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Basic Question for Today

Let F be any field, and let p ∈ F [X ] be an arbitrary polynomial. Two
problems immediately arise:

Does p(X ) factor (nontrivially) in F [X ]?
Does p(X ) have a root in F? (That is, does F contain a solution to
p(X ) = 0?)

Question
Which of these two problems is more difficult?

For p(X ) of degree ≥ 2, having a root implies having a factorization.
So, finding a root seems harder than finding a factorization.

But the negative answer is the hard one to prove! And if p(X ) has no
factorization, then it has no root – so maybe the harder problem is the
one about factorization?
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Turing-Computable Fields
Defn.
A function ϕ : N→ N is computable if there is a finite program
(≡ Turing machine) which computes it. (We allow ϕ to be a partial
function, i.e. with domain ⊆ N.)
A subset of N is computable if its characteristic function is.

Defn.
A computable field F is a (finite or countable) field whose elements are
{x0, x1, x2, . . .}, in which the field operations + and · are given by
computable functions f and g:

xi + xj = xf (i,j) xi · xj = xg(i,j)

The following fields are all isomorphic to computable fields:

Q, Fp, Q(X1,X2, . . .), Fp(X1,X2, . . .), Q, Fp

and all finitely generated extensions of these.
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Background in Computability
Useful Facts

There is a noncomputable set K which is computably enumerable
(≡ the image of a computable function with domain N).
The Halting Problem is one example.
There exists a universal Turing machine ψ : N2 → N such that
every partial computable ϕ is given by ψ(e, · ) for some e.
There is a computable bijection from N onto N∗ =

⋃
k Nk .

Interesting Fields
1 There is a computable field FK isomorphic to Q[

√
pn | n ∈ K ].

(Recall: K is c.e. but not computable; p0,p1, . . . are the primes.)
In FK , factoring and having roots are not computable, since

n ∈ K ⇐⇒ (X 2 − pn) has a root ⇐⇒ (X 2 − pn) factors.

2 The field Q[
√

pn | n /∈ K ] is not isomorphic to any computable field.
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The Root Set and the Splitting Set
Since we can enumerate all elements of a computable field F , we can
also enumerate all polynomials over F :

F [X ] = {f0(X ), f1(X ), f2(X ), . . .}.

Defn.
The splitting set SF and the root set RF of a computable field F are:

SF = {n ∈ N : (∃ nonconstant g,h ∈ F [X ]) g(X ) · h(X ) = fn(X )}
RF = {n ∈ N : (∃a ∈ F ) fn(a) = 0}.

F has a splitting algorithm if SF is computable, and a root algorithm if
RF is computable.

Bigger questions: find the irreducible factors of p(X ), and find all its
roots in F . These questions reduce to the splitting set and the root set.
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Splitting Algorithms

Theorem (Kronecker, 1882)
The field Q has a splitting algorithm: it is decidable which
polynomials in Q[X ] have factorizations in Q[X ].
Let F be a computable field of characteristic 0 with a splitting
algorithm. Every primitive extension F (x) of F also has a splitting
algorithm, which may be found uniformly in the minimal polynomial
of x over F (or uniformly knowing that x is transcendental over F ).

Recall that for x ∈ E algebraic over F , the minimal polynomial of x
over F is the unique monic irreducible f (X ) ∈ F [X ] with f (x) = 0.

Corollary
For any algebraic computable field F , every finitely generated subfield
Q(x1, . . . , xn) or Fp(x1, . . . , xn) has a splitting algorithm, uniformly in the
tuple 〈x1, . . . , xd〉.
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Comparing SF and RF

For all computable fields F , SF and RF are computably enumerable,
but may not be computable. With an oracle for SF , we can find all
irreducible factors of any given polynomial p ∈ F [X ]:

1 Use SF to determine whether p is irreducible in F [X ].
2 If not, search through F [X ] for some nontrivial factorization of p,

and return to Step 1 for each factor.
Therefore, RF is decidable if one has access to an SF -oracle. (In
particular, if SF is computable, so is RF .) We say that RF is
Turing-reducible to SF , written RF ≤T SF .

But can we compute SF from an RF -oracle?
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SF ≡T RF

Theorem (Rabin 1960; Frohlich & Shepherdson 1956)
For every computable field F , SF ≤T RF .

The first proof, by Frohlich & Shepherdson, uses symmetric
polynomials. The more elegant proof, by Rabin, embeds F as a
subfield g(F ) in a computable presentation of its algebraic closure F .
(Rabin’s Theorem also shows that g(F ) ≡T SF , with g(F ) viewed as a
subset of F .)
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Comparing RF and SF
We know that RF ≡T SF . Is there any way to distinguish the complexity
of these sets?

Defn.
For sets A,B ⊆ N, we say that A is m-reducible to B, written A ≤m B, if
there is a computable function f such that:

(∀x)[x ∈ A ⇐⇒ f (x) ∈ B].

Theorem (M, 2010)
For all algebraic computable fields F , SF ≤m RF . However, there exists
such a field F with RF 6≤m SF .

Problem: Given a polynomial p(X ) ∈ F [X ], compute another
polynomial q(X ) ∈ F [X ] such that

p(X ) factors ⇐⇒ q(X ) has a root.
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p(X ) factors in F [X ] ⇐⇒ q(X ) has a root in F .

Let Ft be the subfield Q[x0, . . . , xt−1] ⊆ F (or Fm[x0, . . . , xt−1] ⊆ F ).
So every Ft has a splitting algorithm.

For a given p(X ), find a t with p ∈ Ft [X ]. Check first whether p splits
there. If so, pick its q(X ) to be a linear polynomial. If not, find the
splitting field Kt of p(X ) over Ft , and the roots r1, . . . , rd of p(X ) in Kt .

Proposition
For Ft ⊆ L ⊆ Kt : p(X ) factors in L[X ] ⇐⇒
there is an S with ∅ ( S ( {r1, . . . , rd} such that L contains all
elementary symmetric polynomials in S.

Proof: If p = p0 · p1, let S = {ri : p0(ri) = 0}, and conversely.

Effective Theorem of the Primitive Element
Each finite algebraic field extension is generated by a single element,
and there is an algorithm for finding such a generator.
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p(X ) factors in F [X ] ⇐⇒ q(X ) has a root in F .

For each intermediate field Ft ( LS ( Kt generated by the elementary
symmetric polynomials in S, let xS be a primitive generator. Let q(X )
be the product of the minimal polynomials qS(X ) ∈ Ft [X ] of each xS.

⇒: If p(X ) factors in F [X ], then F contains some LS. But then xS ∈ F ,
and q(xS) = 0.

⇐: If q(X ) has a root x ∈ F , then some qS(x) = 0, so x is
Ft -conjugate to some xS. Then some σ ∈ Gal(Kt/Ft) maps xS to x .
But σ permutes the set {r1, . . . , rd}, so x generates the subfield
containing all elementary symmetric polynomials in σ(S). Then F
contains the subfield Lσ(S), so p(X ) factors in F [X ].

Thus SF ≤m RF .
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Building an F with RF 6≤m SF

Strategy to show that a single ϕe is not an m-reduction from RF to SF :
have a witness polynomial qe(X ) = X 5 − X − 1, say, of degree 5, with
splitting field Ke over Q for which Gal(Ke/Q) is the symmetric group S5
on the five roots (all irrational) of qe. We wish to make

qe ∈ RF ⇐⇒ ϕe(qe) ↓/∈ SF .

If ϕe(qe) halts and equals some polynomial pe(X ) ∈ Q[X ], then either
keep F = Q (if pe is reducible there), or add a root of qe to Q to form F
(if deg(pe) < 2), or . . .
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qe has no root in F ⇐⇒ pe factors over F

Let L be the splitting field of pe(X ) over Q, containing all roots
x1, . . . , xn of pe. If Q[x1] contains no root ri of qe(X ), then let F = Q[x1].
Else say (WLOG) r1 = h(x1) for some h(X ) ∈ Q[X ]. Then each
h(xj) ∈ {r1, . . . , r5}, and each ri is h(xj) for some j . Let F be the fixed
field of the subgroup G12:

G12 = {σ ∈ Gal(L/Q) : {σ(r1), σ(r2)} = {r1, r2}}.

Then each σ ∈ G12 fixes I = {xj : h(xj) ∈ {r1, r2} } setwise. So F
contains all polynomials symmetric in I, and pe(X ) splits in F .
But there is a τ ∈ G12 which fixes no ri . So qe(X ) has no root in F .
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Defeating all ϕe at once
The foregoing argument built a computable algebraic field F for which
a given ϕe was not an m-reduction from RF to SF . This shows that
there is no uniform m-reduction that works across all such fields.

To see that there is a single such field F with RF 6≤m SF , we need to
execute the same procedure as above for every possible m-reduction
ϕe. The danger here is that, in adding the fixed field of G12 to F for one
polynomial pe, to satisfy ϕe, we might add elements which would upset
the strategy for defeating other functions ϕe′ .

Solution: use a priority argument, in which each ϕe is assigned a
natural number (in fact, e) as its priority. When two strategies clash,
the one with higher priority (≡ with smaller e) decides what to do, and
the other one is injured and starts over with a new polynomial qe. Each
individual strategy will be re-started only finitely many times, and will
eventually ensure that ϕe is not an m-reduction.
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Standard References on Computable Fields
A. Frohlich & J.C. Shepherdson; Effective procedures in field
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M. Rabin; Computable algebra, general theory, and theory of
computable fields, Transactions of the AMS 95 (1960), 341–360.
G. Metakides & A. Nerode; Effective content of field theory, Annals
of Mathematical Logic 17 (1979), 289–320.
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in Handbook of Computability Theory, ed. E.R. Griffor
(Amsterdam: Elsevier, 1999), 363–447.

R. Miller; Is it easier to factor a polynomial or to find a root?
Transactions of the AMS, 362 (2010) 10, 5261–5281.
R.M. Steiner; Computable fields and the bounded Turing
reduction, Annals of Pure and Applied Logic 163 (2012), 730–742.
These slides will be available soon at
qcpages.qc.cuny.edu/˜rmiller/slides.html
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