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Computable Categoricity

Defn.
A computable structure A is computably categorical if for each
computable B ∼= A there is a computable isomorphism from A onto B.

Examples: (Dzgoev, Goncharov; Remmel; Lempp, McCoy, M.,
Solomon)

A linear order is computably categorical iff it has only finitely many
adjacencies.
A Boolean algebra is computably categorical iff it has only finitely
many atoms.
An ordered Abelian group is computably categorical iff it has finite
rank (≡ basis as Z-module).
For trees, the known criterion is recursive in the height and not
easily stated!

In all these examples, computable categoricity is a Σ0
3 property.
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Previous Result

Definitions
A field is algebraic if it is an algebraic extension of its prime subfield
(either Q or Fp).
A computable field F has a splitting algorithm if its splitting set
{p ∈ F [X ] : p factors properly in F [X ]} is computable.

Theorem (Miller-Shlapentokh 2010)
For a computable algebraic field F with a splitting algorithm. TFAE:

F is computably categorical.
F is relatively computably categorical.
The orbit relation of F is computable:

{〈a; b〉 ∈ F 2 : (∃σ ∈ Aut(F )) σ(a) = b)}.

So computable categoricity for such fields is a Σ0
3 property.
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Isomorphism Trees for Algebraic Fields

Fix a computable algebraic field F with domain {x0, x1, . . .}, and any
field F̃ . The finite partial isomorphisms h : Q(x0, . . . , xn)→ F̃ form an
F̃ -computable, finite-branching tree IFF̃ under ⊆.

Paths through IFF̃ correspond to embeddings F → F̃ . By König’s
Lemma, such an embedding exists iff IFF̃ is infinite, i.e. iff every finitely
generated subfield of F embeds into F̃ .

Definition

If F̃ ∼= F , then we call IFF̃ the isomorphism tree for F and F̃ , since its
paths are precisely the isomorphisms from F onto F̃ .

For computable algebraic fields F and F̃ , being isomorphic is Π0
2: both

IFF̃ and IF̃F must be infinite.
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Computable Dimension
In work with Khoussainov and Soare, Hirschfeldt extended an earlier
theorem of Goncharov:

Theorem
Goncharov: if A and B are computable structures which are not
computably isomorphic, but have a 0′-computable isomorphism
A → B, then A has computable dimension ω.

Extension: if A and B are computable structures which are not
computably isomorphic, but have an isomorphism A → B which is
leftmost-path approximable in a computable tree, then A has
computable dimension ω.

Corollary (HKMS)
Every computable algebraic field has computable dimension 1 or ω.

Just use the leftmost path in the isomorphism tree!
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Relative Computable Categoricity

Theorem (HKMS)
A computable algebraic field F is relatively computably categorical iff
there is a computable function g such that:
(∀ levels m)(∀ nodes σ ∈ IFF at level m) σ is extendible to a path
through IFF iff IFF contains a node of length g(m) extending σ.

If F̃ ∼= F , then the same fact about g holds in the tree IFF̃ . So we can
compute a path through IFF̃ : start with the root as σ0, and always
extend σs to the first node σs+1 ⊃ σ we find which has an extension in
IFF̃ of length ≥ g(|σs+1|). This computation relativizes easily to deg(F̃ ).

Conversely, in a Σ0
1 Scott family for an r.c.c. algebraic field, the formula

satisfied by the element xm ∈ F allows us to compute (an upper bound
for) such a function g.
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Computably Categorical, but Not Relatively So

Kudinov and others produced examples of computable graphs G which
are computably categorical, but not relatively c.c. Their tree
construction works equally well for algebraic fields F , using a tree
construction:

Half the nodes in the tree are categoricity nodes, ensuring (for
each e) that if the e-th computable structure Fe is a field ∼= F , then
they are computably isomorphic. The node of this type on the true
path builds a computable isomorphism from Fe onto F .
The other half of the nodes ensure that F has no Σ0

1 Scott family.
Such a node α, of length (2k), puts a single root xα of a
polynomial pα(X ) into F , waits for the k -th possible Scott family Sk
to enumerate a formula satisfied by xα, then adjoins

√
xα to F , and

then (when permitted by higher-priority categoricity nodes) adjoins
another root yα of pα to F , but without any square roots. So xα
and yα lie in distinct orbits, but satisfy the same formula in Sk .
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Complexity of Computable Categoricity

Recall: if F and F̃ are computable algebraic fields, then they are
isomorphic iff IFF̃ and IF̃F are both infinite. This is Π0

2.

Now F is computably categorical iff, for every index e, either:
the e-th computable structure Fe is not a field (Σ0

2); or
Fe is not an algebraic field (Σ0

2); or
Fe 6∼= F (normally Π1

1, but here Σ0
2); or

(∃i) ϕi is an isomorphism from Fe onto F (Σ0
3, including the “∃i”).

Thus, computable categoricity for algebraic fields is a Π0
4 property.
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Π0
4-completeness

Theorem (HKMS)
For computable algebraic fields, the property of computable
categoricity is Π0

4-complete.

Fix a computable f such that for all n:

n ∈ ∅(4) ⇐⇒ ∀a∃b f (n,a,b) ∈ Inf.

We build the field F (n) uniformly in n, using a tree with categoricity
nodes at odd levels, similar to before. All nodes α at level (2a) are
non-categoricity nodes, with outcomes b ∈ ω. For the least b with
f (n,a,b) ∈ Inf, the node α̂ b will be eligible infinitely often. If n ∈ ∅(4),
then (for some a) no such b exists, and the true path will end at level
(2a), at a node α which builds a computable field Fα

∼= F (n) which is
not computably isomorphic to F . The diagonalization by α against ϕe
is similar to before.
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