BSS Machines: Computability without Search Procedures

Russell Miller,

Queens College &

Graduate Center – CUNY

August 19, 2009

Effective Mathematics of the Uncountable

CUNY Graduate Center

Some of this work is joint with Wesley Calvert.

Turing-Computable Fields

Defn.: A computable field F is a field with domain ω , in which the field operations + and \cdot are (Turing-)computable.

One considers the *root set* and the *splitting set*:

$$R_F = \{ p \in F[X] : (\exists a \in F) \ p(a) = 0 \}$$

 $S_F = \{ p \in F[X] : p \text{ factors properly in } F[X] \}.$

From these sets, one can find the irreducible factors, hence the roots, of any $p \in F[X]$. Finding roots or factors requires only a simple search procedure, provided that they do exist.

The baby bird could not fly.

But he could walk. "Now I will go and find my mother," he said.

"Are you my mother?" the baby bird asked a dog.

"I am not your mother. I am a dog," said the dog.

"Are you my mother?" the baby bird asked a cow.

> "How could I be your mother?" said the cow. "I am a cow."

.

BSS Computability

Defn.: A *BSS-machine* has an infinite tape, indexed by ω . At each stage, cofinitely many cells are blank, and finitely many contain one real number each. In a single step, the machine can copy one cell into another, or perform a field operation $(+, -, \cdot, \text{ or } \div)$ on two cells, or compare any cell to 0 (using < or =) and fork, or halt.

The machine starts with a tuple $\vec{p} \in \mathbb{R}^{<\omega}$ of real parameters in its cells, and the input consists of a tuple $\vec{x} \in \mathbb{R}^{<\omega}$, written in the cells immediately following \vec{p} . The machine runs according to a finite program, and if it halts within finitely many steps, the output is the tuple of reals in the cells when it halts.

BSS-Semidecidability

Defn.: A set $S \subseteq \mathbb{R}$ is:

- BSS-decidable if χ_S is BSS-computable;
- BSS-enumerable if S is the image of $\omega \ (\subseteq \mathbb{R})$ under some partial BSS-computable function;
- BSS-semidecidable if S is the domain of such a function.

So

 $\{ BSS\text{-}decidable \text{ sets} \} \subseteq \{ BSS\text{-}semidecidable \text{ sets} \}$ and

 $\{BSS-enumerable sets\} \subseteq \{BSS-semidecidable\}.$ However, the set \mathbb{A} of algebraic real numbers is BSS-semidecidable, but turns out not to be BSS-enumerable, nor BSS-decidable. Indeed, \mathbb{Q} is not BSS-decidable. And there exist countable BSS-decidable sets which are not BSS-enumerable. (Proofs by Herman-Isard, Meer, Ziegler.)

Field Questions on \mathbb{R}

Lemma (Folklore): The splitting set $S_{\mathbb{R}}$ and the root set $R_{\mathbb{R}}$ are both BSS-decidable. Also, the number of real roots of $r \in \mathbb{R}[X]$ is BSS-computable.

Lemma: If $f : \mathbb{R}^m \to \mathbb{R}^n$ is BSS-computable by a machine with real parameters \vec{p} , then for all $\vec{x} \in \mathbb{R}^m$, $f(\vec{x})$ lies in the field $\mathbb{Q}(\vec{x}, \vec{p})$.

Corollary: A is not BSS-enumerable. Indeed, every BSS-enumerable set is contained in a finitely generated extension of \mathbb{Q} .

Corollary: No BSS-computable function can accept all inputs $q \in \mathbb{Q}[X]$ and output the real roots of each input q. (Hence neither can it output the irreducible factors of q in $\mathbb{R}[X]$.)

Intuition: finding roots of a polynomial requires an AYMM search.

Alternative Proof

Prop.: Neither \mathbb{Q} nor \mathbb{A} is BSS-decidable. Proof: Suppose some BSS machine M computes a total function $H : \mathbb{R} \to \mathbb{R}$, using real parameters \vec{p} . Choose an input $y \in \mathbb{R}$ transcendental over $\mathbb{Q}(\vec{p})$, and run M on y. At each stage s, the n-th cell contains $f_{n,s}(y)$, for some $f_{n,s} \in \mathbb{Q}(\vec{p})(Y)$. Then there exists $\epsilon > 0$ such that when $|x - y| < \epsilon$, each step by M on input x is identical to the computation on y, with $f_{n,s}(x)$ in place of $f_{n,s}(y)$ in the n-th cell. So, on the ϵ -ball around y, M computes a $\mathbb{Q}(\vec{p})$ -rational function of its input. We say that M computes a function which is locally $\mathbb{Q}(\vec{p})$ -rational at transcendentals over \vec{p} .

If M computes the characteristic function of $S \subseteq \mathbb{R}$, then it must be constant on such ϵ -balls. So either S or \overline{S} is not dense in \mathbb{R} .

Application to Finding Roots

Suppose that M, on every input $\langle a_0, \ldots, a_4 \rangle$, outputs a real root of $X^5 + a_4 X^4 + \cdots + a_1 X + a_0$. Choosing $\vec{a} \in \mathbb{R}^5$ algebraically independent over the parameters \vec{p} of M, we would have a rational function over $\mathbb{Q}(\vec{p})$ which gives a root of each monic degree-5 polynomial in $\mathbb{R}[X]$ with coefficients within ϵ of \vec{a} . But then this rational function extends from this open ϵ -ball to give a general formula for such a root. By the Ruffini-Abel Theorem, this is impossible.

The same would hold even for BSS machines enhanced with the ability to find n-th roots of positive real numbers.

Algebraic Numbers of Degree d

Defn.: \mathbb{A}_d is the set of all algebraic real numbers of degree $\leq d$ over \mathbb{Q} . $\mathbb{A}_{=d}$ is the set $(\mathbb{A}_d - \mathbb{A}_{d-1})$.

Question (Meer-Ziegler): Can a BSS machine with oracle \mathbb{A}_d decide the set \mathbb{A}_{d+1} ?

Answer (work in progress): No. So we have

 $\mathbb{Q} = \mathbb{A}_1 \prec_{BSS} \mathbb{A}_2 \prec_{BSS} \mathbb{A}_3 \prec_{BSS} \cdots \prec_{BSS} \mathbb{A}.$

$\mathbf{Proving} \,\, \mathbb{A}_{d+1} \not\preceq \mathbb{A}_d$

A process similar to before: If M with parameters \vec{p} is an oracle BSS-machine deciding \mathbb{A}_{d+1} from oracle \mathbb{A}_d , let y be transcendental over $\mathbb{Q}(\vec{p})$. Then $M^{\mathbb{A}_d}$ on input y halts and outputs 0, with finitely many $f \in \mathbb{Q}(\vec{p})(Y)$ giving the values in its cells during the computation. We claim that $\exists x \in \mathbb{A}_{d+1}$ sufficiently close to y that $M^{\mathbb{A}_d}$ on input x mirrors this computation and also outputs 0.

Let F be the set of nonconstant f(Y) used. Problem: we need to ensure $f(x) \notin \mathbb{A}_d$ for every $f \in F$.

Getting all $f(x) \notin \mathbb{A}_d$

- We may ignore any $f \in F$ in which a transcendental parameter p_i appears. So assume there is a single algebraic parameter p.
- If $f(x) = a \in \mathbb{A}_d$, and $f(X) = \frac{g(X)}{h(X)}$ with $g, h \in \mathbb{Q}(p)[X]$, then x is a root of $f_a(X) = g(X) ah(X) \in \mathbb{A}_d(p)[X]$. Make sure that the minimal polynomial q(X) of x over \mathbb{Q} stays irreducible in $\mathbb{A}_d(p)[X]$, so that if f(x) = a, then q(X) would divide $f_a(X)$.
- We can choose such q(X) so that q(X) does not divide any $f_a(X)$ with $a \in \mathbb{A}_d$ and $f \in F$. Indeed, with all other coefficients fixed, there are only finitely many constant terms q_0 which would allow q to divide any f_a .
- Choose q_0 so that q(X) has a real root x within ϵ of y.

Summary

For the root x of q(X) chosen above, we have $x \in \mathbb{A}_{d+1}$. Since $|x - y| < \epsilon$, we know that for all nonconstant $f \in F$, f(x) and f(y) have the same sign, with $f(x) \notin \mathbb{A}_d$ and $f(y) \notin \mathbb{A}_d$. So the computation by the BSS machine M on input xparallels that on input y, and both halt (at the same step) and output 0. Thus $M^{\mathbb{A}_d}$ does not decide the set \mathbb{A}_{d+1} .

More General Questions

- What other AYMM searches can be investigated by translating them into problems in R and trying to compute them using BSS machines?
- Can one do anything similar with Infinite Time Turing Machines?
- Is there any way to consider AYMM searches for Gödel numbers of proofs?