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BSS Computation on R

Roughly, a BSS machine M on R operates like a Turing machine, but
with a real number in each cell, rather than a bit.

@ M can compute full-precision +. —. -, and = on numbers in its
cells.

@ M can compare 0 to the number in any cell, using = or <, and fork
according to the answer.

@ M is allowed finitely many real numbers zo, ...,z as parameters
in its program. The input and output (if M halts) are tuples
y € R* = { finite tuples from R }.
A subset S C R is BSS-decidable iff its characteristic function xs is
computable by a BSS machine, and BSS-semidecidable iff S is the
domain of some BSS-computable function.
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Basic Facts about BSS Computation

For a machine M with parameters Z, running on input y, only elements
of the field Q(Z,y) can ever appear in the cells of M.
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Cell:
0 m m+ 1 m+n m+n+1
Zp Zm Y1 Yn
Zg Zm Y1 Yn Zm + Yn
fO,S ()7) fm,S(Y) fm+1 ,S ()7) fm-',—n,s ()7) fm+n+1 ,S ()7)
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Basic Facts about BSS Computation

For a machine M with parameters Z, running on input y, only elements
of the field Q(Z,y) can ever appear in the cells of M.

For each input y, every f; s(Yq,..
coefficients from the field Q(Z). If the input {y1, ...

Cell:
0 m m+ 1 m+n m+n+1
Zp Zm Y1 Yn
Zg Zm Y1 Yn Zm + Yn
fO,S ()7) fm,S(Y) fm+1 ,S ()7) fm+n,s ()7) fm+n+1 ,S ()7)

., Yn) is a rational function with

independent over Q(Z), then each fi,s(V) is uniquely defined.
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Restrictions on BSS Computation

Given a machine M with parameters Z, choose any input y
algebraically independent over Q(Z). If M(y) halts after t steps, then
only finitely many functions f; s appear. So there is an ¢ > 0 such that
for all inputs X within € of y, M at stage s contains:

‘ 1:0,5()?) ‘ ‘ fm,s()z’) ‘ fm+1,s()?) ‘ ‘ fm+n,s()?) ‘ fm+n+1,s()?) ‘

with the same functions f; s as for y.
Therefore, on any X € R" in an e-ball around y, M always halts after t
steps, and computes the function (fo ((X), ..., fmintt.(X))-
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for all inputs X within € of y, M at stage s contains:

‘ fO,s()?) ‘ ‘ fm,s(%) ‘ fm+1,s()?) ‘ ‘ fm-|-n,s()z’) ‘ fm+n+1,s()?) ‘

with the same functions f; s as for y.
Therefore, on any X € R" in an e-ball around y, M always halts after t
steps, and computes the function (fo ((X), ..., fmintt.(X))-

Corollary: No BSS-decidable set can be dense and codense within
any nonempty open subset of R".
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Oracle BSS-Machines

To do the same for a machine M with parameters Z and an oracle
A C R, we would have to ensure that |X — y| < e and also, for all f; g,

fis(X) e A <= fis(y) €A

Then the computation will fork exactly the same for X as for y, and will
output (f; {(X)).
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Oracle BSS-Machines

To do the same for a machine M with parameters Z and an oracle
A C R, we would have to ensure that |X — y| < e and also, for all f; g,

fis(X) e A <= fis(y) € A

Then the computation will fork exactly the same for X as for y, and will
output (f; {(X)).

Theorem: Let

A_q4 :={y € Ry is algebraic of degree d over Q}.

Thenforalld >0, A_q11 £Bss A—q. Indeed A_g;1 £gss Uc<dAc.
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Proving the Theorem ford = 1: A_» £gss A_1 =Q

For any machine M with parameters Z, fix y € R transcendental over
Q(Z). Let F be the finite set of rational functions f(Y) over Q(Z) such
that f(y) appears in a cell during this computation.
We pick x = b + /u for some b,u € Q with

9 [x—y|<e¢g

@ f’(b) # 0 for all nonconstant f € F, and u > 0 small enough that

f(b+ V) # (b - VU); and

° Vu ¢ Q(2).
So x = b + v/u has minimal polynomial p(X) = X2 — 2bX + (b2 — u)
over Q(Z), with conjugate (b — \/u).
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Proving the Theorem ford = 1: A_» £gss A_1 =Q

Foreachf(Y) = % € F, write

f(X) = 9(X) _ dg(X)-p(X) +rg(X)
h(X)  an(X) - p(X) + rm(X)

with rg(X) and r,(X) both linear polynomials. Then

r(x)_ _ _r(b—\/U)
o0~ 100 = o+ V) £ (b — V) = B,

S0 rg(X) is not a constant multiple of ry(X) whenever f is nonconstant.

Russell Miller (CUNY) Greifswald 2010 7/10



Proving the Theorem ford = 1: A_» £gss A_1 =Q

if 9 — — Tg(x) _ gr-(b+vU)+g
Butifa=1f(x) = rﬁ(x) = h11(b+\/U)+h(?’ then

g1b 4+ go — ahib — ahg
u=
vu —(g1 —ahy)

or gy = ahy.

In the first case, f(x) = a ¢ Q(Z) since v/u ¢ Q(Z). In the second case,

_ ahy-(b+VU)+g . -
a= e forcing go = aho, so that

rg(X) = 91X 4+ go = ah1X + ahg = a- ry(X)
and f must have been constant. So
f(x) € Q(Z) <« fisconstant <= f(y) € Q(2)

and specifically f(x) € Q <= f(y) € Q.
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Proving the Theorem ford = 1: A_» £gss A_1 = Q

if 9 — — Tg(x) _ gr-(b+vU)+g
Butifa=1f(x) = rﬁ(x) = h11(b+\/ﬁ)+h(?’ then

. g1b 4+ go — ahib — ahg
—(g1 —ahy)

Vu

or g = ahy.

In the first case, f(x) = a ¢ Q(Z) since v/u ¢ Q(Z). In the second case,

3 (0+vVU)480 forcing gy = aho, so that

&= Horva)ho

rg(X) = 91X 4+ go = ah1X + ahg = a- ry(X)
and f must have been constant. So
f(x) € Q(Z) <« fisconstant <= f(y) € Q(2)

and specifically f(x) € Q <= f(y) € Q. So the oracle computation on
inputs x and y follows the same path and outputs the same answer.
Buty ¢ A oandx =b + u e A_,.
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Other Results

@ Prop.: Let p and r be any positive integers. Then A_, <gss A_; if
and only if p divides r.
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@ Prop.: Let p and r be any positive integers. Then A_, <gss A_; if
and only if p divides r.

@ Prop.: Let P be the set of all prime numbersinw andletS C P
and T C P, ThenAg <ggs Arifandonlyif SC T.

(Here Ag = UgesA_g.)

@ Cor.: There exists a subset £ of the BSS-semidecidable degrees
such that (£, <gss) = (P(w), Q).

@ Thm.: If C C R* is a set such that the BSS Halting Problem H
satisfies H <gss C, then |C| = 2“. Indeed R must have finite
transcendence degree over the field generated by the coordinates
of the tuples in C.

@ Thm.: If C C R* is an oracle set of infinite cardinality x < 2%, and
S C Ris a set with S <ggg C, then S must be locally of
bicardinality < .
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Online Help

@ Introduction to BSS computation:
L. Blum, F. Cucker, M. Shub, and S. Smale; Complexity and Real
Computation (Berlin: Springer-Verlag, 1997).

@ Relevant papers:
C. Gassner; A hierarchy below the halting problem for additive
machines, Theory of Computing Systems 43 (2008) 3—4,
464—-470.
K. Meer & M. Ziegler; An explicit solution to Post’s Problem over
the reals, Journal of Complexity 24 (2008) 3—15.

@ Full version of these results, joint with Calvert & Kramer, available
atgc.edu/~rmiller/BSSfull.pdf

@ These slides available at gc.edu/~rmiller/slides.html
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