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‘Covers of Structures'

Defn.: A cover 2 of a structure S consists of a
set {A;} containing all finitely generated
substructures of S, up to isomorphism (and
nothing else!), along with sets I ,?Jl of embeddings
A; — A;, such that every f € I,?; lifts to an
inclusion B C C in 8, and every such inclusion is
the lift of some embedding:
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Local Computability I

Definition: A cover 2 is computable if every

A € 2 is.

2 is uniformly computable it there is a single
algorithm listing out all A; in 2 and all f in each

I,?jl In this case § is locally computable.

Examples: The fields R and C are locally
computable. The ordered field (R, <) is not,
because it has finitely generated substructures
which are not computably presentable. The
ordered field of computable real numbers has no
computable listing {A;} of its f.g. substructures.
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‘ Extensionality I

Defn.: Every embedding from any A; into S is
0-extensional. An isomorphism §: A; — B C S is

(m + 1)-extensional if

o (Vj)(VfeI})(3C CS)|f lifts to B C

C via 0 and some m-extensional ~|; and

o (Vfg. C2B)3j)3f e L))[f lifts to B C

C via 8 and some m-extensional ~].

A is an m-extensional cover if every A; € 2 is the
domain of an m-extensional embedding and every

f.g. B C § is the range of one.
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‘ oco-Extensionality I

Defn.: A set M of embeddings 3 : A; — S is a

correspondence system if:

e (Vi)(38 € M)A; = dom(f); and

o (Vg BCS)(368 e M)B=range(f3); and
and for all maps 3 : A; — B in M:

o (VjVf € I%)(HC D B)|f lifts to the inclusion
B C C via 8 and some v € M]; and

o (Vg CDOB)(3j3f € I%)[f lifts to the
inclusion B C C via # and some v € M].

An S with such an M is oco-extensional.
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‘Perfect Local Computability'

If S is co-extensional, and @ € S, then the atomic

type satisfied by a is computable, and in general,
for § < w{E, the Yg-type of @,

{3 formulas p(¥) | S = p(a)}

is arithmetically a >y set.
e This is also true of every (globally) computable

structure!

M is perfect, and S is perfectly locally computable,
if for all 3, € M with range((3) = range(y), we
have (y~' o ) € I}, where A; = dom(3) and

A; = dom(y).

Theorem (Miller, 2007): A countable structure
S is computably presentable iff S is perfectly

locally computable.
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‘Back and Forth with Covers'

Lemma: Let structures C and S have

correspondence systems over the same cover.
Suppose that C is countable, and that P is a
countable subset of S. Then there exists an
elementary embedding of C into & whose image
contains P.

Corollary: Any two countable structures with
correspondence systems over the same cover are

isomorphic.




4 N
‘ Simulations I

Defn.: A simulation of a structure S is an

elementary substructure of & which realizes the

same n-types as S (for all n).

Example: The algebraic closure of the field
Q(Xg, X1,...) is a computably presentable

simulation of C.

Lemma: Every oo-extensionally locally
computable structure S has a countable
simulation C with a correspondence system over
the cover of S.

Proof: For each i, enumerate one image «(.A;)
into C, with « in the correspondence system M
for S. Then close C under the V4 conditions for a

correspondence system.

Notice that if M is perfect for S, then the new

system is pertect for C.
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‘ Computable Simulations I

Thm. (Mulcahey-Miller): Every perfectly locally

computable structure S has a computably

presentable simulation C.

Moreover, if we fix a computable D = C, then for

any countable parameter set P C S, there exists
an embedding fp : D — S such that
P C range(fp) and S and fp(D) realize exactly

the same finitary types over every finite subset

Py C P. (We say that fp(D) simulates S over P.)
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‘Towards a Converse'

Prop.: The computable simulation C built above
for the PLC structure S, satisfies:
1 a set of elementary embeddings ¢, : C — S, for

every p : w — dom(S), such that
e range(p) C 1,(C); and
e ,(C) is a simulation of S over range(p); and

o if pin = p'[n, then (Vk < n)
iy (p(k)) =t (' (k).

Also, every structure which has a computable
simulation C with embeddings v, satisfying these
properties is oo-extensional over a uniformly

computable cover.
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/ Covers as Categories' \

Defn.: For a sturcture S, FGSub(S) is the
category of all finitely generated substructures of
S, with inclusion maps as morphisms. S is the
inverse limit of FGSub(S).

An oc-extensional cover can be made into a
category by closing under composition of
morphisms and adding identity morphisms. This
is the derived cover 2, and it is uniformly

computable if the original cover was.

Prop.: If 2 is this derived perfect cover for S,
then there exists a faithful functor R mapping
FGSub(S) into 2, and there exists a natural

isomorphism

B: Iy o R) — Ipgsub(s)-

(Here I¢ denotes the inclusion functor from any

category € of L-structures into the category of all

\E—structures under embeddings.) /
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‘Proof of Proposition'

We may define R by choosing R(B) to be any
A; € A such that there exists an a: A; — B in
the correspondence system. Let 8z be this a.

For an inclusion B C C within &, we have

B A; — B and B¢ : Ay — C. There must exist j
andfelf; and v: A; — C in M with yo f = (3p.
But since v and (B¢ both have image C, perfection
of the cover shows that (8, Lov) e IjQ,l_C. We define

R(BCC)=0z"ofs=0z 0(yof) €I},

It follows that R is a functor, since this respects
composition of morphisms, and that 3 is a

natural isomorphism.
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