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The eternal question

Goal today: explain how to classify the elements of various classes C
of countable structures, up to isomorphism. Usually |C| = 2ω.
(Primary example: C = {all algebraic field extensions of Q}.)

Here is the basic difficulty with doing classifications:

WHAT DO MATHEMATICIANS WANT?

Formally, any bijection Φ from a class C onto another class D could be
called a classification of the elements of C.

Informally, a good classification also requires that:
We should already know D pretty well.
We should be able to compute Φ and Φ−1 fairly readily –
which starts with choosing good representations of C and D.
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Classes of countable structures

A structure A with domain ω (in a fixed language) is identified with its
atomic diagram ∆(A), making it an element of 2ω. We consider
classes of such structures, e.g.:

Alg = {D ∈ 2ω : D is an algebraic field of characteristic 0}.

ACF0 = {D ∈ 2ω : D is an ACF of characteristic 0}.

T = {D ∈ 2ω : D is an infinite finite-branching tree}.

TFAbn = {D ∈ 2ω : D is a torsion-free abelian group of rank n}.

On each class, we have the equivalence relation ∼= of isomorphism.
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Topology on Alg and Alg/∼=

Alg inherits the subspace topology from 2ω: basic open sets are

Uσ = {D ∈ Alg : σ ⊂ D},

determined by finite fragments σ of the atomic diagram D.

We then endow the quotient space Alg/∼= of ∼=-classes [D], modulo
isomorphism, with the quotient topology:

V ⊆ Alg/∼= is open ⇐⇒ {D ∈ Alg : [D] ∈ V} is open in Alg.

Thus a basic open set in Alg/∼= is determined by a finite set of
polynomials in Q[X ] which must each have a root (or several roots) in
the field.

Russell Miller (CUNY) Classification of Algebraic Fields Cornell Logic Seminar 4 / 21



Examining this topology

The quotient topology on Alg/∼= is not readily recognizable. The
isomorphism class of the algebraic closure Q (which is universal for
the class Alg) lies in every nonempty open set U , since if F ∈ U , then
some finite piece of the atomic diagram of F suffices for membership
in U , and that finite piece can be extended to a copy of Q.

In contrast, the prime model [Q] lies in no open set U except the entire
space Alg/∼=. If Q ∈ U , then some finite piece of the atomic diagram of
Q suffices for membership in U , and this piece can be extended to a
copy of any algebraic field.

This does not noticeably illuminate the situation.
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Expanding the language for Alg
Classifying Alg/ ∼= properly requires a jump, or at least a fraction of a
jump. For each d > 1, add to the language of fields a predicate Rd :

|=F Rd (a0, . . . ,ad−1) ⇐⇒ X d + ad−1X d−1 + · · ·+ a0 has a root in F .

Write Alg∗ for the class of atomic diagrams of algebraic fields of
characteristic 0 in this expanded language.

Now we have computable reductions in both directions between
Alg∗/ ∼= and Cantor space 2ω, and these reductions are inverses of
each other. Hence Alg∗/ ∼= is homeomorphic to 2ω.

2ω is far more recognizable than the original topological space Alg/∼=
(without the root predicates Rd ). We consider this computable
homeomorphism to be a legitimate classification of the class Alg, and
therefore view the root predicates (or an equivalent) as essential for
effective classification of Alg.
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Computing this homeomorphism
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What do the Rd add?

We do not have the same reductions between Alg/ ∼= and 2ω: these
are not homeomorphic. This seems strange: all Rd are definable in the
smaller language, so how can they change the isomorphism relation?

The answer is that they do not change the underlying set: we have a
bijection between Alg and Alg∗ which respects ∼=. However, the
relations Rd change the topology on Alg∗/ ∼= from that on Alg/ ∼=.
(These are both the quotient topologies of the subspace topologies
inherited from 2ω.)

We do have a continuous map from Alg∗/ ∼= onto Alg/ ∼=, by taking
reducts, and so Alg/ ∼= is also compact. This map is bijective, but its
inverse is not continuous.
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Too much information

Now suppose that, instead of merely adding the dependence relations
Rd , we add all computable Σc

1 predicates to the language. That is,
instead of the algebraic field F , we now have its jump F ′.

Fact

F ∼= K ⇐⇒ F ′ ∼= K ′.

However, the class Alg′ of all (atomic diagrams of) jumps of algebraic
extensions of Q, modulo ∼=, is no longer homeomorphic to 2ω. In
particular, the Σc

1 property

(∃p ∈ Q[X ])(∃x ∈ F ) [p irreducible of degree > 1 & p(x) = 0]

holds just in those fields 6∼= Q. Therefore, the isomorphism class of Q
forms a singleton open set in the space Alg′/∼= .
(Additionally, Alg′/∼= is not compact.)
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Related spaces

From the preceding discussion, we infer that the root predicates are
exactly the information needed for a nice classification of Alg.

(What does “nice” mean here? To be discussed....)

For another example, consider the class T of all finite-branching
infinite trees, under the predecessor function P. As before, we get a
topological space T /∼=, which is not readily recognizable. (There is
still a prime model, with a single node at each level, but no universal
model.)

The obvious predicates to add are the branching predicates Bn:

|=T Bn(x) ⇐⇒ ∃=ny (P(y) = x).
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Which yield...

The enhanced class T ∗, in the language with the branching predicates,
again has a nice classification. Let Tm,0,Tm,1, . . . list all finite trees of
height exactly m. Given T ∈ T ∗, we can find the unique number f (0)
with T1,f (0)

∼= T<2, where T<2 is just T chopped off after level 1.

Next consider those trees in T2,0,T2,1, . . . with T<2
2,i
∼= T<2. Choose

f (1) so that T<3 is isomorphic to the f (1)-th tree on this list. Continue
choosing f (2), f (3), . . . recursively this way.

This yields a computable reduction of T ∗/∼= to Baire space ωω, whose
inverse is also a computable reduction.

So T ∗/∼= and Alg∗/∼= are not homeomorphic. In fact, there are
computable reductions in both directions between these spaces, but
none is bijective.
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Back to Alg∗

Since Alg∗/∼= is homeomorphic to 2ω it seems natural to transfer the
Lebesgue measure from 2ω to Alg/∼=. But this requires care.

Fix a computable Q, and enumerate Q[X ] = {f0, f1, . . .}. Let Fλ = Q.
Given Fσ ⊂ Q, we find the least i , with fi irreducible in Fσ[X ] of prime
degree, for which it is not yet determined whether fi has a root in Fσ.
Adjoin such a root to Fσˆ1, but not to Fσˆ0. This gives a
homeomorphism from 2ω onto Alg∗/∼=, via h 7→

⋃
n Fh�n.

If we transfer standard Lebesgue measure to Alg∗/∼=, we get a
measure in which the odds of 2 having a 1297-th root are 1

2 , but the
odds of 2 having a 16-th root are much smaller.

Even worse, the odds of 2 having a square root depend on the
ordering f0, f1, f2, . . . we choose!
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Haar measure on Alg∗/∼=

The worst problem is solved by considering only polynomials fσ which
are irreducible of prime degree over the existing field Fσ.

A further improvement is to use Haar measure µ on Alg∗/∼=. Here the
probability of fσ having a root is deemed to equal 1

deg(fσ) . This idea
(and the name) are justified by:

Proposition
For every algebraic field F0 which is normal of finite degree d over Q,

µ({[K ] ∈ Alg/∼= : F0 ⊆ K}) =
1
d
.

Notice that 1
d is precisely the measure of the pointwise stabilizer of F0

within the group Aut(Q), under the usual Haar measure on this
compact group.
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Measuring properties of algebraic fields
Using either of these measures, for (the isomorphism type of) an
algebraic field, the property of being normal has measure 0. So does
the property of having relatively intrinsically computable predicates Rd .

In Alg∗, the property of being relatively computably categorical has
measure 1: given two roots x1, x2 of the same irreducible polynomial,
one can wait for them to become distinct, since with probability 1 there
will be an f for which f (x1,Y ) has a root in the field but f (x2,Y ) does
not. This allows computation of isomorphisms between copies of the
field. The process works uniformly except on a measure-0 set of fields.

Surprisingly, measure-1-many fields in Alg remain relatively
computably categorical even when the root predicates are removed
from the language. However, the procedures for computing
isomorphisms are not uniform. A single procedure can succeed only
for measure-(1− ε)-many fields.
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Randomness and computable categoricity

Theorem (Franklin & M.)
For every Schnorr-random real h ∈ 2ω, the corresponding field Fh is
relatively computably categorical, even in the language without the root
predicates. However, there exists a Kurtz-random h for which Fh is not
r.c.c. (in the language without the root predicates).

Lemma

Let α, β ∈ Q be algebraic numbers conjugate over Q. Then, for every
finite algebraic field extension E ⊇ Q(α, β), there is a set
D = {q0 < q1 < · · · } ⊆ Q, decidable uniformly in E , such that for every
k , both of the following hold:

√
α + qk /∈ E(

√
α + ql ,

√
β + ql : l 6= k)(

√
β + qk );√

β + qk /∈ E(
√
α + ql ,

√
β + ql : l 6= k)(

√
α + qk ).
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Proving the theorem

Given an ε > 0, and a polynomial f ∈ Q[X ] with two roots α, β, fix the
set D from the lemma and choose N so large that the odds are > 1− ε
that, in an arbitrary field ⊇ Q(α, β), all of the following hold:

For at least 0.4N of the numbers q0, . . . ,qN−1 in D, α + qi has a
square root in the field.
For at most 0.35N of these numbers, α + qi and β + qi both have
square roots in the field.

The procedure for mapping α, β ∈ F to the right images in a copy F̃
waits until at least 0.4N elements

√
α + qi with i < N have appeared in

F . Then it maps α to the first α̃ ∈ F̃ it finds for which corresponding
elements

√
α̃ + qi all appear in F̃ .

For polynomials of larger degree, use a similar procedure considering
each possible pair of roots of the polynomial.
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What about trees?

For the class T of finite-branching trees, one must first decide on a
probability measure for ωω. The canonical choice is that, for
σ = (n0, . . . ,nk ), we set µ(Uσ) = 2−(1+k+n0+···+nk ).

With this or most other reasonable measures, measure-1-many trees
in T ∗ are r.c.c. However, in the language without branching predicates,
measure-1-many trees in T fail to be relatively computably categorical.

The problem in T is that two siblings, α̂ 0 and α̂ 1, could both be
terminal, with probability 1

4 . So we cannot fix any sort of N by which
they will have (almost certainly) distinguished themselves from each
other – but without knowing the branching, we cannot be too certain
that they are automorphic either.
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What constitutes a nice classification?
With both Alg and T , we found very satisfactory classifications, by
adding just the right predicates to the language. But it is not always so
simple.

Let TFAb1 be the class of torsion-free abelian groups G of rank exactly
1. We usually view these as being classified by tuples (α0, α1, . . .) from
(ω + 1)ω, saying that an arbitrary nonzero x ∈ G is divisible by pn
exactly f (n) times. To account for the arbitrariness of x , we must
identify tuples ~α and ~β with only finite differences:

∃k [(∀j > k αj = βj) & (∀j |αj − βj | < k)].

The space TFAb1/∼= has the indiscrete topology: no finite piece of an
atomic diagram rules out any isomorphism type. More info needed!

If, for all primes p, we add Dp(x) and Dp∞(x), saying that x is divisible
by p and infinitely divisible by p, then we get the classification above.
However, it is not homeomorphic to Baire space itself.
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Classification using equivalence relations

With Dp and Dp∞ added to the language of groups, we now have
TFAb1/∼= computably homeomorphic to ωω/E∗0 (or to (ω + 1)ω/E∗0 ,
with the right topology) where E∗0 denotes differing on only finitely
many columns and by only finitely much:

A E∗0 B ⇐⇒ ∃k [(∀n > k)A(n) = B(n) & (∀n)|A(n)− B(n)| < k ].

In turn, ωω is computably homeomorphic to Baire space under the
usual E0 relation, denoting finite symmetric difference. So we have a
classification using a standard equivalence relation.

But what sort of measure could one put on (ω + 1)ω?

Russell Miller (CUNY) Classification of Algebraic Fields Cornell Logic Seminar 19 / 21



An alternative
If we add just the Dp relations to the language of groups, then
TFAb1/∼= is homeomorphic to 2ω/E0. The initial segment
σ = 0111001, for example, denotes that some nonzero x ∈ G is:

not divisible by 2;
divisible by 3;
divisible by 5;
divisible by 32;
not divisible by 7;
not divisible by 52;
divisible by 33;
etc.

Here infinite divisibility by p is a measure-0 property. Thus almost all
structures here are r.c.c. in this language, and relatively ∆0

2-categorical
even without the Dp predicates.
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One more example

An equivalence structure simply consists of an equivalence relation on
the domain. Isomorphism is Π0

4-complete for computable equivalence
structures. The natural classification maps a structure E to
(α0, α1, α2, . . .) ∈ (ω + 1)ω, where E has exactly αn classes of size n,
along with α0 infinite classes.

Making this classification effective requires adding some
less-than-natural predicates to the language. Even with a class of such
simple structures, it is difficult to decide on the “best” classification. We
are brought back to the original question:

WHAT DO MATHEMATICIANS WANT?
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