BSS Machines: Computability without Search Procedures

Russell Miller,
Queens College \& Graduate Center - CUNY

August 19, 2009
Effective Mathematics of the Uncountable

CUNY Graduate Center

Some of this work is joint with Wesley Calvert.

Turing-Computable Fields

Defn.: A computable field F is a field with domain ω, in which the field operations + and \cdot are (Turing-) computable.

One considers the root set and the splitting set:

$$
\begin{gathered}
R_{F}=\{p \in F[X]:(\exists a \in F) p(a)=0\} \\
S_{F}=\{p \in F[X]: p \text { factors properly in } F[X]\} .
\end{gathered}
$$

From these sets, one can find the irreducible factors, hence the roots, of any $p \in F[X]$. Finding roots or factors requires only a simple search procedure, provided that they do exist.

The baby bird could not fly.

But he could walk. "Now I will go and find my mother," he said.

The computability theorist said to the steam shovel, "Are you a proof of the Riemann Hypothesis?"

The steam shovel said, "SNORT!"

BSS Computability

Defn.: A BSS-machine has an infinite tape, indexed by ω. At each stage, cofinitely many cells are blank, and finitely many contain one real number each. In a single step, the machine can copy one cell into another, or perform a field operation (,,$+- \cdot$, or \div) on two cells, or compare any cell to 0 (using $<$ or $=$) and fork, or halt.

The machine starts with a tuple $\vec{p} \in \mathbb{R}^{<\omega}$ of real parameters in its cells, and the input consists of a tuple $\vec{x} \in \mathbb{R}^{<\omega}$, written in the cells immediately following \vec{p}. The machine runs according to a finite program, and if it halts within finitely many steps, the output is the tuple of reals in the cells when it halts.

BSS-Semidecidability

Defn.: A set $S \subseteq \mathbb{R}$ is:

- BSS-decidable if χ_{S} is BSS-computable;
- BSS-enumerable if S is the image of $\omega(\subseteq \mathbb{R})$ under some partial BSS-computable function;
- BSS-semidecidable if S is the domain of such a function.

So
$\{$ BSS-decidable sets $\} \subseteq\{$ BSS-semidecidable sets $\}$ and
$\{$ BSS-enumerable sets $\} \subseteq\{$ BSS-semidecidable $\}$. However, the set \mathbb{A} of algebraic real numbers is BSS-semidecidable, but turns out not to be BSS-enumerable, nor BSS-decidable. Indeed, \mathbb{Q} is not BSS-decidable. And there exist countable BSS-decidable sets which are not
BSS-enumerable. (Proofs by Herman-Isard, Meer, Ziegler.)

Field Questions on \mathbb{R}

Lemma (Folklore): The splitting set $S_{\mathbb{R}}$ and the root set $R_{\mathbb{R}}$ are both BSS-decidable. Also, the number of real roots of $r \in \mathbb{R}[X]$ is BSS-computable.

Lemma: If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is BSS-computable by a machine with real parameters \vec{p}, then for all $\vec{x} \in \mathbb{R}^{m}, f(\vec{x})$ lies in the field $\mathbb{Q}(\vec{x}, \vec{p})$.

Corollary: \mathbb{A} is not BSS-enumerable. Indeed, every BSS-enumerable set is contained in a finitely generated extension of \mathbb{Q}.

Corollary: No BSS-computable function can accept all inputs $q \in \mathbb{Q}[X]$ and output the real roots of each input q. (Hence neither can it output the irreducible factors of q in $\mathbb{R}[X]$.)

Intuition: finding roots of a polynomial requires an AYMM search.

Alternative Proof

Prop.: Neither \mathbb{Q} nor \mathbb{A} is BSS-decidable.
Proof: Suppose some BSS machine M computes a total function $H: \mathbb{R} \rightarrow \mathbb{R}$, using real parameters \vec{p}. Choose an input $y \in \mathbb{R}$ transcendental over $\mathbb{Q}(\vec{p})$, and run M on y. At each stage s, the n-th cell contains $f_{n, s}(y)$, for some $f_{n, s} \in \mathbb{Q}(\vec{p})(Y)$. Then there exists $\epsilon>0$ such that when $|x-y|<\epsilon$, each step by M on input x is identical to the computation on y, with $f_{n, s}(x)$ in place of $f_{n, s}(y)$ in the n-th cell. So, on the ϵ-ball around y, M computes a $\mathbb{Q}(\vec{p})$-rational function of its input. We say that M computes a function which is locally $\mathbb{Q}(\vec{p})$-rational at transcendentals over \vec{p}.

If M computes the characteristic function of $S \subseteq \mathbb{R}$, then it must be constant on such ϵ-balls. So either S or \bar{S} is not dense in \mathbb{R}.

Application to Finding Roots

Suppose that M, on every input $\left\langle a_{0}, \ldots, a_{4}\right\rangle$, outputs a real root of $X^{5}+a_{4} X^{4}+\cdots+a_{1} X+a_{0}$. Choosing $\vec{a} \in \mathbb{R}^{5}$ algebraically independent over the parameters \vec{p} of M, we would have a rational function over $\mathbb{Q}(\vec{p})$ which gives a root of each monic degree-5 polynomial in $\mathbb{R}[X]$ with coefficients within ϵ of \vec{a}. But then this rational function extends from this open ϵ-ball to give a general formula for such a root. By the Ruffini-Abel Theorem, this is impossible.

The same would hold even for BSS machines enhanced with the ability to find n-th roots of positive real numbers.

Algebraic Numbers of Degree d

Defn.: \mathbb{A}_{d} is the set of all algebraic real numbers of degree $\leq d$ over $\mathbb{Q} . \mathbb{A}_{=d}$ is the set $\left(\mathbb{A}_{d}-\mathbb{A}_{d-1}\right)$.

Question (Meer-Ziegler): Can a BSS machine with oracle \mathbb{A}_{d} decide the set \mathbb{A}_{d+1} ?

Answer (work in progress): No. So we have

$$
\mathbb{Q}=\mathbb{A}_{1} \prec_{B S S} \mathbb{A}_{2} \prec_{B S S} \mathbb{A}_{3} \prec_{B S S} \cdots \prec_{B S S} \mathbb{A} .
$$

Proving $\mathbb{A}_{d+1} \npreceq \mathbb{A}_{d}$

A process similar to before: If M with parameters \vec{p} is an oracle BSS-machine deciding \mathbb{A}_{d+1} from oracle \mathbb{A}_{d}, let y be transcendental over $\mathbb{Q}(\vec{p})$. Then $M^{\mathbb{A}_{d}}$ on input y halts and outputs 0 , with finitely many $f \in \mathbb{Q}(\vec{p})(Y)$ giving the values in its cells during the computation. We claim that $\exists x \in \mathbb{A}_{d+1}$ sufficiently close to y that $M^{\mathbb{A}_{d}}$ on input x mirrors this computation and also outputs 0 .

Let F be the set of nonconstant $f(Y)$ used.
Problem: we need to ensure $f(x) \notin \mathbb{A}_{d}$ for every $f \in F$.

Getting all $f(x) \notin \mathbb{A}_{d}$

- We may ignore any $f \in F$ in which a transcendental parameter p_{i} appears. So assume there is a single algebraic parameter p.
- If $f(x)=a \in \mathbb{A}_{d}$, and $f(X)=\frac{g(X)}{h(X)}$ with $g, h \in \mathbb{Q}(p)[X]$, then x is a root of $f_{a}(X)=g(X)-a h(X) \in \mathbb{A}_{d}(p)[X]$. Make sure that the minimal polynomial $q(X)$ of x over \mathbb{Q} stays irreducible in $\mathbb{A}_{d}(p)[X]$, so that if $f(x)=a$, then $q(X)$ would divide $f_{a}(X)$.
- We can choose such $q(X)$ so that $q(X)$ does not divide any $f_{a}(X)$ with $a \in \mathbb{A}_{d}$ and $f \in F$. Indeed, with all other coefficients fixed, there are only finitely many constant terms q_{0} which would allow q to divide any f_{a}.
- Choose q_{0} so that $q(X)$ has a real root x within ϵ of y.

Summary

For the root x of $q(X)$ chosen above, we have $x \in \mathbb{A}_{d+1}$. Since $|x-y|<\epsilon$, we know that for all nonconstant $f \in F, f(x)$ and $f(y)$ have the same sign, with $f(x) \notin \mathbb{A}_{d}$ and $f(y) \notin \mathbb{A}_{d}$. So the computation by the BSS machine M on input x parallels that on input y, and both halt (at the same step) and output 0 . Thus $M^{\mathbb{A}_{d}}$ does not decide the set \mathbb{A}_{d+1}.

More General Questions

- What other AYMM searches can be investigated by translating them into problems in \mathbb{R} and trying to compute them using BSS machines?
- Can one do anything similar with Infinite Time Turing Machines?
- Is there any way to consider AYMM searches for Gödel numbers of proofs?

