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Computable Categoricity

Defn.
A computable structure A is computably categorical if for each
computable B ∼= A there is a computable isomorphism from A onto B.

Examples: (Dzgoev, Goncharov; Remmel; Lempp, McCoy, M.,
Solomon)

A linear order is computably categorical iff it has only finitely many
adjacencies.
A Boolean algebra is computably categorical iff it has only finitely
many atoms.
An ordered Abelian group is computably categorical iff it has finite
rank (≡ basis as Z-module).
For trees, the known criterion is recursive in the height and not
easily stated!
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Computably Categorical Fields

The following fields are all computably categorical:
Q.
All finitely generated extensions of Q or Fp.
Every algebraically closed field of finite transcendence degree
over Q or Fp.
All normal algebraic extensions of Q or Fp.
Some (but not all) non-normal algebraic extensions of Q or Fp.
Certain fields (but not very many!) of infinite transcendence
degree over Q. (Miller-Schoutens.)
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Relative Computable Categoricity

Defn.
A computable structure A is relatively computably categorical if for
each B ∼= A with domain ω, there is an isomorphism from A onto B
which is computable from an oracle for B.

Clearly this implies computable categoricity – but the converse is false!
Certain computably categorical structures are not relatively
computably categorical.
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Scott Families

Defn.
A Scott family for a structure A is a set Σ of formulas ψ(x0, . . . , xn,~c),
over a fixed finite tuple ~c of parameters from A, such that

For all ~a ∈ A<ω, some ψ ∈ Σ has |=A ψ(~a,~c).

If ~a, ~b ∈ An satisfy the same ψ ∈ Σ, then some α ∈ Aut(A) has
α(ai) = bi for all i ≤ n.

Example: sc . . .s
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Thm. (Ash-Knight-Manasse-Slaman; Chisholm)
A computable structure A is relatively computably categorical iff A has
a computably enumerable Scott family of existential formulas.
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Algebraic Fields with Splitting Algorithms

Definitions
A field is algebraic if it is an algebraic extension of its prime subfield
(either Q or Fp).
A computable field F has a splitting algorithm if its splitting set SF (or
equivalently its root set RF ) is computable:

SF = {p ∈ F [X ] : p factors properly in F [X ]}
RF = {p ∈ F [X ] : (∃a ∈ F ) p(a) = 0}

Facts:
All finite algebraic extensions of Q and Fp have splitting
algorithms, uniformly in their generators.
An algebraic field F has a splitting algorithm iff all computable
fields isomorphic to F have splitting algorithms.
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Orbit Relations for Fields

Definition
For a computable field F , the full orbit relation AF for F is the set:

{〈a1, . . . ,an; b1, . . . ,bn〉 : (∃σ ∈ Aut(F ))(∀i) σ(ai) = bi} ⊆ ∪nF 2n.

For algebraic F , by the Effective Theorem of the Primitive Element, AF
is computably isomorphic to the orbit relation BF of F , defined by the
action of Aut(F ):

BF = {〈a; b〉 ∈ F 2 : (∃σ ∈ Aut(F )) σ(a) = b}.

For algebraic F ⊇ Q in general, BF is Π0
2:

〈a; b〉 ∈ BF iff (∀q ∈ Q[X ,Y ]) [q(a,Y ) ∈ RF ⇐⇒ q(b,Y ) ∈ RF ].

However, when F has a splitting algorithm, BF becomes Π0
1. (And

when F ⊇ Q is a normal algebraic extension, BF is computable.)
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Computable Categoricity

Theorem (MS 2010)
Let F be a computable algebraic field with a splitting algorithm. Then F
is computably categorical iff BF is computable.

Since F has a splitting algorithm, BF is Π0
1, so the complexity of this

condition is Σ0
3 in indices for F and its splitting algorithm.

Corollary
A computable algebraic field with a splitting algorithm is computably
categorical iff it is relatively computably categorical.

(The proof below relativizes easily.)
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BF Computable =⇒ F Computably Categorical

Sketch of Proof: Suppose we have defined fs : Fs = Q(x0, . . . , xs)→ E ,
where F = {x0, x1, . . .}, and Fs ⊆ Fs+1 are both normal within F .
Assume fs extends to an isomorphism ψ : F → E .
Find a primitive generator a ∈ F of Fs+1, and find its minimal
polynomial p(X ) ∈ Fs[X ]. Let a = y1, y2, . . . , yd be all its roots in F .

For each j ≤ d with 〈a, yj〉 /∈ BF , find some qj ∈ Fs[X ,Y ] with

qj(a,Y ) ∈ RF & qj(yj ,Y ) /∈ RF .

Then find all roots z1, . . . , zd ∈ E of the image p(X ) of p(X ) under fs.
Define fs+1(a) to be any zk for which all the polynomials qj(zk ,Y ) have
roots in E . Then fs ⊆ fs+1 and 〈a, ψ−1(zk )〉 ∈ BF , so fs+1 must extend
to the isomorphism ψ ◦ σ : F → E , where σ ∈ Aut(F ) has
σ(a) = ψ−1(zk ) and (∀i)σ(xi) = xi . By iterating, we get a computable
isomorphism.

Miller & Shlapentokh (CUNY & ECU) Fields and Computable Categoricity GWU Logic Seminar 9 / 19



BF Computable =⇒ F Computably Categorical

Sketch of Proof: Suppose we have defined fs : Fs = Q(x0, . . . , xs)→ E ,
where F = {x0, x1, . . .}, and Fs ⊆ Fs+1 are both normal within F .
Assume fs extends to an isomorphism ψ : F → E .
Find a primitive generator a ∈ F of Fs+1, and find its minimal
polynomial p(X ) ∈ Fs[X ]. Let a = y1, y2, . . . , yd be all its roots in F .
For each j ≤ d with 〈a, yj〉 /∈ BF , find some qj ∈ Fs[X ,Y ] with

qj(a,Y ) ∈ RF & qj(yj ,Y ) /∈ RF .

Then find all roots z1, . . . , zd ∈ E of the image p(X ) of p(X ) under fs.
Define fs+1(a) to be any zk for which all the polynomials qj(zk ,Y ) have
roots in E . Then fs ⊆ fs+1 and 〈a, ψ−1(zk )〉 ∈ BF , so fs+1 must extend
to the isomorphism ψ ◦ σ : F → E , where σ ∈ Aut(F ) has
σ(a) = ψ−1(zk ) and (∀i)σ(xi) = xi . By iterating, we get a computable
isomorphism.

Miller & Shlapentokh (CUNY & ECU) Fields and Computable Categoricity GWU Logic Seminar 9 / 19



BF Computable =⇒ F Computably Categorical

Sketch of Proof: Suppose we have defined fs : Fs = Q(x0, . . . , xs)→ E ,
where F = {x0, x1, . . .}, and Fs ⊆ Fs+1 are both normal within F .
Assume fs extends to an isomorphism ψ : F → E .
Find a primitive generator a ∈ F of Fs+1, and find its minimal
polynomial p(X ) ∈ Fs[X ]. Let a = y1, y2, . . . , yd be all its roots in F .
For each j ≤ d with 〈a, yj〉 /∈ BF , find some qj ∈ Fs[X ,Y ] with

qj(a,Y ) ∈ RF & qj(yj ,Y ) /∈ RF .

Then find all roots z1, . . . , zd ∈ E of the image p(X ) of p(X ) under fs.
Define fs+1(a) to be any zk for which all the polynomials qj(zk ,Y ) have
roots in E . Then fs ⊆ fs+1 and 〈a, ψ−1(zk )〉 ∈ BF , so fs+1 must extend
to the isomorphism ψ ◦ σ : F → E , where σ ∈ Aut(F ) has
σ(a) = ψ−1(zk ) and (∀i)σ(xi) = xi . By iterating, we get a computable
isomorphism.

Miller & Shlapentokh (CUNY & ECU) Fields and Computable Categoricity GWU Logic Seminar 9 / 19



F Computably Categorical =⇒ BF Computable
Proof: Here we assume that F is computably categorical, and build a
computable E ∼= F . In doing so, whenever possible, we build E so that
ϕe will not be an isomorphism. (This uses a priority construction,
based on the values e.) For the least e such that ϕe defies all our
attempts, the isomorphism ϕe will allow us to compute BF .

At each stage s + 1, we look for the least e such that for some
a,b ∈ Fs, ϕe,s(a)↓ and 〈a,b〉 ∈ BFs , yet 〈a,b〉 /∈ BFs+1 . (Essentially we
search for q ∈ Q[X ,Y ] such that q(b,Y ) has a root in F and q(a,Y )
does not.) Then, when building the extension Es+1 of Es, we add a
root of q(ϕe(a),Y ), so that our isomorphism Fs+1 → Es+1 has
b 7→ ϕe(a), and no isomorphism F → E has a 7→ ϕe(a).

If ϕe : F → E is an isomorphism, with e minimal, then

(∀s ≥ s0) [ϕe,s(a)↓ =⇒ (∀b)[〈a,b〉 ∈ BFs =⇒ 〈a,b〉 ∈ BF ]].

So BF is c.e., as well as Π0
1.
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Algebraic Fields Without Splitting Algorithms

Theorem (easy corollary of Ash-Knight-Manasse-Slaman)
Let F be a computable, relatively computably categorical, algebraic
field. Then the orbit relation BF is computably enumerable.

This generalizes our theorem on fields with splitting algorithms, since
for those fields, BF is automatically Π0

1.

However, if F has no splitting algorithm, then BF can be c.e., or even
computable, with F not computably categorical.

Example: Begin to build E = F = Q(θ0) with θ3
0 = 2. If ϕe(θ0)↓= θ0,

then adjoin to E and F two more cube roots θ1, θ2 of 2. Also adjoin to
E a square root of θ0, and to F a square root of θ1. Then ϕe : E → F is
not an isomorphism, yet BE and BF remain computable.
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Full Construction: BF ≤T ∅, but F not C.C.

Lemma
For every Galois extension Q ⊆ E and every d > 1, there exists a
monic f (X ) ∈ Z[X ] of degree d such that Gal(K/Q) ∼= Sd and the
splitting field K of f (X ) over Q is linearly disjoint from E .

Corollary
There is a computable sequence f0, f1, . . . in Z[X ] whose splitting fields
Ki each have Galois group S7 over Q and such that each Ki is linearly
disjoint from the compositum of all Kj (j 6= i).

Use this sequence to build F and F̃ . For distinct roots r1, r2, r3, r4 of Ki ,
first adjoin (r1 + r2) to Q in both F and F̃ . If ϕi(r1 + r2)↓= (r1 + r2), then
adjoin (r3 + r4) to both fields, r1 to F , and r3 to F̃ . Then F ∼= F̃ , but not
via ϕi . However, F is rigid (except for interchanging r1 with r2, if they
entered F ). Thus BF is computable.
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The Isomorphism Tree
Let F ∼= F̃ be computable algebraic fields, and let z1, z2, z3, . . . be a
sequence of elements generating F . For simplicity, assume
Q = Q(z0) ⊆ Q(z1) ⊆ Q(z2) ⊆ · · · , with z0 = 1.
Compute polynomials fi+1 ∈ Q[Y ,Z ] s.t. fi+1(zi ,Z ) is the minimal
polynomial of zi+1 over Q(zi), for each i .

Defn.

The isomorphism tree IFF̃ is the following subtree of F̃<ω:

{〈z̃1, z̃2, . . . , z̃m〉 : (∀i < m) f̃i+1(z̃i , z̃i+1) = 0}.

Here f̃i(Y ,Z ) is the image of fi(Y ,Z ) under the isomorphism of the
prime subfields.

So IFF̃ is a finite-branching tree, and paths through it correspond to
isomorphisms from F onto F̃ , with each path Turing-equivalent to its
isomorphism.
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Scott Families for Algebraic Fields

To enumerate a Scott family Σ for F , we need to give an ∃-formula ψi
for each zi such that, for all z ∈ F ,

ψi(z) holds in F ⇐⇒ 〈zi , z〉 ∈ BF .

For the finitely many roots of fi(zi−1,Z ) in F , ψi needs to know some
level m of IFF such that all nodes at level i with extensions to level m
are extendible (i.e. lie on paths).

If we have a computable function which gives such a level m for every
m, then F has a c.e. Scott family, hence is relatively computably
categorical. This function gives a computable bound on the height of
the tree IFF above nonextendible nodes.
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Back to Computable Categoricity
Theorem (HKMS 2010)
There exists a computable algebraic field F which is computably
categorical, but not relatively c.c. In particular, BF is not Σ0

2.

Proof: a tree construction of F .
A node ρ at level 2e has two outcomes: ∼= and 6∼=. It tries to ensure that
if the structure computed by the e-th Turing program is a field Ke
isomorphic to F , then some program Pρ computes an isomorphism
between them.
Each time larger initial fragments of F and Ke are found to embed into
each other, ρ makes its stronger outcome ∼= eligible. This outcome
does not allow lower-priority nodes to do anything until F and Ke
match up well enough for Pρ to be sure how to build its isomorphism.

Suppose ρ is on the true path. If F ∼= Ke, then ρ̂ 〈∼=〉 will also be on the
true path, and Pρ will compute an isomorphism. (Finitely much
information is needed: ρ, and the last stage at which ρ is initialized.)
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Computable Categoricity, continued

Nodes τ at levels 2e + 1 ensure that the e-th partial computable
function ϕe does not compute an m-reduction from BF to ∅′′. (If this
holds for every e, then BF 6≤m ∅′′, hence cannot be Σ0

2.)

τ adds to F two Q-conjugates xτ and yτ . At all stages, there will be two
distinct zs and zt already in F such that the minimal polynomials of
each over xτ have no root over yτ . Whenever Wϕe(〈xτ ,yτ 〉) gets a new
element, we add a root over yτ of the minimal polynomial of zs over xτ
(where s < t), but also add a new u > t for which F has no root over yτ
of the minimal polynomial of zu over xτ . Therefore, if τ is never injured,
then 〈xτ , yτ 〉 ∈ BF iff Wϕe(〈xτ ,yτ 〉) is infinite.
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BF and the Galois Group of F over L

Extend the definition to field extensions F/L with F computable:

BF/L = {〈a; b〉 ∈ F 2 : (∃σ ∈ Gal(F/L)) σ(a) = b}.

For algebraic F/L, if L is a c.e. subfield of F , BF/L is always Π0
2.

Let BF/L be c.e. Then given 〈a,b〉 ∈ BF/L, we can compute some
σ ∈ Gal(F/L) with σ(a) = b. Let F = {x0, x1, . . .}, and let σ(xs) be the
first xt with 〈a, x0, . . . , xs; b, σ(x0), . . . , σ(xs−1), xt〉 ∈ AF/L. We suggest:

Definition
A computable algebraic extension F/L has computably approximable
Galois group Gal(F/L) if BF/L is computably enumerable.

Gal(F/L) is essentially a type-2 computable object, in the sense of
computable analysis. (It may have 2ω-many elements!)

Miller & Shlapentokh (CUNY & ECU) Fields and Computable Categoricity GWU Logic Seminar 17 / 19



BF and the Galois Group of F over L

Extend the definition to field extensions F/L with F computable:

BF/L = {〈a; b〉 ∈ F 2 : (∃σ ∈ Gal(F/L)) σ(a) = b}.

For algebraic F/L, if L is a c.e. subfield of F , BF/L is always Π0
2.

Let BF/L be c.e. Then given 〈a,b〉 ∈ BF/L, we can compute some
σ ∈ Gal(F/L) with σ(a) = b. Let F = {x0, x1, . . .}, and let σ(xs) be the
first xt with 〈a, x0, . . . , xs; b, σ(x0), . . . , σ(xs−1), xt〉 ∈ AF/L.

We suggest:

Definition
A computable algebraic extension F/L has computably approximable
Galois group Gal(F/L) if BF/L is computably enumerable.

Gal(F/L) is essentially a type-2 computable object, in the sense of
computable analysis. (It may have 2ω-many elements!)

Miller & Shlapentokh (CUNY & ECU) Fields and Computable Categoricity GWU Logic Seminar 17 / 19



BF and the Galois Group of F over L

Extend the definition to field extensions F/L with F computable:

BF/L = {〈a; b〉 ∈ F 2 : (∃σ ∈ Gal(F/L)) σ(a) = b}.

For algebraic F/L, if L is a c.e. subfield of F , BF/L is always Π0
2.

Let BF/L be c.e. Then given 〈a,b〉 ∈ BF/L, we can compute some
σ ∈ Gal(F/L) with σ(a) = b. Let F = {x0, x1, . . .}, and let σ(xs) be the
first xt with 〈a, x0, . . . , xs; b, σ(x0), . . . , σ(xs−1), xt〉 ∈ AF/L. We suggest:

Definition
A computable algebraic extension F/L has computably approximable
Galois group Gal(F/L) if BF/L is computably enumerable.

Gal(F/L) is essentially a type-2 computable object, in the sense of
computable analysis. (It may have 2ω-many elements!)

Miller & Shlapentokh (CUNY & ECU) Fields and Computable Categoricity GWU Logic Seminar 17 / 19



Automorphism Groups in General
Defn.
For any structureM with domain ω in which all orbits are finite, say
that Aut(M) is d-computably approximable if the following set is
computably enumerable in the Turing degree d :

AM = {〈~a;~b〉 ∈
⋃
n

(
ω2n
)

: (∃σ ∈ Aut(M))(∀i < n)σ(ai) = bi}.

In general AM is Σ1
1. For relatively computably categorical structures

M, Aut(M) isM-computably approximable: enumerate 〈~a;~b〉 into AM
whenever some ψ in a (computably enumerable) Scott family forM is
found to be satisfied by both ~a and ~b.

However, Steiner has found computable structuresM with all orbits
finite and AM computable, such thatM is not computably categorical.
For instance, letM be an equivalence relation with exactly one
equivalence class of each finite size. We saw the same above for a
computable algebraic field.
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Automorphism Groups in General
Defn.
For any structureM with domain ω in which all orbits are finite, say
that Aut(M) is d-computably approximable if the following set is
computably enumerable in the Turing degree d :

AM = {〈~a;~b〉 ∈
⋃
n

(
ω2n
)

: (∃σ ∈ Aut(M))(∀i < n)σ(ai) = bi}.

In general AM is Σ1
1. For relatively computably categorical structures

M, Aut(M) isM-computably approximable: enumerate 〈~a;~b〉 into AM
whenever some ψ in a (computably enumerable) Scott family forM is
found to be satisfied by both ~a and ~b.
However, Steiner has found computable structuresM with all orbits
finite and AM computable, such thatM is not computably categorical.
For instance, letM be an equivalence relation with exactly one
equivalence class of each finite size. We saw the same above for a
computable algebraic field.
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V. Stoltenberg-Hansen & J.V. Tucker; Computable rings and fields,
in Handbook of Computability Theory, ed. E.R. Griffor
(Amsterdam: Elsevier, 1999), 363-447.

Miller & Shlapentokh (CUNY & ECU) Fields and Computable Categoricity GWU Logic Seminar 19 / 19


	Main Part

