta_{\mathcal{B}} : \mathcal{A}_i \to \mathcal{B}$ and $\beta_{\mathcal{C}} : \mathcal{A}_k \to \mathcal{C}$. There must exist jand $f \in I_{ij}^{\mathfrak{A}}$ and $\gamma : \mathcal{A}_j \to \mathcal{C}$ in M with $\gamma \circ f = \beta_{\mathcal{B}}$. But since γ and $\beta_{\mathcal{C}}$ both have image \mathcal{C} , perfection of the cover shows that $(\beta_{\mathcal{C}}^{-1} \circ \gamma) \in I_{jk}^{\mathfrak{A}}$. We define

$$\boldsymbol{R}(\mathcal{B} \subseteq \mathcal{C}) = \beta_{\mathcal{C}}^{-1} \circ \beta_{\mathcal{B}} = \beta_{\mathcal{C}}^{-1} \circ (\gamma \circ f) \in I_{ik}^{\mathfrak{A}}.$$

It follows that \boldsymbol{R} is a functor, since this respects composition of morphisms, and that β is a natural isomorphism.