Hilbert's Tenth Problem for Subrings of the Rationals

Russell Miller

Queens College & CUNY Graduate Center

Workshop on Sets and Computations Institute for Mathematical Sciences National University of Singapore 22 April 2015

(Joint work with Kirsten Eisenträger, Jennifer Park, & Alexandra Shlapentokh.)

Russell Miller (CUNY)

HTP for Subrings of Q

HTP: Hilbert's Tenth Problem

Definition

For a ring R, Hilbert's Tenth Problem for R is the set

 $HTP(R) = \{ p \in R[X_0, X_1, \ldots] : (\exists \vec{a} \in R^{<\omega}) \ p(a_0, \ldots, a_n) = 0 \}$

of all polynomials (in several variables) with solutions in *R*.

So HTP(R) is c.e. relative to (the atomic diagram of) R.

Hilbert's original formulation in 1900 demanded a decision procedure for $HTP(\mathbb{Z})$.

Theorem (PMRD, 1970)

 $HTP(\mathbb{Z})$ is undecidable: indeed, $HTP(\mathbb{Z}) \equiv_1 \emptyset'$.

The most obvious open question is the Turing degree of $HTP(\mathbb{Q})$.

Subrings R_W of \mathbb{Q}

A subring *R* of \mathbb{Q} is characterized by the set of primes *p* such that $\frac{1}{p} \in R$. For each $W \subseteq \omega$, set

$$R_W = \left\{ \frac{m}{n} \in \mathbb{Q} : \text{ all prime factors } p_k \text{ of } n \text{ have } k \in W \right\}$$

be the subring generated by inverting the *k*-th prime p_k for all $k \in W$.

We often move effectively between *W* (a subset of ω) and $P = \{p_n : n \in W\}$, the set of primes which *W* describes.

Notice that R_W is computably presentable precisely when W is c.e., while R_W is a computable subring of \mathbb{Q} iff W is computable.

$HTP(R_W)$

Basic facts about $HTP(R_W)$

• $HTP(R_W) \leq_1 W'$.

• $W \leq_1 HTP(R_W)$. (Reason: $k \in W \iff (p_k X - 1) \in HTP(R_W)$.) • $HTP(\mathbb{Q}) \leq_1 HTP(R_W)$:

$$p(X_1, \dots, X_j) \in HTP(\mathbb{Q}) \implies (Y^d \cdot p\left(\frac{X_1}{Y}, \dots, \frac{X_j}{Y}\right) \& Y > 0) \in HTP(\mathbb{Z})$$
$$\implies (Y^d \cdot p\left(\frac{X_1}{Y}, \dots, \frac{X_j}{Y}\right) \& Y > 0) \in HTP(R_W)$$
$$\implies p(X_1, \dots, X_j) \in HTP(\mathbb{Q}).$$

It is possible to have $W' \not\equiv_T HTP(R_W)$: let W be c.e. and nonlow, so that $W' >_T \emptyset' \geq_T HTP(R_W)$.

Explaining "Y > 0" as a polynomial

Four Squares Theorem

An integer is nonnegative iff it is the sum of four squares of integers.

Corollary

It follows that a rational *y* is positive iff the following equation has a solution in integers:

$$y(1 + V_1^2 + V_2^2 + V_3^2 + V_4^2) = 1 + U_1^2 + U_2^2 + U_3^2 + U_4^2.$$

Moreover, any solution in \mathbb{Q} shows that y > 0. So we have a polynomial in y, \vec{U}, \vec{V} which has a solution (in an arbitrary R_W) iff y > 0.

Subrings with $HTP(R_W) \equiv_T HTP(\mathbb{Q})$

A commutative ring is *local* if it has a unique maximal ideal, and *semilocal* if it has only finitely many maximal ideals. The semilocal subrings R_W are exactly those with W cofinite. If $\overline{W} = \{n_0, \ldots, n_j\}$, we write $\mathbb{Z}_{(p_{n_0}, \ldots, p_{n_j})}$ for R_W .

Fact (Shlapentokh)

Every semilocal subring R_W has $HTP(R_W) \equiv_T HTP(\mathbb{Q})$. Both reductions are uniform in (a strong index for) \overline{W} .

Theorem (Eisenträger-M-Park-Shlapentokh)

There exist coinfinite sets *W* with $HTP(R_W) \equiv_T HTP(\mathbb{Q})$. Indeed, such a *W* can be computably enumerable, and so R_W can be computably presentable.

Strategy below an $HTP(\mathbb{Q})$ -oracle

Each set $W \subseteq \omega$ corresponds effectively to a set $P \subseteq \{\text{primes}\}$.

Enumerate all polynomials in $\mathbb{Z}[\vec{X}]$ effectively as f_0, f_1, \ldots Let $P_0 = \emptyset$. At stage s + 1, let $p_0 < \cdots < p_s$ be the least primes of $\overline{P_s}$. With the oracle, determine whether $f_s \in HTP(R_{(p_0,\ldots,p_s)})$. If not, do nothing. If so, find a solution of f_s here, and invert the primes needed (i.e. add new primes to P_{s+1} , and new elements to W_{s+1}) so as to put this solution in R_W .

So every p_s (for every s) lies in \overline{P} . Moreover, $f_s \in HTP(R_W)$ iff it went in by stage s + 1, which we can check using an $HTP(\mathbb{Q})$ -oracle.

Enumerating *P* with no oracle

We approximate $\overline{P} = \{p_0 < p_1 < \cdots\}$ at each stage *s*. Requirements for the finite-injury construction: $\mathcal{P}_k : \text{If } f_k \in HTP(\mathbb{Z}_{(p_0,\dots,p_k)}), \text{ then } f_k \in HTP(R_W).$ $\mathcal{N}_e : p_{e,s} \notin P.$

At stage $s + 1 = \langle k, j \rangle$, we check whether any of the first *j* tuples from $\mathbb{Z}_{(p_{0,s},...,p_{k,s})}$ is a solution to $f_k = 0$. If so, we invert primes in R_W (i.e. add new elements to *W*) so as to put this solution in R_W , satisfying \mathcal{P}_k .

 $HTP(R_W) \leq_T HTP(\mathbb{Q})$: Notice that $p_0 = 2$. With an $HTP(\mathbb{Q})$ -oracle, we can decide whether $f_0 \in HTP(Z_{(p_0)})$. If so, find the stage s_0 at which a solution first entered R_W ; else $s_0 = 0$. Now we know p_1 , so decide whether $f_1 \in HTP(\mathbb{Z}_{(p_0,p_1)})$, etc.

Corollaries

Corollary (Eisenträger-M-Park-Shlapentokh)

For every c.e. set $U \ge_T HTP(\mathbb{Q})$, there exists a computably presentable subring $R \subseteq \mathbb{Q}$ with $HTP(R) \equiv_T U$.

The construction mixes the requirements above with coding requirements, which invert a certain specific prime in R whenever we see a new element enter U.

Open Question

For such a *U*, does there exist a computable subring $R \subseteq \mathbb{Q}$ with $HTP(R) \equiv_T U$?

Density of *W*

Definition

For each $W \subseteq \omega$, the *natural density of W* is the limit

s

$$\lim_{n\to\infty}\frac{|W(s+1)|}{s+1}$$

The upper and lower densities of W are the limsup and liminf here.

Corollary (Eisenträger-M-Park-Shlapentokh)

For every Δ_2^0 real number $r \in [0, 1]$, there exists a computably presentable subring $R_W \subseteq \mathbb{Q}$ with $HTP(\mathbb{Q}) \equiv_T HTP(R_W)$ for which W has lower density r and upper density 1.

Upper density of W

Open Question (more number-theoretic)

Can we keep $HTP(R_W) \equiv_T HTP(\mathbb{Q})$ and control the upper density of *W*? Is there any infinite c.e. such *W* with upper density < 1?

The danger is that a polynomial *f* may have solutions in R_W for every cofinite *W*, but that each solution requires inverting at least ϵ -many of the first *s* primes (for various *s*, but with some fixed $\epsilon > 0$). So adding a solution of *f* to R_W will require bumping the density $\frac{|W(s+1)|}{s+1}$ up to ϵ , at least temporarily.

However, it seems hopeless to try to keep all solutions of *f* out of R_W . Recall that $HTP(\mathbb{Z}) \equiv_T \emptyset'$. As long as $HTP(\mathbb{Q})$ says that we have not yet ruled out all solutions of *f*, there could still be a solution in \mathbb{Z} .

The real question is: do "spiky" polynomials such as these actually exist?

Maximal sets

Definition

A ring $R_W \subseteq \mathbb{Q}$ is *polymaximal* if, for every polynomial $f \notin HTP(R_W)$, there exists a finite set $S_0 \subseteq \overline{W}$ such that $f \notin HTP(\mathbb{Z}_{(S_0)})$.

So, for each *f*, there is a finitary reason why it is or is not in $HTP(R_W)$. Notice that, whenever a c.e. set *W* is maximal, R_W is polymaximal.

Proposition

For every polymaximal subring R_W , we have

 $HTP(R_W) \equiv_T W \oplus HTP(\mathbb{Q}).$

To decide whether $f \in HTP(R_W)$, we search for either a solution to f in R_W (using the *W*-oracle) or a finite S_0 as above (using both oracles).

Polymaximality is not universal

Let $f(X, Y, \overline{U})$ be the polynomial:

$$f = (X^2 + Y^2 - 1)^2 + (X > 0)^2 + (Y > 0)^2.$$

Solutions $(\frac{a}{c}, \frac{b}{c})$ correspond to Pythagorean triples (a, b, c). Suppose a prime *p* divides *c*. Then $a^2 + b^2 \equiv 0 \mod p$, and so

$$-1 \equiv \left(\frac{a}{b}\right)^2 \mod p.$$

This forces either p = 2 or $p \equiv 1 \mod 4$. Therefore:

Proposition

Let *R* contain inverses of exactly those primes \equiv 3 mod 4. Then $f \notin HTP(R)$.

Maximality is not universal

However, $f \in HTP(R_W)$ for all 1-generic W, since, for each product n of finitely many primes,

$$\left(\frac{n^2-1}{n^2+1}\right)^2 + \left(\frac{2n}{n^2+1}\right)^2 = 1.$$

So the subring *R* (inverting all primes \equiv 3 mod 4) is not polymaximal.

Similar tricks with polynomials $X^2 + qY^2 - 1$, for other primes q, allow similar results with other subrings (inverting all primes $\equiv k \mod q$).

The measure of a polynomial

Definition

Fix any $f \in \mathbb{Z}[\vec{X}]$. The *solvability set* of *f* is the set

$$Sol(f) = \{ W \subseteq \omega : f \in HTP(R_W) \}.$$

This is an effectively open subset of Cantor space. The measure $\mu(f)$ of this polynomial is the measure of Sol(*f*).

As yet we only know that all 2-adic rationals can be $\mu(f)$. We conjecture that $\mu(X^2 + qY^2 - 1 \& X > 0 \& Y > 0) = 1$ as well.

To get any other value as $\mu(f)$ would require *f* to be spiky, in somewhat the same sense as described earlier.

Guessing at the measure of f

Locally open question

For our *f* above, saying $X^2 + Y^2 = 1 \& X > 0 \& Y > 0$, what is $\mu(f)$? (Also for $X^2 + qY^2 = 1$.)

As noted, whenever $\frac{1}{n^2+1} \in R_W$ (for any *n*), we have $f \in HTP(R_W)$.

Guessing at the measure of f

Locally open question

For our *f* above, saying $X^2 + Y^2 = 1 \& X > 0 \& Y > 0$, what is $\mu(f)$? (Also for $X^2 + qY^2 = 1$.)

As noted, whenever $\frac{1}{n^2+1} \in R_W$ (for any *n*), we have $f \in HTP(R_W)$.

Bunyakovsky Conjecture (1857), roughly stated

For every irreducible $g \in \mathbb{Z}[X]$, if there exist $m, n \in \omega$ with g(m) prime to g(n), then the image of \mathbb{Z} under g contains infinitely many primes.

This is known to hold for all *g* of degree 1 (Dirichlet's Theorem). However, it apparently remains open for *each* individual nonlinear *g*!

Notice that, for our *f* to have $\mu(f) = 1$, it would suffice to have arbitrarily large pairs (p, q) of primes with some power $p^{j}q^{k}$ of the form $n^{2} + 1$. Likewise for triples, etc.

Uniform reducibility up to measure 0

Theorem

TFAE:

• $HTP(R_W) \leq_T W \oplus HTP(\mathbb{Q})$ uniformly on a measure-1 set of W.

• For all $f \in \mathbb{Z}[\vec{X}]$, the complement $\overline{\text{Sol}(f)}$ is an almost-open set.

If these hold, then some functional Φ has $\Phi^{HTP(\mathbb{Q})}(f) = \mu(f)$ for all f.

Uniform reducibility up to measure 0

Theorem

TFAE:

• $HTP(R_W) \leq_T W \oplus HTP(\mathbb{Q})$ uniformly on a measure-1 set of W.

• For all $f \in \mathbb{Z}[\vec{X}]$, the complement $\overline{\text{Sol}(f)}$ is an almost-open set.

If these hold, then some functional Φ has $\Phi^{HTP(\mathbb{Q})}(f) = \mu(f)$ for all f.

Fact (see Nies, *Computability and Randomness*, e.g.)

The class of all generalized low₁ sets, i.e. those W satisfying

 $W' \leq_T W \oplus \emptyset',$

has measure 1. However, there is no single Turing reduction which works uniformly on a set of measure 1.

So, under the equivalent conditions above, no single Turing reduction $W' = \Phi_e^{HTP(R_W)}$ could hold uniformly on a set of measure 1.