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Local Descriptions of Structures

Defn.: A simple cover A of a structure S is a set

{Ai : i ∈ I} which contains the finitely generated

substructures of S, up to isomorphism.

A is computable if every A ∈ A is.

A is uniformly computable if there is a single

algorithm listing out all Ai in A. In this case S is

locally computable.

Examples:

• All fields, and all relational structures, have

computable simple covers.

• The ordered field (R, <) does not.

• The ordered field of computable real numbers

is not locally computable, but has a

computable simple cover.
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Embeddings

Let S be locally computable via {A0,A1, . . .}.

Suppose B ⊆ C ⊆ S are finitely generated. If

Ai -f Aj

6 6β ∼= γ ∼=

B - C⊆

commutes, we say that f : Ai →֒ Aj lifts to the

inclusion B ⊆ C via the isomorphisms β and γ.

Defn.: A cover of S also has sets IA
ij of

embeddings Ai →֒ Aj , such that every inclusion

in S is the lift of some f in some IA
ij , and every

f ∈ IA
ij lifts to an inclusion in S.

The cover is uniformly computable if all IA
ij are

c.e. uniformly in i and j.

Notice that f is determined by its values on the

generators of Ai.
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Examples

• Every infinite linear order has the same

uniformly computable cover: Ai is the linear

order on i elements, and IA
ij contains all

embeddings Ai →֒ Aj .

• In C, every possible embedding f : Ai →֒ Aj

lifts to an inclusion. This works for any ACF.

• R also has a uniformly computable cover.

This follows from:

Lemma: S has a uniformly computable cover

iff S has a uniformly computable simple cover.

Proof: Given a simple cover {Ai}, consider

the cover containing all f.g. substructures of

each Ai, with inclusion maps from these

substructures into the original Ai.
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1-Extensionality

Defn.: Every embedding from any Ai into S is

0-extensional. An isomorphism β : Ai →֒ B ⊆ S is

1-extensional if

• (∀j)(∀f ∈ IA
ij)(∃C ⊆ S)[f lifts to B ⊆

C via β and some isomorphism γ]; and

• (∀ f.g. C ⊇ B)(∃j)(∃f ∈ IA
ij)[f lifts to B ⊆

C via β and some isomorphism γ].

Intuition: A 1-extensional β is a strong pairing

between Ai and B, in that A’s ways to extend Ai

are exactly the ways of extending B within S.

A is a 1-extensional cover if every Ai ∈ A is the

domain of a 1-extensional embedding and every

f.g. B ⊆ S is the range of one.
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Example

Cantor Space: The linear order on 2ω has a

1-extensional cover. The objects are all finite

linear orders a0 ≺ · · · ≺ an under the following

specifications. a0 may or may not be designated

as the left end point; likewise an as the right end

point. Each am not so designated may be called

either a left gap point or a right gap point (but

not both). If am is a LGP and am+1 a RGP, then

we must specify whether they belong to the same

gap or not.

An embedding f : Ai →֒ Aj belongs to IA
ij if it

respects all these properties: am is a left end

point iff f(am) is, etc.

So, if am and am+1 are LGP and RGP for the

same gap, then there can be no element between

f(am) and f(am+1) in Aj .
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θ-Extensionality

Defn.: Let θ be an ordinal. An isomorphism

β : Ai →֒ B ⊆ S is θ-extensional if

• (∀ f.g. C ⊇ B)(∀ζ < θ)(∃j)(∃f ∈ IA
ij)

[f lifts to B ⊆ C via β and a ζ-extensional γ].

• and (∀j)(∀f ∈ IA
ij)(∀ζ < θ)(∃C ⊆ S)

[f lifts to B ⊆ C via β and a ζ-extensional γ];

Intuition: A θ-extensional β is a strong pairing

between Ai and B, in that A’s ways to extend Ai

are exactly the ways of extending B within S

while preserving the Σζ-theory over B.

A is a θ-extensional cover if every Ai ∈ A is the

domain of an θ-extensional embedding and every

f.g. B ⊆ S is the range of one.
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Bad Example

Lemma: R has no 1-extensional cover.

Proof: If A were such a cover, fix a

noncomputable x ∈ R and a 1-extensional

β : Ai →֒ Q(x) ⊆ R. Then for q ∈ Q:

q < x ⇐⇒ (∃y ∈ R) y2 = x − q

⇐⇒ (∃j ∃f ∈ IA

ij ∃a ∈ Aj)

[a2 = f(β−1(x)) − f(β−1(q))]

So the lower cut defined by x would be

computably enumerable, and similarly for the

upper cut.
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Σθ-Theory of S

Theorem (Miller): Suppose S has a

θ-extensional cover.

Then (∀ζ ≤ θ), and for any finite set ~p of

parameters in S, the Σζ -theory of (S, ~p) is

arithmetically Σ0
ζ , uniformly in i and α−1(~p),

where α : Ai →֒ 〈~p〉 is θ-extensional.

Moreover, this applies even to infinitary

computable Σζ formulas over P .
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Local Constructivizability

Defn. (Ershov): A structure S is locally

constructivizable if, for all finite tuples ~p ∈ S, the

∃-theory of (S, ~p) is arithmetically Σ0
1.

Cor.: Every 1-extensional structure is locally

constructivizable.

Local constructivizability may be seen as a

non-uniform version of 1-extensional local

computability.

The field R is locally computable, but not locally

constructivizable.

The field of computable real numbers is locally

constructivizable, and locally computable, but not

1-extensional. (The ordered field of computable

real numbers is not even locally computable.)
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Correspondence Systems

Now we want to be able to extend our diagrams

infinitely far to the right.

Defn.: A set M of embeddings β : Ai →֒ S is a

correspondence system if:

• (∀i)(∃β ∈ M)Ai = dom(β); and

• (∀ f.g. B ⊆ S)(∃β ∈ M)B = range(β); and

and for all maps β : Ai
∼= B in M :

• (∀j∀f ∈ IA
ij)(∃C ⊇ B)[f lifts to the inclusion

B ⊆ C via β and some γ ∈ M ]; and

• (∀ f.g. C ⊇ B)(∃j∃f ∈ IA
ij)[f lifts to the

inclusion B ⊆ C via β and some γ ∈ M ].

Defn.: A structure is ∞-extensionally locally

computable if it has a correspondence system over

a uniformly computable cover.
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Perfect Local Computability

M is perfect if, for all β, γ ∈ M with

range(β) = range(γ), we have (γ−1 ◦ β) ∈ IA
ij ,

where Ai = dom(β) and Aj = dom(γ).

• The uniformly computable cover we built for

C has a perfect correspondence system.

• The uniformly computable cover we built for

Cantor space (as a linear order) is perfect.

• It is also possible to view Cantor space as the

top level of the tree 2<ω+1, as a partial order,

and to build a perfect correspondence system

for this structure.

Such structures are called perfectly locally

computable.
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Globally Computable Structures

Theorem (Miller): For a countable structure S,

TFAE:

1. S is computably presentable;

2. S is perfectly locally computable;

3. S has a uniformly computable cover with a

correspondence system, satisfying AP.

Proof: For (1 =⇒ 2), build the natural cover A

containing all f.g. substructures of S, under

inclusion.

For (2 =⇒ 3), all perfect covers have AP.

For (3 =⇒ 1), amalgamate the Ai together over

all embeddings in A, to get a computable

presentation of S.
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∞-Extensionality

(joint work with Dustin Mulcahey)

Lemma: Let structures C and S have

correspondence systems over the same cover.

Suppose that C is countable, and that P is a

countable subset of S. Then there exists an

elementary embedding of C into S whose image

contains P .

Corollary: Any two countable structures with

correspondence systems over the same cover are

isomorphic.
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Simulations

Defn.: A simulation C of a structure S is an

elementary substructure of S which realizes the

same n-types as S (for all n).

If for every ~a ∈ C there is ~p ∈ S such that C and S

realize the same n-types over ~a and ~p, and

likewise for every ~p there is an ~a, then C simulates

S over parameters.

Examples: The algebraic closure of the field

Q(X0, X1, . . .) is a computably presentable

simulation of C over parameters.

The intersection of Q with Cantor space (⊂ [0, 1],

as linear order) is a computably presentable

simulation of Cantor space over parameters.
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Building Simulations

Lemma: Every ∞-extensionally locally

computable structure S has a countable

simulation C over parameters with a

correspondence system over the cover of S.

Proof: For each i, enumerate one image α(Ai)

into C, with α in the correspondence system M

for S. Then close C under the ∀∃ conditions for a

correspondence system.

Notice that if M is perfect for S, then the new

system is perfect for C.
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Computable Simulations

Thm. (Mulcahey-Miller): Every perfectly locally

computable structure S has a computably

presentable simulation C over parameters.

Moreover, if we fix a computable D ∼= C, then for

any countable parameter set P ⊆ S, there exists

an embedding fP : D →֒ S such that

P ⊆ range(fP ) and S and fP (D) realize exactly

the same finitary types over every finite subset of

the image of fP . (We call fP an elementary

embedding over parameters.)
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Computable Simulations

Thm.: A structure S has an ∞-extensional cover

with AP ⇐⇒ S has a computable simulation C

over parameters, such that, for all elementary

embeddings f : C →֒ S over parameters, all ~a ∈ C,

and all x ∈ S, there exists an elementary

embedding g : C →֒ S over parameters with

g↾~a = f↾~a and x ∈ range(g).

The cover A is the natural cover of C. The

correspondence system contains all restrictions

(to elements of A) of elementary embeddings of C

into S over parameters.

18



'

&

$

%

C and its Simulations

A computable simulation of the field C must have

infinite transcendence degree and be algebraically

closed. Hence it must be the field

F = Q(X0, X1, . . .). However,

Fact: The natural cover of F is not a perfect

cover of C. This follows from:

Lemma: A perfect cover of C must include a set

IA
ij of size > 1.

Still, the natural cover A of F is an ∞-extensional

cover of C, and has AP. The correspondence

system consists of all embeddings of every Ai ∈ A

into C.
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Cardinalities

Fix any countable sequence κ0 < κ1 < · · · of

cardinals. Let T be the tree of height ω with each

node at level n having κn-many immediate

successors.

This T is perfectly locally computable: A contains

all finite substructures of ω<ω, under embeddings

which preserve levels, and M contains all

level-preserving embeddings Ai →֒ T .

But we can make the κ-sequence arbitrarily

complex!
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Covers as Categories

Defn.: For a structure S, FGSub(S) is the

category of all finitely generated substructures of

S, with inclusion maps as morphisms. S is the

inverse limit of FGSub(S).

An ∞-extensional cover can be made into a

category by closing under composition of

morphisms and adding identity morphisms. This

is the derived cover A, and it is uniformly

computable if the original cover was.

Prop.: If A is this derived perfect cover for S,

then there exists a functor R mapping FGSub(S)

into A, and there exists a natural isomorphism

β : (IA ◦ R) → IFGSub(S).

(Here IC denotes the inclusion functor from any

category C of L-structures into the category of all

L-structures under embeddings.)
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Proof of Proposition

We may define R by choosing R(B) to be any

Ai ∈ A such that there exists an α : Ai → B in

the correspondence system. Let βB be this α.

For an inclusion B ⊆ C within S, we have

βB : Ai → B and βC : Ak → C. There must exist j

and f ∈ IA
ij and γ : Aj → C in M with γ ◦ f = βB.

But since γ and βC both have image C, perfection

of the cover shows that (β−1
C

◦ γ) ∈ IA

jk. We define

R(B ⊆ C) = β−1
C

◦ βB = β−1
C

◦ (γ ◦ f) ∈ IA

ik.

It follows that R is a functor, since this respects

composition of morphisms, and that β is a

natural isomorphism.
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Questions

1. Can there exist a structure S with a

computable simulation (over parameters?)

such that S is not perfectly locally

computable? Or such that S is not

∞-extensional with AP?

2. Develop a reasonable theory of maps (and

computable maps) among covers.

• Functors?

3. How locally computable is the structure

(C, +, ·, 0, 1, f), where f(z) = ez? (Similar

questions for other holomorphic functions.)

4. Find θ-extensionally locally computable

structures which are not (θ + 1)-extensional,

and which have arbitrarily complex

Σθ+1-theory over parameters.
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