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‘ Turing-Computable Fields I

Defn.: A computable field F is a field with
domain w, in which the field operations + and -

are (Turing-)computable.

One considers the root set and the splitting set:
Rr={p€ F[X]:(Ja € F) pla) =0}

Sr = {p € F[X] : p factors properly in F[X]}.

From these sets, one can find the irreducible
factors, hence the roots, of any p € F[X]. Finding
roots or factors requires only a simple search

procedure, provided that they do exist.
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The baby bird could not fly.

Out of

the nest
he went.
: Down, But he could walk.
\ down, “Now I will go and find
- down! my mother,” he said.
I _ﬁf Plop!




"Are you my mother?” “Are you my mother?”
the baby bird asked a dog. | the baby bird asked a cow.

“I am not your mother. | “How could I be your mother?”
I 'am a dog,” said the dog. said the cow. “I am a cow.”




The big thing said,

‘Just then the baby bird'
| “SNORT'”

saw a big thing.
“You are my mother!”
he said.



T he' steam shovel
said, “SNORT!”

The computability theorist
said to the steam shovel,

“Are you a proof of the
‘Riemann Hypothesis?”
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BSS Computability I

Defn.: A BSS-machine has an infinite tape,

indexed by w. At each stage, cofinitely many cells
are blank, and finitely many contain one real
number each. In a single step, the machine can
copy one cell into another, or perform a field
operation (+, —, -, or =) on two cells, or compare
any cell to 0 (using < or =) and fork, or halt.

The machine starts with a tuple p’€ R<% of real
parameters in its cells, and the input consists of a
tuple £ € R<%, written in the cells immediately
following p. The machine runs according to a
finite program, and if it halts within finitely many
steps, the output is the tuple of reals in the cells
when it halts.
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/ BSS-Semidecidability I \

Defn.: A set S C R is:
e BSS-decidable if yg is BSS-computable;

e BSS-enumerable if S is the image of w (C R)
under some partial BSS-computable function;

o BSS-semidecidable if S is the domain of such

a function.

SO

{BSS-decidable sets} C {BSS-semidecidable sets}
and

{BSS-enumerable sets} C {BSS-semidecidable}.
However, the set A of algebraic real numbers is
BSS-semidecidable, but turns out not to be
BSS-enumerable, nor BSS-decidable. Indeed, Q is
not BSS-decidable. And there exist countable
BSS-decidable sets which are not
BSS-enumerable. (Proofs by Herman-Isard, Meer,

\Ziegler.) /
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‘Field Questions on ]RI

Lemma (Folklore): The splitting set Sg and the
root set Rr are both BSS-decidable. Also, the
number of real roots of r € R[X] is
BSS-computable.

Lemma: If f: R™ — R™ is BSS-computable by a
machine with real parameters p, then for all
r € R™, f(¥) lies in the field Q(Z, p).

Corollary: A is not BSS-enumerable. Indeed,
every BSS-enumerable set is contained in a

finitely generated extension of Q.

Corollary: No BSS-computable function can
accept all inputs ¢ € Q[X] and output the real
roots of each input ¢. (Hence neither can it
output the irreducible factors of ¢ in R|X].)

Intuition: finding roots of a polynomial requires
an AYMM search.
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‘ Alternative Proof I

Prop.: Neither Q nor A is BSS-decidable.

Proof: Suppose some BSS machine M computes a

total function H : R — R, using real parameters
p. Choose an input y € R transcendental over
Q(p), and run M on y. At each stage s, the n-th
cell contains f,, s(y), for some f, s € Q(p)(Y).
Then there exists € > 0 such that when

|z — y| < €, each step by M on input z is identical
to the computation on y, with f, s(«) in place of
frn.s(y) in the n-th cell. So, on the e-ball around
y, M computes a Q(p)-rational function of its
input. We say that M computes a function which

is locally Q(p)-rational at transcendentals over p.

If M computes the characteristic function of
S C R, then it must be constant on such e-balls.

So either S or S is not dense in R.
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‘Application to Finding Roots.

Suppose that M, on every input (ag,...,a4),
outputs a real root of X° +asX*+- -+ a1 X +ap.
Choosing @ € R® algebraically independent over

the parameters p of M, we would have a rational
function over Q(p) which gives a root of each
monic degree-5 polynomial in R|X| with
coefficients within € of a. But then this rational
function extends from this open e-ball to give a
general formula for such a root. By the
Ruffini-Abel Theorem, this is impossible.

The same would hold even for BSS machines
enhanced with the ability to find n-th roots of

positive real numbers.
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‘Algebraic Numbers of Degree d I

Defn.: A, is the set of all algebraic real numbers
of degree < d over Q. A_, is the set (Ayg— Ay 1).

Question (Meer-Ziegler): Can a BSS machine
with oracle A, decide the set Agy17

Answer (work in progress): No. So we have

Q=A; <Bss As <Bss A3 <pss --- <Bss A.




Proving A, 1 A Adl

A process similar to before: If M with parameters
p is an oracle BSS-machine deciding A4 from
oracle A4, let y be transcendental over Q(p).
Then M%< on input y halts and outputs 0, with
finitely many f € Q(p)(Y) giving the values in its
cells during the computation. We claim that

Jx € Ag4q sufficiently close to y that M*¢ on
input x mirrors this computation and also

outputs 0.
Let F' be the set of nonconstant f(Y') used.

Problem: we need to ensure f(x) ¢ A, for every
f eF.
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Getting all f(x) ¢ A4

e We may ignore any f € F' in which a
transcendental parameter p; appears. So

assume there is a single algebraic parameter p.

o If f(r)=a€ Ay, and f(X) = % with
g,h € Q(p)[X], then z is a root of
fo(X) = g(X) — ah(X) € Ayg(p)[X]. Make
sure that the minimal polynomial ¢(X) of
over Q stays irreducible in Ay4(p)[X], so that

if f(x) = a, then ¢(X) would divide f,(X).

e We can choose such ¢(X) so that q(X) does
not divide any f,(X) with a € Aj and f € F.
Indeed, with all other coefficients fixed, there
are only finitely many constant terms gqg
which would allow ¢ to divide any f,.

e Choose ¢y so that ¢(X) has a real root x
within € of y.

/
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‘ Summary I

For the root x of ¢(X) chosen above, we have

r € Agyq. Since |z — y| < €, we know that for all
nonconstant f € F, f(x) and f(y) have the same
sign, with f(x) ¢ Ay and f(y) ¢ Ag. So the
computation by the BSS machine M on input x
parallels that on input y, and both halt (at the
same step) and output 0. Thus M*¢ does not
decide the set Agyq.
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More General Questions'

e What other AYMM searches can be
investigated by translating them into
problems in R and trying to compute them
using BSS machines?

e Can one do anything similar with Infinite
Time Turing Machines?

e Is there any way to consider AYMM searches
for Godel numbers of proofs?
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