Hilbert's Tenth Problem for Subrings of the Rationals

Russell Miller

Queens College \& CUNY Graduate Center

Workshop on Sets and Computations Institute for Mathematical Sciences National University of Singapore 22 April 2015
(Joint work with Kirsten Eisenträger, Jennifer Park, \& Alexandra Shlapentokh.)

HTP: Hilbert's Tenth Problem

Definition

For a ring R, Hilbert's Tenth Problem for R is the set

$$
\operatorname{HTP}(R)=\left\{p \in R\left[X_{0}, X_{1}, \ldots\right]:\left(\exists \vec{a} \in R^{<\omega}\right) p\left(a_{0}, \ldots, a_{n}\right)=0\right\}
$$

of all polynomials (in several variables) with solutions in R.
So $\operatorname{HTP}(R)$ is c.e. relative to (the atomic diagram of) R.

Hilbert's original formulation in 1900 demanded a decision procedure for $H T P(\mathbb{Z})$.

Theorem (PMRD, 1970)
$H T P(\mathbb{Z})$ is undecidable: indeed, $\operatorname{HTP}(\mathbb{Z}) \equiv{ }_{1} \emptyset^{\prime}$.
The most obvious open question is the Turing degree of $H T P(\mathbb{Q})$.

Subrings R_{W} of \mathbb{Q}

A subring R of \mathbb{Q} is characterized by the set of primes p such that $\frac{1}{p} \in R$. For each $W \subseteq \omega$, set

$$
R_{W}=\left\{\frac{m}{n} \in \mathbb{Q}: \text { all prime factors } p_{k} \text { of } n \text { have } k \in W\right\}
$$

be the subring generated by inverting the k-th prime p_{k} for all $k \in W$.
We often move effectively between W (a subset of ω) and $P=\left\{p_{n}: n \in W\right\}$, the set of primes which W describes.

Notice that R_{W} is computably presentable precisely when W is c.e., while R_{W} is a computable subring of \mathbb{Q} iff W is computable.

$H T P\left(R_{W}\right)$

Basic facts about $H T P\left(R_{W}\right)$

- $H T P\left(R_{W}\right) \leq_{1} W^{\prime}$.
- $W \leq_{1} H T P\left(R_{W}\right)$. (Reason: $k \in W \Longleftrightarrow\left(p_{k} X-1\right) \in H T P\left(R_{W}\right)$.)
- $H T P(\mathbb{Q}) \leq_{1} H T P\left(R_{W}\right)$:

$$
\begin{aligned}
p\left(X_{1}, \ldots, X_{j}\right) \in H T P(\mathbb{Q}) & \Longrightarrow\left(Y^{d} \cdot p\left(\frac{X_{1}}{Y}, \ldots, \frac{X_{j}}{Y}\right) \& Y>0\right) \in \operatorname{HTP}(\mathbb{Z}) \\
\Longrightarrow & \left(Y^{d} \cdot p\left(\frac{X_{1}}{Y}, \ldots, \frac{X_{j}}{Y}\right) \& Y>0\right) \in H T P\left(R_{W}\right) \\
\Longrightarrow & p\left(X_{1}, \ldots, X_{j}\right) \in H T P(\mathbb{Q}) .
\end{aligned}
$$

It is possible to have $W^{\prime} \not \equiv_{T} H T P\left(R_{W}\right)$: let W be c.e. and nonlow, so that $W^{\prime}>_{T} \emptyset^{\prime} \geq_{T} H T P\left(R_{W}\right)$.

Explaining " $Y>0$ " as a polynomial

Four Squares Theorem

An integer is nonnegative iff it is the sum of four squares of integers.

Corollary

It follows that a rational y is positive iff the following equation has a solution in integers:

$$
y\left(1+V_{1}^{2}+V_{2}^{2}+V_{3}^{2}+V_{4}^{2}\right)=1+U_{1}^{2}+U_{2}^{2}+U_{3}^{2}+U_{4}^{2} .
$$

Moreover, any solution in \mathbb{Q} shows that $y>0$. So we have a polynomial in y, \vec{U}, \vec{V} which has a solution (in an arbitrary R_{W}) iff $y>0$.

Subrings with $H T P\left(R_{W}\right) \equiv_{T} H T P(\mathbb{Q})$

A commutative ring is local if it has a unique maximal ideal, and semilocal if it has only finitely many maximal ideals. The semilocal subrings R_{W} are exactly those with W cofinite. If $\bar{W}=\left\{n_{0}, \ldots, n_{j}\right\}$, we write $\mathbb{Z}_{\left(p_{n_{0}}, \ldots, p_{n_{j}}\right)}$ for R_{W}.

Fact (Shlapentokh)

Every semilocal subring R_{W} has $H T P\left(R_{W}\right) \equiv_{T} H T P(\mathbb{Q})$. Both reductions are uniform in (a strong index for) \bar{W}.

Theorem (Eisenträger-M-Park-Shlapentokh)

There exist coinfinite sets W with $H T P\left(R_{W}\right) \equiv_{T} H T P(\mathbb{Q})$. Indeed, such a W can be computably enumerable, and so R_{W} can be computably presentable.

Strategy below an $H T P(\mathbb{Q})$-oracle

Each set $W \subseteq \omega$ corresponds effectively to a set $P \subseteq\{$ primes $\}$.
Enumerate all polynomials in $\mathbb{Z}[\vec{X}]$ effectively as f_{0}, f_{1}, \ldots. Let $P_{0}=\emptyset$. At stage $s+1$, let $p_{0}<\cdots<p_{s}$ be the least primes of $\overline{P_{s}}$. With the oracle, determine whether $f_{s} \in \operatorname{HTP}\left(R_{\left(p_{0}, \ldots, p_{s}\right)}\right)$. If not, do nothing. If so, find a solution of f_{s} here, and invert the primes needed (i.e. add new primes to P_{s+1}, and new elements to W_{s+1}) so as to put this solution in R_{W}.

So every p_{s} (for every s) lies in \bar{P}. Moreover, $f_{s} \in H T P\left(R_{W}\right)$ iff it went in by stage $s+1$, which we can check using an $\operatorname{HTP}(\mathbb{Q})$-oracle.

Enumerating P with no oracle

We approximate $\bar{P}=\left\{p_{0}<p_{1}<\cdots\right\}$ at each stage s.
Requirements for the finite-injury construction:

$$
\begin{aligned}
& \mathcal{P}_{k}: \text { If } f_{k} \in H T P\left(\mathbb{Z}_{\left(p_{0}, \ldots, p_{k}\right)}\right) \text {, then } f_{k} \in H T P\left(R_{W}\right) . \\
& \mathcal{N}_{e}: p_{e, s} \notin P \text {. }
\end{aligned}
$$

At stage $s+1=\langle k, j\rangle$, we check whether any of the first j tuples from $\mathbb{Z}_{\left(p_{0, s}, \ldots, p_{k, s}\right)}$ is a solution to $f_{k}=0$. If so, we invert primes in R_{W} (i.e. add new elements to W) so as to put this solution in R_{W}, satisfying \mathcal{P}_{k}.
$H T P\left(R_{W}\right) \leq_{T} H T P(\mathbb{Q}):$
Notice that $p_{0}=2$.
With an $\operatorname{HTP}(\mathbb{Q})$-oracle, we can decide whether $f_{0} \in H T P\left(Z_{\left(p_{0}\right)}\right)$.
If so, find the stage s_{0} at which a solution first entered R_{W}; else $s_{0}=0$.
Now we know p_{1}, so decide whether $f_{1} \in H T P\left(\mathbb{Z}_{\left(p_{0}, p_{1}\right)}\right)$, etc.

Corollaries

Corollary (Eisenträger-M-Park-Shlapentokh)

For every c.e. set $U \geq_{T} H T P(\mathbb{Q})$, there exists a computably presentable subring $R \subseteq \mathbb{Q}$ with $H T P(R) \equiv_{T} U$.

The construction mixes the requirements above with coding requirements, which invert a certain specific prime in R whenever we see a new element enter U.

Open Question

For such a U, does there exist a computable subring $R \subseteq \mathbb{Q}$ with $H T P(R) \equiv{ }_{T} U$?

Density of W

Definition

For each $W \subseteq \omega$, the natural density of W is the limit

$$
\lim _{s \rightarrow \infty} \frac{\mid W\lceil(s+1) \mid}{s+1}
$$

The upper and lower densities of W are the limsup and liminf here.

Corollary (Eisenträger-M-Park-Shlapentokh)

For every Δ_{2}^{0} real number $r \in[0,1]$, there exists a computably presentable subring $R_{W} \subseteq \mathbb{Q}$ with $\operatorname{HTP}(\mathbb{Q}) \equiv{ }_{T} \operatorname{HTP}\left(R_{W}\right)$ for which W has lower density r and upper density 1.

Upper density of W

Open Question (more number-theoretic)

Can we keep $H T P\left(R_{W}\right) \equiv_{T} H T P(\mathbb{Q})$ and control the upper density of W ? Is there any infinite c.e. such W with upper density <1 ?

The danger is that a polynomial f may have solutions in R_{W} for every cofinite W, but that each solution requires inverting at least ϵ-many of the first s primes (for various s, but with some fixed $\epsilon>0$). So adding a solution of f to R_{W} will require bumping the density $\frac{|W(s+1)|}{s+1}$ up to ϵ, at least temporarily.

However, it seems hopeless to try to keep all solutions of f out of R_{W}. Recall that $\operatorname{HTP}(\mathbb{Z}) \equiv{ }_{T} \emptyset^{\prime}$. As long as $\operatorname{HTP}(\mathbb{Q})$ says that we have not yet ruled out all solutions of f, there could still be a solution in \mathbb{Z}.

The real question is: do "spiky" polynomials such as these actually exist?

Maximal sets

Definition

A ring $R_{W} \subseteq \mathbb{Q}$ is polymaximal if, for every polynomial $f \notin H T P\left(R_{W}\right)$, there exists a finite set $S_{0} \subseteq \bar{W}$ such that $f \notin H T P\left(\mathbb{Z}_{\left(S_{0}\right)}\right)$.

So, for each f, there is a finitary reason why it is or is not in $\operatorname{HTP}\left(R_{W}\right)$. Notice that, whenever a c.e. set W is maximal, R_{W} is polymaximal.

Proposition

For every polymaximal subring R_{W}, we have

$$
H T P\left(R_{W}\right) \equiv_{T} W \oplus H T P(\mathbb{Q})
$$

To decide whether $f \in H T P\left(R_{W}\right)$, we search for either a solution to f in R_{W} (using the W-oracle) or a finite S_{0} as above (using both oracles).

Polymaximality is not universal

Let $f(X, Y, \bar{U})$ be the polynomial:

$$
f=\left(X^{2}+Y^{2}-1\right)^{2}+(X>0)^{2}+(Y>0)^{2}
$$

Solutions $\left(\frac{a}{c}, \frac{b}{c}\right)$ correspond to Pythagorean triples (a, b, c). Suppose a prime p divides c. Then $a^{2}+b^{2} \equiv 0 \bmod p$, and so

$$
-1 \equiv\left(\frac{a}{b}\right)^{2} \bmod p
$$

This forces either $p=2$ or $p \equiv 1 \bmod 4$. Therefore:

Proposition

Let R contain inverses of exactly those primes $\equiv 3 \mathrm{mod} 4$. Then $f \notin H T P(R)$.

Maximality is not universal

However, $f \in \operatorname{HTP}\left(R_{W}\right)$ for all 1-generic W, since, for each product n of finitely many primes,

$$
\left(\frac{n^{2}-1}{n^{2}+1}\right)^{2}+\left(\frac{2 n}{n^{2}+1}\right)^{2}=1 .
$$

So the subring R (inverting all primes $\equiv 3 \bmod 4$) is not polymaximal.
Similar tricks with polynomials $X^{2}+q Y^{2}-1$, for other primes q, allow similar results with other subrings (inverting all primes $\equiv k \bmod q$).

The measure of a polynomial

Definition

Fix any $f \in \mathbb{Z}[\vec{X}]$. The solvability set of f is the set

$$
\operatorname{Sol}(f)=\left\{W \subseteq \omega: f \in H T P\left(R_{W}\right)\right\} .
$$

This is an effectively open subset of Cantor space. The measure $\mu(f)$ of this polynomial is the measure of $\operatorname{Sol}(f)$.

As yet we only know that all 2 -adic rationals can be $\mu(f)$. We conjecture that $\mu\left(X^{2}+q Y^{2}-1 \& X>0 \& Y>0\right)=1$ as well.

To get any other value as $\mu(f)$ would require f to be spiky, in somewhat the same sense as described earlier.

Guessing at the measure of f

Locally open question

For our f above, saying $X^{2}+Y^{2}=1 \& X>0 \& Y>0$, what is $\mu(f)$? (Also for $X^{2}+q Y^{2}=1$.)

As noted, whenever $\frac{1}{n^{2}+1} \in R_{W}$ (for any n), we have $f \in \operatorname{HTP}\left(R_{W}\right)$.

Guessing at the measure of f

Locally open question

For our f above, saying $X^{2}+Y^{2}=1 \& X>0 \& Y>0$, what is $\mu(f)$? (Also for $X^{2}+q Y^{2}=1$.)

As noted, whenever $\frac{1}{n^{2}+1} \in R_{W}$ (for any n), we have $f \in H T P\left(R_{W}\right)$.

Bunyakovsky Conjecture (1857), roughly stated

For every irreducible $g \in \mathbb{Z}[X]$, if there exist $m, n \in \omega$ with $g(m)$ prime to $g(n)$, then the image of \mathbb{Z} under g contains infinitely many primes.

This is known to hold for all g of degree 1 (Dirichlet's Theorem). However, it apparently remains open for each individual nonlinear g !

Notice that, for our f to have $\mu(f)=1$, it would suffice to have arbitrarily large pairs (p, q) of primes with some power $p^{j} q^{k}$ of the form $n^{2}+1$. Likewise for triples, etc.

Uniform reducibility up to measure 0

Theorem

TFAE:

- $\operatorname{HTP}\left(R_{W}\right) \leq_{T} W \oplus H T P(\mathbb{Q})$ uniformly on a measure-1 set of W.
- For all $f \in \mathbb{Z}[\vec{X}]$, the complement $\overline{\operatorname{Sol}(f)}$ is an almost-open set. If these hold, then some functional Φ has $\Phi^{H T P(\mathbb{Q})}(f)=\mu(f)$ for all f.

Uniform reducibility up to measure 0

Theorem

TFAE:

- $\operatorname{HTP}\left(R_{W}\right) \leq_{T} W \oplus H T P(\mathbb{Q})$ uniformly on a measure-1 set of W.
- For all $f \in \mathbb{Z}[\vec{X}]$, the complement $\overline{\operatorname{Sol}(f)}$ is an almost-open set. If these hold, then some functional Φ has $\Phi^{H T P(\mathbb{Q})}(f)=\mu(f)$ for all f.

Fact (see Nies, Computability and Randomness, e.g.)

The class of all generalized low sets, i.e. those W satisfying

$$
W^{\prime} \leq_{T} W \oplus \emptyset^{\prime}
$$

has measure 1. However, there is no single Turing reduction which works uniformly on a set of measure 1.

So, under the equivalent conditions above, no single Turing reduction $W^{\prime}=\Phi_{e}^{H T P\left(R_{W}\right)}$ could hold uniformly on a set of measure 1 .

