
Functors in
Computable Model Theory

Russell Miller

Queens College & CUNY Graduate Center

Infinity Workshop
Kurt Gödel Research Center

Vienna, Austria
10 July 2014

(Joint work with many researchers.)

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 1 / 21



A First Example
Background: a structure A with domain ω is computable if all of its
functions and relations are computable. Such an A is computably
categorical if, for every computable structure B which is classically
isomorphic to A, there is a computable isomorphism from A onto B.
A nested equivalence structure is a structure with equivalence
relations R1, . . . ,Rn, such that each Ri+1 ⊆ Ri .

Question
Find a criterion for computable categoricity for computable nested
equivalence structures.

Solution
Leah Marshall (Ph.D. student at GWU, with advice from Harizanov,
J.C. Reimann, & M.) showed how to convert nested equivalence
structures into trees of finite height, and back, effectively. She used
this method, along with the known criterion for computable categoricity
for computable trees of finite height, to answer the question.

The conversions (in each direction) are our first examples of
computable functors.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 2 / 21



A First Example
Background: a structure A with domain ω is computable if all of its
functions and relations are computable. Such an A is computably
categorical if, for every computable structure B which is classically
isomorphic to A, there is a computable isomorphism from A onto B.
A nested equivalence structure is a structure with equivalence
relations R1, . . . ,Rn, such that each Ri+1 ⊆ Ri .

Question
Find a criterion for computable categoricity for computable nested
equivalence structures.

Solution
Leah Marshall (Ph.D. student at GWU, with advice from Harizanov,
J.C. Reimann, & M.) showed how to convert nested equivalence
structures into trees of finite height, and back, effectively. She used
this method, along with the known criterion for computable categoricity
for computable trees of finite height, to answer the question.

The conversions (in each direction) are our first examples of
computable functors.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 2 / 21



Marshall’s Method
Given a nested equivalence structure E with R1 ⊇ R2 ⊇ · · · ⊇ Rn, build
a tree T (E) of height n + 1, with one node at level i for each
Ri -equivalence class in E . Node xi+1 at level i + 1 ≤ n lies above node
xi at level i iff the Ri+1-class represented by xi+1 is contained in the
Ri -class for xi . Add a root at the bottom (or view R0 as the ER with just
one class), and above each xn at level n, add one node at level n + 1
for each element of the Rn-class represented by xn. (Or treat Rn+1 as
the equality relation.)

Conversely, given a full computable tree T of height (n + 1), define an
n-nested equivalence structure E(T ). Its elements are the nodes at
level n + 1, and each node xi at level i ≤ n defines an Ri -class
containing those level-(n + 1) nodes above xi .

These processes, both completely effective, are inverses of each other.
Each is a Turing-computable reduction, as studied by Knight et al.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 3 / 21



Marshall’s Results
Theorem (Lempp, McCoy, M., & Solomon, 2005)
A computable tree of finite height is computably categorical iff it has
finite type. (The definition of finite type takes several pages, but is
purely structural.)

Theorem (Marshall)
A computable n-nested equivalence structure is computably
categorical iff the corresponding tree is computably categorical, iff....

The key here is that from every isomorphism f : E → E ′ of n-nested
equivalence structures, we can compute an isomorphism
T (f ) : T (E)→ T (E ′) of the corresponding trees, and vice versa with E .

Theorem (Marshall)
Nested equivalence structures cannot have finite computable
dimension > 1.

Proof: Finite-height trees can’t.
Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 4 / 21



Further Results by Marshall

Theorem (Marshall)
Every computably categorical nested equivalence structure is relatively
computably categorical.

Proof: This holds for finite-height trees. The definition concerns
noncomputable copies of the tree T as well as computable ones.
However, our functors T and E deal perfectly well with noncomputable
T and E as well.

Theorem (Marshall)
The Turing degree spectra of full finite-height trees are precisely those
of nested equivalence structures. Likewise for categoricity spectra.

Proof: Recall that Spec(A) = {deg(B) : B ∼= A & dom(B) = ω}. But
E ≡T T (E) and T ≡T E(T ), so this is immediate.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 5 / 21



Yet Another Result by Marshall

Recall: the isomorphism problem for a class K of computable
structures is the set of pairs of (indices of) structures in K which are
isomorphic to each other.

Theorem (Marshall)
The isomorphism problem for n-nested equivalence structures is
exactly as hard as that for full trees of height n + 1.

This doesn’t even need the isomorphisms E(f ) and T (g). In fact,
neither did the result on spectra. The functors E and T here are in fact
Turing-computable reductions between the two classes, which is the
traditional method of considering isomorphism problems. However, the
effective maps E and T on isomorphisms are necessary for all the
results on computable categoricity and categoricity spectra.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 6 / 21



OK, they’re functors

Defn.
Let C be a category in which the objects are countable structures with
domain ω (in a single computable language) and the morphisms are
maps; and let D be another such category (possibly with a different
language). A (type-2) computable functor from C into D consists of two
Turing functionals Φ and Φ∗ such that:

for all A ∈ C, ΦA ∈ D; and
for all morphisms f : A→ B in C, ΦA⊕f⊕B

∗ is a morphism from ΦA to
ΦB in D; and
these define a functor from C into D.

In the case of nested equivalence structures and trees, the two
functors E and T were actually inverses of each other.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 7 / 21



Other possible functors

Another example is given by Victor Ocasio Gonzalez (PhD student of
Knight), using ideas of Dave Marker.

Theorem (Ocasio)
There is a computable functor (Φ,Φ∗) from the category of countable
linear orders L into that of countable real closed fields F . Moreover,
there is a computable functor (Ψ,Ψ∗) which is a left inverse of (Φ,Φ∗).

Given L, Φ builds the real closure F of the ordered field Q(a0,a1, . . .),
where (∀i)(∀n) n < ai in F and

i < j in L ⇐⇒ ai < aj in F ⇐⇒ (∀m)am
i < aj in L.

So L is the linear order of the positive nonstandard elements of F ,
modulo the equivalence a ∼ b ⇐⇒ (∃m ∈ ω)[a < bm & b < am].

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 8 / 21



Inverse of Ocasio’s functor?
For each L, the field F = ΦL is built in a straightforward way, with the
odd numbers in ω = dom(F ) serving as the elements ai in F .
Therefore, there is a computable functor (Ψ,Ψ∗) which is a left inverse
of (Φ,Φ∗).

However, this Ψ does not extend to all countable real closed fields, nor
even to those F isomorphic to fields of the form ΦL. In general, picking
out representatives a0,a1, . . . in such an F requires the jump of the
atomic diagram of F . If we allow (Ψ,Ψ∗) to be jump-computable, with
oracles ΨF ′

and ΨF ′⊕f⊕K ′
∗ , then we can get an inverse to (Φ,Φ∗) whose

domain is closed under isomorphism.

Ocasio uses this (with a stronger version of Φ) to show that, for every
(infinite) L, there is an RCF F such that

Spec(F ) = {d : d ′ ∈ Spec(L)}.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 9 / 21



More Marker ideas
A similar process uses the ENI-DOP for the theory DCF0 to show that,
for every countable, automorphically nontrivial graph G, there is a
countable differentially closed field K such that

Spec(K ) = {d : d ′ ∈ Spec(G)}.

Indeed, we have a converse, established by a priority construction:

Theorem (Marker-M.)
The spectra of differentially closed fields of characteristic 0 are exactly
the preimages, under the jump operation, of the spectra of graphs.

Once again, this can be seen as a construction of a computable
functor from graphs to models of DCF0, which has an inverse functor
(on a subclass, closed under isomorphism, of models of DCF0) that is
only jump-computable. The priority construction extends the theorem
(but not the inverse functor) to all models of DCF0.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 10 / 21



How nice should functors be?

Theorem (Hirschfeldt-Khoussainov-Shore-Slinko 2002)
For every automorphically nontrivial, countable structure A, there
exists a countable graph G which has the same spectrum as A, the
same d-computable dimension as A (for each d), and the same
categoricity properties as A under expansion by a constant, and which
realizes every DgSpA(R) (for every relation R on A) as the spectrum of
some relation on G.

Given A, they built a graph G = G (A) such that the isomorphisms from
A onto any B correspond bijectively with the isomorphisms from G (A)
onto G (B), by a map f 7→ G (f ) which preserves the Turing degree of f .

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 11 / 21



Translating HKSS into functors

In terms of functors, the HKSS proof builds:
a computable functor (Φ,Φ∗) from the category C of all countable,
automorphically nontrivial structures in a given language into the
category G of countable, automorphically nontrivial graphs,
which is full and faithful: every isomorphism from ΦA onto ΦB in G
is the image ΦA⊕f⊕B

∗ of a unique isomorphism f : A→ B in C,
with another computable functor (Ψ,Ψ∗) back into C, whose
domain contains the range of (Φ,Φ∗) and is closed under
isomorphism,
such that (Ψ,Ψ∗) is a left inverse of (Φ,Φ∗).

This suffices to transfer all relevant computable-model-theoretic
properties from objects in C to graphs. In particular, (Ψ,Ψ∗) need not
be a right inverse of (Φ,Φ∗).

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 12 / 21



More nice functors

Theorem (HKSS 2002)
The completeness described above holds not only of graphs, but also
of partial orderings, lattices, rings, integral domains of arbitrary
characteristic, commutative semigroups, 2-step nilpotent groups,....

Theorem (M-Park-Poonen-Schoutens-Shlapentokh 2013)
... and fields (of characteristic 0).

In each case, the strategy is the same, now that we know that G is
complete: build a computable functor (Φ,Φ∗) from G to the relevant
category, with a computable left-inverse functor (Ψ,Ψ∗) whose domain
is closed under isomorphism.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 13 / 21



More nice functors

Theorem (HKSS 2002)
The completeness described above holds not only of graphs, but also
of partial orderings, lattices, rings, integral domains of arbitrary
characteristic, commutative semigroups, 2-step nilpotent groups,....

Theorem (M-Park-Poonen-Schoutens-Shlapentokh 2013)
... and fields (of characteristic 0).

In each case, the strategy is the same, now that we know that G is
complete: build a computable functor (Φ,Φ∗) from G to the relevant
category, with a computable left-inverse functor (Ψ,Ψ∗) whose domain
is closed under isomorphism.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 13 / 21



The functor from graphs G to fields F

Theorem (MPPSS)
For every countable graph G, there exists a countable field F (G) with
the same computable-model-theoretic properties as G, as in the HKSS
theorem. Indeed, F may be viewed as a computable, fully faithful
functor from the category of countable graphs (under
monomorphisms) into the class of fields, with a computable inverse
functor (on its image).

Full faithfulness means that each field homomorphism F (G)→ F (G′)
comes from a unique monomorphism G→ G′. Isomorphisms
g : G→ G′ will map to isomorphisms F (g) : F (G)→ F (G′).

We do not claim that every F ′ ∼= F (G) lies in the image of F . This
situation will require attention.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 14 / 21



Construction of F (G)
We use two curves X and Y , defined by integer polynomials:

X : p(u, v) = u4 + 16uv3 + 10v4 + 16v − 4 = 0

Y : q(T , x , y) = x4 + y4 + 1 + T (x4 + xy3 + y + 1) = 0

Let G = (ω,E) be a graph. Set K = Q(Πi∈ωX ) to be the field
generated by elements u0 < v0 < u1 < v1, . . ., with {ui : i ∈ ω}
algebraically independent over Q, and with p(ui , vi) = 0 for every i .
The element ui in K ⊆ F (G) will represent the node i in G.

Next, adjoin to K elements xij and yij for all i > j , with {xij : i > j}
algebraically independent over K , and with

q(uiuj , xij , yij) = 0 if (i , j) ∈ E
q(ui + uj , xij , yij) = 0 if (i , j) /∈ E .

We write Yt for the curve defined by q(t , x , y) = 0 over Q(t). So the
process above adjoins the function field of either Yui uj or Yui+uj , for
each i > j . F (G) is the extension of K generated by all xij and yij .

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 15 / 21



Reconstructing G From F (G)

Lemma
Let G = (ω,E) be a graph, and build F (G) as above. Then:

(i) X (F (G)) = {(ui , vi) : i ∈ ω}.
(ii) If (i , j) ∈ E , then Yui uj (F (G)) = {(xij , yij)} and Yui+uj (F (G)) = ∅.
(iii) If (i , j) /∈ E , then Yui uj (F (G)) = ∅ and Yui+uj (F (G)) = {(xij , yij)}.

This is the heart of the proof. (i) says that p(u, v) = 0 has no solutions
in F (G) except the ones we put there, so we can enumerate

{ui : i ∈ ω} = {u ∈ F (G) : (∃v ∈ F (G))p(u, v) = 0}.

Similarly, (ii) and (iii) say that the equations q(uiuj , x , y) = 0 and
q(ui + uj , x , y) = 0 have no unintended solutions in F (G). So, given i
and j , we can determine from F (G) whether (i , j) ∈ E : search for a
solution to either q(uiuj , x , y) = 0 or q(ui + uj , x , y) = 0.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 16 / 21



Interpretations

One can readily view this construction as a way of interpreting the
graph G in the field F (G). The domain of G (within F (G)) is defined
by the formula

(∃v) p(u, v) = 0,

under the relation of equality, and the edge relation on such u0,u1 is
defined by

E(u0,u1) ⇐⇒ (∃x∃y) q(u0u1, x , y) = 0;

¬E(u0,u1) ⇐⇒ (∃x∃y) q(u0 + u1, x , y) = 0.

Since the domain, E , and ¬E are all defined by Σ1 formulas, the
interpretation may be considered effective.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 17 / 21



Effective interpretation

Definition (Montalbán)
Let A be an L-structure, and B be any structure. Let us assume that L
is a relational language L = {P0,P1,P2, ...} where Pi has arity a(i); so
A = (A; PA

0 ,P
A
1 , ...) and PA

i ⊆ Aa(i).
We say that A is effectively interpretable in B if, in B, there is

a uniformly r.i.c.e. set DB
A ⊆ B<ω (the domain of the interpretation),

a uniformly r.i. computable relation η ⊆ B<ω × B<ω which is an
equivalence relation on DB

A (interpreting equality),
a uniformly r.i. computable sequence of relations Ri ⊆ (B<ω)a(i),
closed under the equivalence η within DB

A (interpreting Pi ),
and a function f B

A : DB
A → A which induces an isomorphism:

(DB
A/η; R0,R1, ...) ∼= (A; PA

0 ,P
A
1 , ...).

With parameters, Montalbán notes, this is equivalent to Σ-definability.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 18 / 21



Interpretation and functors

The MPPSS theorem gives an effective interpretation of graphs in
fields, uniformly in the presentation of any countable graph. Indeed,
the graph G and the field F (G) always satisfy:

Definition (Montalbán)
Structures A and B effectively interpretable in each other are
effectively bi-interpretable if the compositions

f A
B ◦ f

B
A : DDB

A
B → B and f B

A ◦ f
A
B : DDA

B
A → A

are uniformly relatively intrinsically computable in B and A.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 19 / 21



Current work
Question: is interpretation the only way to build computable functors?

Conjecture (Harrison-Trainor, Melnikov, M., Montalbán)
A category C of countable structures, under isomorphisms, is
effectively interpretable in another such category D ⇐⇒
there exist computable functors Φ : C→ D and Ψ such that:

rg(Φ) ⊆ dom(Ψ) ⊆ D and rg(Ψ) ⊆ C;
dom(Ψ) is closed under isomorphism inside D;
Ψ ◦ Φ is the C-identity functor, up to A-computable isomorphism:
for all A ∈ C, Ψ(Φ(A)) is A-computably isomorphic to A; and
Φ ◦Ψ is the identity functor on all B ∈ dom(Ψ), up to
B-computable isomorphism.

For C to be effectively interpretable in D means that each A ∈ C is
effectively bi-interpretable with some B ∈ D, using the same set of
formulas for the interpretations between each A and its B.

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 20 / 21



Further questions
As in the examples by Ocasio and Marker-M, we extend these notions:

Definition
In an α-jump-computable functor (Φ,Φ∗) from C to D, the outputs are
ΦA(α)

and ΦA(α)⊕f⊕B(α)

∗ (for A, B, and f : A→ B from C).

The HTM3 conjecture for α = 0 extends naturally to a version of
jump-effective bi-interpretability using Σc

α+1 formulas in place of Σc
1

formulas for the interpretations. This may allow us to compare classes
of structures more rigorously.

Examples
Is there an ω-jump-computable functor from graphs G into BA’s?
Is there a 2-jump-computable functor from G into linear orders?
We conjecture that there is no α-jump-computable functor from
fields into algebraic fields, with α < ωCK

1 .

Russell Miller (CUNY) Functors in Computable Model Theory Infinity Workshop KGRC 21 / 21


	Main Part

