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HTP: Hilbert’s Tenth Problem

Definition
For a ring R, Hilbert’s Tenth Problem for R is the set

HTP(R) = {p ∈ R[X0,X1, . . .] : (∃~a ∈ R<ω) p(a0, . . . ,an) = 0}

of all polynomials (in several variables) with solutions in R.

So HTP(R) is c.e. relative to (the atomic diagram of) R.

Hilbert’s original formulation in 1900 demanded a decision procedure
for HTP(Z).

Theorem (PMRD, 1970)

HTP(Z) is undecidable: indeed, HTP(Z) ≡1 ∅′.

The most obvious open question is the Turing degree of HTP(Q).
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Subrings RW of Q

A subring R of Q is characterized by the set of primes p such that
1
p ∈ R. For each W ⊆ ω, set

RW =
{m

n
∈ Q : all prime factors pk of n have k ∈W

}
be the subring generated by inverting the k -th prime pk for all k ∈W .

We often move effectively between W (a subset of ω) and
P = {pn : n ∈W}, the set of primes which W describes.

Notice that RW is computably presentable precisely when W is c.e.,
while RW is a computable subring of Q iff W is computable.
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HTP(RW )

Basic facts about HTP(RW )

HTP(RW ) ≤1 W ′.
W ≤1 HTP(RW ). (Reason: k ∈W ⇐⇒ (pkX − 1) ∈ HTP(RW ).)
HTP(Q) ≤1 HTP(RW ):

p(X1, . . . ,Xj) ∈ HTP(Q) =⇒ (Y d · p
(X1

Y
, . . . ,

Xj

Y

)
&Y > 0) ∈ HTP(Z)

=⇒ (Y d · p
(X1

Y
, . . . ,

Xj

Y

)
&Y > 0) ∈ HTP(RW )

=⇒ p(X1, . . . ,Xj) ∈ HTP(Q).

It is possible to have W ′ 6≡T HTP(RW ): let W be c.e. and nonlow, so
that W ′ >T ∅′ ≥T HTP(RW ).
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Explaining “Y > 0” as a polynomial

Four Squares Theorem
An integer is nonnegative iff it is the sum of four squares of integers.

Corollary
It follows that a rational y is positive iff the following equation has a
solution in integers:

y(1 + V 2
1 + V 2

2 + V 2
3 + V 2

4 ) = 1 + U2
1 + U2

2 + U2
3 + U2

4 .

Moreover, any solution in Q shows that y > 0. So we have a
polynomial in y , ~U, ~V which has a solution (in an arbitrary RW ) iff y > 0.
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Subrings with HTP(RW ) ≡T HTP(Q)

A commutative ring is local if it has a unique maximal ideal, and
semilocal if it has only finitely many maximal ideals. The semilocal
subrings RW are exactly those with W cofinite. If W = {n0, . . . ,nj}, we
write Z(pn0 ,...,pnj )

for RW .

Fact (Shlapentokh)
Every semilocal subring RW has HTP(RW ) ≡T HTP(Q). Both
reductions are uniform in (a strong index for) W .

Theorem (Eisenträger-M-Park-Shlapentokh)
There exist coinfinite sets W with HTP(RW ) ≡T HTP(Q). Indeed, such
a W can be computably enumerable, and so RW can be computably
presentable.
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Strategy below an HTP(Q)-oracle

Each set W ⊆ ω corresponds effectively to a set P ⊆ {primes}.

Enumerate all polynomials in Z[~X ] effectively as f0, f1, . . .. Let P0 = ∅.
At stage s + 1, let p0 < · · · < ps be the least primes of Ps. With the
oracle, determine whether fs ∈ HTP(R(p0,...,ps)). If not, do nothing. If
so, find a solution of fs here, and invert the primes needed (i.e. add
new primes to Ps+1, and new elements to Ws+1) so as to put this
solution in RW .

So every ps (for every s) lies in P. Moreover, fs ∈ HTP(RW ) iff it went
in by stage s + 1, which we can check using an HTP(Q)-oracle.
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Enumerating P with no oracle

We approximate P = {p0 < p1 < · · · } at each stage s.
Requirements for the finite-injury construction:
Pk : If fk ∈ HTP(Z(p0,...,pk )), then fk ∈ HTP(RW ).
Ne : pe,s /∈ P.

At stage s + 1 = 〈k , j〉, we check whether any of the first j tuples from
Z(p0,s,...,pk,s) is a solution to fk = 0. If so, we invert primes in RW (i.e.
add new elements to W ) so as to put this solution in RW , satisfying Pk .

HTP(RW ) ≤T HTP(Q):
Notice that p0 = 2.
With an HTP(Q)-oracle, we can decide whether f0 ∈ HTP(Z(p0)).
If so, find the stage s0 at which a solution first entered RW ; else s0 = 0.
Now we know p1, so decide whether f1 ∈ HTP(Z(p0,p1)), etc.
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Corollaries

Corollary (Eisenträger-M-Park-Shlapentokh)
For every c.e. set U ≥T HTP(Q), there exists a computably
presentable subring R ⊆ Q with HTP(R) ≡T U.

The construction mixes the requirements above with coding
requirements, which invert a certain specific prime in R whenever we
see a new element enter U.

Open Question
For such a U, does there exist a computable subring R ⊆ Q with
HTP(R) ≡T U?
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Density of W

Definition
For each W ⊆ ω, the natural density of W is the limit

lim
s→∞

|W�(s + 1)|
s + 1

.

The upper and lower densities of W are the limsup and liminf here.

Corollary (Eisenträger-M-Park-Shlapentokh)

For every ∆0
2 real number r ∈ [0,1], there exists a computably

presentable subring RW ⊆ Q with HTP(Q) ≡T HTP(RW ) for which W
has lower density r and upper density 1.
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Upper density of W

Open Question (more number-theoretic)
Can we keep HTP(RW ) ≡T HTP(Q) and control the upper density of
W? Is there any infinite c.e. such W with upper density < 1?

The danger is that a polynomial f may have solutions in RW for every
cofinite W , but that each solution requires inverting at least ε-many of
the first s primes (for various s, but with some fixed ε > 0). So adding a
solution of f to RW will require bumping the density |W�(s+1)|

s+1 up to ε, at
least temporarily.

However, it seems hopeless to try to keep all solutions of f out of RW .
Recall that HTP(Z) ≡T ∅′. As long as HTP(Q) says that we have not
yet ruled out all solutions of f , there could still be a solution in Z.

The real question is: do “spiky” polynomials such as these actually
exist?
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Maximal sets

Definition
A ring RW ⊆ Q is polymaximal if, for every polynomial f /∈ HTP(RW ),
there exists a finite set S0 ⊆W such that f /∈ HTP(Z(S0)).

So, for each f , there is a finitary reason why it is or is not in HTP(RW ).
Notice that, whenever a c.e. set W is maximal, RW is polymaximal.

Proposition
For every polymaximal subring RW , we have

HTP(RW ) ≡T W ⊕ HTP(Q).

To decide whether f ∈ HTP(RW ), we search for either a solution to f in
RW (using the W -oracle) or a finite S0 as above (using both oracles).
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Polymaximality is not universal

Let f (X ,Y ,U) be the polynomial:

f = (X 2 + Y 2 − 1)2 + (X > 0)2 + (Y > 0)2.

Solutions (a
c ,

b
c ) correspond to Pythagorean triples (a,b, c). Suppose a

prime p divides c. Then a2 + b2 ≡ 0 mod p, and so

−1 ≡
(a

b

)2
mod p.

This forces either p = 2 or p ≡ 1 mod 4. Therefore:

Proposition
Let R contain inverses of exactly those primes ≡ 3 mod 4. Then
f /∈ HTP(R).
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Maximality is not universal

However, f ∈ HTP(RW ) for all 1-generic W , since, for each product n
of finitely many primes,(n2 − 1

n2 + 1

)2
+
( 2n

n2 + 1

)2
= 1.

So the subring R (inverting all primes ≡ 3 mod 4) is not polymaximal.

Similar tricks with polynomials X 2 + qY 2 − 1, for other primes q, allow
similar results with other subrings (inverting all primes ≡ k mod q).
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The measure of a polynomial

Definition

Fix any f ∈ Z[~X ]. The solvability set of f is the set

Sol(f ) = {W ⊆ ω : f ∈ HTP(RW )}.

This is an effectively open subset of Cantor space. The measure µ(f )
of this polynomial is the measure of Sol(f ).

As yet we only know that all 2-adic rationals can be µ(f ). We
conjecture that µ(X 2 + qY 2 − 1 & X > 0 & Y > 0) = 1 as well.

To get any other value as µ(f ) would require f to be spiky, in somewhat
the same sense as described earlier.
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Guessing at the measure of f

Locally open question

For our f above, saying X 2 + Y 2 = 1 & X > 0 & Y > 0, what is µ(f )?
(Also for X 2 + qY 2 = 1.)

As noted, whenever 1
n2+1 ∈ RW (for any n), we have f ∈ HTP(RW ).

Bunyakovsky Conjecture (1857), roughly stated
For every irreducible g ∈ Z[X ], if there exist m,n ∈ ω with g(m) prime
to g(n), then the image of Z under g contains infinitely many primes.

This is known to hold for all g of degree 1 (Dirichlet’s Theorem).
However, it apparently remains open for each individual nonlinear g!

Notice that, for our f to have µ(f ) = 1, it would suffice to have arbitrarily
large pairs (p,q) of primes with some power pjqk of the form n2 + 1.
Likewise for triples, etc.
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Uniform reducibility up to measure 0
Theorem
TFAE:

HTP(RW ) ≤T W ⊕ HTP(Q) uniformly on a measure-1 set of W .

For all f ∈ Z[~X ], the complement Sol(f ) is an almost-open set.
If these hold, then some functional Φ has ΦHTP(Q)(f ) = µ(f ) for all f .

Fact (see Nies, Computability and Randomness, e.g.)
The class of all generalized low1 sets, i.e. those W satisfying

W ′ ≤T W ⊕ ∅′,

has measure 1. However, there is no single Turing reduction which
works uniformly on a set of measure 1.

So, under the equivalent conditions above, no single Turing reduction
W ′ = Φ

HTP(RW )
e could hold uniformly on a set of measure 1.
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