Computability Theory at Work: Factoring Polynomials and Finding Roots

Russell Miller

Queens College & CUNY Graduate Center New York, NY

> MAA MathFest Portland, OR 7 August 2014

Let *F* be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does p(X) factor (nontrivially) in F[X]?
- Does p(X) have a root in F? (That is, does F contain a solution to p(X) = 0?)

Let *F* be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does p(X) factor (nontrivially) in F[X]?
- Does p(X) have a root in F? (That is, does F contain a solution to p(X) = 0?)

Question

Which of these two problems is more difficult?

Let *F* be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does p(X) factor (nontrivially) in F[X]?
- Does p(X) have a root in F? (That is, does F contain a solution to p(X) = 0?)

Question

Which of these two problems is more difficult?

For p(X) of degree ≥ 2 , having a root implies having a factorization. So, finding a root seems harder than finding a factorization.

Let *F* be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does p(X) factor (nontrivially) in F[X]?
- Does p(X) have a root in F? (That is, does F contain a solution to p(X) = 0?)

Question

Which of these two problems is more difficult?

For p(X) of degree ≥ 2 , having a root implies having a factorization. So, finding a root seems harder than finding a factorization.

But the negative answer is the hard one to prove! And if p(X) has no factorization, then it has no root – so maybe the harder problem is the one about factorization?

Turing-Computable Fields

Defn.

A function $\varphi : \mathbb{N} \to \mathbb{N}$ is *computable* if there is a finite program (\equiv Turing machine) which computes it. (We allow φ to be a *partial function*, i.e. with domain $\subseteq \mathbb{N}$.)

A subset of \mathbb{N} is computable if its characteristic function is.

Defn.

A *computable field F* is a (finite or countable) field whose elements are $\{x_0, x_1, x_2, ...\}$, in which the field operations + and \cdot are given by computable functions *f* and *g*:

$$X_i + X_j = X_{f(i,j)}$$
 $X_i \cdot X_j = X_{g(i,j)}$

Turing-Computable Fields

Defn.

A function $\varphi : \mathbb{N} \to \mathbb{N}$ is *computable* if there is a finite program (\equiv Turing machine) which computes it. (We allow φ to be a *partial function*, i.e. with domain $\subseteq \mathbb{N}$.)

A subset of \mathbb{N} is computable if its characteristic function is.

Defn.

A *computable field F* is a (finite or countable) field whose elements are $\{x_0, x_1, x_2, ...\}$, in which the field operations + and \cdot are given by computable functions *f* and *g*:

$$x_i + x_j = x_{f(i,j)}$$
 $x_i \cdot x_j = x_{g(i,j)}$

The following fields are all isomorphic to computable fields:

$$\mathbb{Q}, \mathbb{F}_{\rho}, \mathbb{Q}(X_1, X_2, \ldots), \mathbb{F}_{\rho}(X_1, X_2, \ldots), \overline{\mathbb{Q}}, \overline{\mathbb{F}_{\rho}}$$

and all finitely generated extensions of these.

Background in Computability

Useful Facts

- There is a noncomputable set K which is *computably enumerable* (≡ the image of a computable function with domain ℕ).
 The *Halting Problem* is one example.
- There exists a *universal Turing machine* ψ : N² → N such that every partial computable φ is given by ψ(e, ·) for some e.
- There is a computable bijection from \mathbb{N} onto $\mathbb{N}^* = \bigcup_k \mathbb{N}^k$.

Interesting Fields

There is a computable field *F_K* isomorphic to Q[√*p_n* | *n* ∈ *K*]. (Recall: *K* is c.e. but not computable; *p*₀, *p*₁,... are the primes.) In *F_K*, factoring and having roots are not computable, since

$$n \in K \iff (X^2 - p_n)$$
 has a root $\iff (X^2 - p_n)$ factors.

2 The field $\mathbb{Q}[\sqrt{p_n} \mid n \notin K]$ is not isomorphic to any computable field.

The Root Set and the Splitting Set

Since we can enumerate all elements of a computable field F, we can also enumerate all polynomials over F:

$$F[X] = \{f_0(X), f_1(X), f_2(X), \ldots\}.$$

Defn.

The splitting set S_F and the root set R_F of a computable field F are:

 $S_F = \{n \in \mathbb{N} : (\exists \text{ nonconstant } g, h \in F[X]) \ g(X) \cdot h(X) = f_n(X)\}$ $R_F = \{n \in \mathbb{N} : (\exists a \in F) \ f_n(a) = 0\}.$

F has a *splitting algorithm* if S_F is computable, and a *root algorithm* if R_F is computable.

The Root Set and the Splitting Set

Since we can enumerate all elements of a computable field F, we can also enumerate all polynomials over F:

$$F[X] = \{f_0(X), f_1(X), f_2(X), \ldots\}.$$

Defn.

The splitting set S_F and the root set R_F of a computable field F are:

 $S_F = \{n \in \mathbb{N} : (\exists \text{ nonconstant } g, h \in F[X]) \ g(X) \cdot h(X) = f_n(X)\}$ $R_F = \{n \in \mathbb{N} : (\exists a \in F) \ f_n(a) = 0\}.$

F has a *splitting algorithm* if S_F is computable, and a *root algorithm* if R_F is computable.

Bigger questions: find the irreducible factors of p(X), and find all its roots in *F*. These questions reduce to the splitting set and the root set.

Splitting Algorithms

Theorem (Kronecker, 1882)

- The field Q has a splitting algorithm: it is decidable which polynomials in Q[X] have factorizations in Q[X].
- Let *F* be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension *F*(*x*) of *F* also has a splitting algorithm, which may be found uniformly in the minimal polynomial of *x* over *F* (or uniformly knowing that *x* is transcendental over *F*).

Recall that for $x \in E$ algebraic over F, the minimal polynomial of x over F is the unique monic irreducible $f(X) \in F[X]$ with f(x) = 0.

Splitting Algorithms

Theorem (Kronecker, 1882)

- The field Q has a splitting algorithm: it is decidable which polynomials in Q[X] have factorizations in Q[X].
- Let *F* be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension *F*(*x*) of *F* also has a splitting algorithm, which may be found uniformly in the minimal polynomial of *x* over *F* (or uniformly knowing that *x* is transcendental over *F*).

Recall that for $x \in E$ algebraic over F, the *minimal polynomial* of x over F is the unique monic irreducible $f(X) \in F[X]$ with f(x) = 0.

Corollary

For any algebraic computable field *F*, every finitely generated subfield $\mathbb{Q}(x_1, \ldots, x_n)$ or $\mathbb{F}_p(x_1, \ldots, x_n)$ has a splitting algorithm, uniformly in the tuple $\langle x_1, \ldots, x_d \rangle$.

For all computable fields F, S_F and R_F are computably enumerable, but may not be computable. With an *oracle* for S_F , we can find all irreducible factors of any given polynomial $p \in F[X]$:

- Use S_F to determine whether p is irreducible in F[X].
- If not, search through F[X] for some nontrivial factorization of p, and return to Step 1 for each factor.

Therefore, R_F is decidable if one has access to an S_F -oracle. (In particular, if S_F is computable, so is R_F .) We say that R_F is *Turing-reducible to* S_F , written $R_F \leq_T S_F$.

For all computable fields F, S_F and R_F are computably enumerable, but may not be computable. With an *oracle* for S_F , we can find all irreducible factors of any given polynomial $p \in F[X]$:

- Use S_F to determine whether p is irreducible in F[X].
- If not, search through F[X] for some nontrivial factorization of p, and return to Step 1 for each factor.

Therefore, R_F is decidable if one has access to an S_F -oracle. (In particular, if S_F is computable, so is R_F .) We say that R_F is *Turing-reducible to* S_F , written $R_F \leq_T S_F$.

But can we compute S_F from an R_F -oracle?

$S_F \equiv_T R_F$

Theorem (Rabin 1960; Frohlich & Shepherdson 1956) For every computable field *F*, $S_F \leq_T R_F$.

$S_F \equiv_T R_F$

Theorem (Rabin 1960; Frohlich & Shepherdson 1956) For every computable field F, $S_F \leq_T R_F$.

The first proof, by Frohlich & Shepherdson, uses symmetric polynomials. The more elegant proof, by Rabin, embeds *F* as a subfield g(F) in a computable presentation of its algebraic closure \overline{F} . (Rabin's Theorem also shows that $g(F) \equiv_T S_F$, with g(F) viewed as a subset of \overline{F} .)

We know that $R_F \equiv_T S_F$. Is there any way to distinguish the complexity of these sets?

We know that $R_F \equiv_T S_F$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is *m*-reducible to B, written $A \leq_m B$, if there is a computable function f such that:

$$(\forall x)[x \in A \iff f(x) \in B].$$

We know that $R_F \equiv_T S_F$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is *m*-reducible to B, written $A \leq_m B$, if there is a computable function f such that:

$$(\forall x)[x \in A \iff f(x) \in B].$$

Theorem (M, 2010)

For all algebraic computable fields F, $S_F \leq_m R_F$. However, there exists such a field F with $R_F \leq_m S_F$.

We know that $R_F \equiv_T S_F$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is *m*-reducible to B, written $A \leq_m B$, if there is a computable function f such that:

$$(\forall x)[x \in A \iff f(x) \in B].$$

Theorem (M, 2010)

For all algebraic computable fields F, $S_F \leq_m R_F$. However, there exists such a field F with $R_F \leq_m S_F$.

Problem: Given a polynomial $p(X) \in F[X]$, compute another polynomial $q(X) \in F[X]$ such that

p(X) factors $\iff q(X)$ has a root.

Let F_t be the subfield $\mathbb{Q}[x_0, \ldots, x_{t-1}] \subseteq F$ (or $\mathbb{F}_m[x_0, \ldots, x_{t-1}] \subseteq F$). So every F_t has a splitting algorithm.

For a given p(X), find a *t* with $p \in F_t[X]$. Check first whether *p* splits there. If so, pick its q(X) to be a linear polynomial. If not, find the splitting field K_t of p(X) over F_t , and the roots r_1, \ldots, r_d of p(X) in K_t .

Let F_t be the subfield $\mathbb{Q}[x_0, \ldots, x_{t-1}] \subseteq F$ (or $\mathbb{F}_m[x_0, \ldots, x_{t-1}] \subseteq F$). So every F_t has a splitting algorithm.

For a given p(X), find a *t* with $p \in F_t[X]$. Check first whether *p* splits there. If so, pick its q(X) to be a linear polynomial. If not, find the splitting field K_t of p(X) over F_t , and the roots r_1, \ldots, r_d of p(X) in K_t .

Proposition

For $F_t \subseteq L \subseteq K_t$: p(X) factors in $L[X] \iff$ there is an S with $\emptyset \subsetneq S \subsetneq \{r_1, \ldots, r_d\}$ such that L contains all elementary symmetric polynomials in S.

Proof: If $p = p_0 \cdot p_1$, let $S = \{r_i : p_0(r_i) = 0\}$, and conversely.

Let F_t be the subfield $\mathbb{Q}[x_0, \ldots, x_{t-1}] \subseteq F$ (or $\mathbb{F}_m[x_0, \ldots, x_{t-1}] \subseteq F$). So every F_t has a splitting algorithm.

For a given p(X), find a *t* with $p \in F_t[X]$. Check first whether *p* splits there. If so, pick its q(X) to be a linear polynomial. If not, find the splitting field K_t of p(X) over F_t , and the roots r_1, \ldots, r_d of p(X) in K_t .

Proposition

For $F_t \subseteq L \subseteq K_t$: p(X) factors in $L[X] \iff$ there is an S with $\emptyset \subsetneq S \subsetneq \{r_1, \ldots, r_d\}$ such that L contains all elementary symmetric polynomials in S.

Proof: If $p = p_0 \cdot p_1$, let $S = \{r_i : p_0(r_i) = 0\}$, and conversely.

Effective Theorem of the Primitive Element

Each finite algebraic field extension is generated by a single element, and there is an algorithm for finding such a generator.

For each intermediate field $F_t \subsetneq L_S \subsetneq K_t$ generated by the elementary symmetric polynomials in *S*, let x_S be a primitive generator. Let q(X) be the product of the minimal polynomials $q_S(X) \in F_t[X]$ of each x_S .

For each intermediate field $F_t \subsetneq L_S \subsetneq K_t$ generated by the elementary symmetric polynomials in *S*, let x_S be a primitive generator. Let q(X) be the product of the minimal polynomials $q_S(X) \in F_t[X]$ of each x_S .

⇒: If p(X) factors in F[X], then F contains some L_S . But then $x_S \in F$, and $q(x_S) = 0$.

For each intermediate field $F_t \subsetneq L_S \subsetneq K_t$ generated by the elementary symmetric polynomials in *S*, let x_S be a primitive generator. Let q(X) be the product of the minimal polynomials $q_S(X) \in F_t[X]$ of each x_S .

⇒: If p(X) factors in F[X], then F contains some L_S . But then $x_S \in F$, and $q(x_S) = 0$.

ϵ: If *q*(*X*) has a root *x* ∈ *F*, then some *q*_{*S*}(*x*) = 0, so *x* is *F*_{*t*}-conjugate to some *x*_{*S*}. Then some *σ* ∈ Gal(*K*_{*t*}/*F*_{*t*}) maps *x*_{*S*} to *x*. But *σ* permutes the set {*r*₁,...,*r*_{*d*}}, so *x* generates the subfield containing all elementary symmetric polynomials in *σ*(*S*). Then *F* contains the subfield *L*_{*σ*(*S*)}, so *p*(*X*) factors in *F*[*X*].

Thus $S_F \leq_m R_F$.

Building an *F* with $R_F \not\leq_m S_F$

Strategy to show that a single φ_e is not an *m*-reduction from R_F to S_F : have a witness polynomial $q_e(X) = X^5 - X - 1$, say, of degree 5, with splitting field K_e over \mathbb{Q} for which $\text{Gal}(K_e/\mathbb{Q})$ is the symmetric group \mathfrak{S}_5 on the five roots (all irrational) of q_e . We wish to make

$$q_e \in R_F \iff \varphi_e(q_e) \downarrow \notin S_F.$$

If $\varphi_e(q_e)$ halts and equals some polynomial $p_e(X) \in \mathbb{Q}[X]$, then either keep $F = \mathbb{Q}$ (if p_e is reducible there), or add a root of q_e to \mathbb{Q} to form F (if deg(p_e) < 2), or ...

q_e has no root in $F \iff p_e$ factors over F

Let *L* be the splitting field of $p_e(X)$ over \mathbb{Q} , containing all roots x_1, \ldots, x_n of p_e . If $\mathbb{Q}[x_1]$ contains no root r_i of $q_e(X)$, then let $F = \mathbb{Q}[x_1]$. Else say (WLOG) $r_1 = h(x_1)$ for some $h(X) \in \mathbb{Q}[X]$. Then each $h(x_j) \in \{r_1, \ldots, r_5\}$, and each r_i is $h(x_j)$ for some *j*. Let *F* be the fixed field of the subgroup G_{12} :

$$G_{12} = \{ \sigma \in \text{Gal}(L/\mathbb{Q}) : \{ \sigma(r_1), \sigma(r_2) \} = \{ r_1, r_2 \} \}.$$

Then each $\sigma \in G_{12}$ fixes $I = \{x_j : h(x_j) \in \{r_1, r_2\}\}$ setwise. So F contains all polynomials symmetric in I, and $p_e(X)$ splits in F. But there is a $\tau \in G_{12}$ which fixes no r_i . So $q_e(X)$ has no root in F.

Defeating all φ_e at once

The foregoing argument built a computable algebraic field *F* for which a given φ_e was not an *m*-reduction from R_F to S_F . This shows that there is no *uniform m*-reduction that works across all such fields.

To see that there is a *single* such field *F* with $R_F \not\leq_m S_F$, we need to execute the same procedure as above for *every* possible *m*-reduction φ_e . The danger here is that, in adding the fixed field of G_{12} to *F* for one polynomial p_e , to satisfy φ_e , we might add elements which would upset the strategy for defeating other functions $\varphi_{e'}$.

Solution: use a *priority argument*, in which each φ_e is assigned a natural number (in fact, *e*) as its priority. When two strategies clash, the one with higher priority (\equiv with smaller *e*) decides what to do, and the other one is *injured* and starts over with a new polynomial q_e . Each individual strategy will be re-started only finitely many times, and will eventually ensure that φ_e is not an *m*-reduction.

Standard References on Computable Fields

- A. Frohlich & J.C. Shepherdson; Effective procedures in field theory, *Phil. Trans. Royal Soc. London* 248 (1956) 950, 407–432.
- M. Rabin; Computable algebra, general theory, and theory of computable fields, *Transactions of the AMS* **95** (1960), 341–360.
- G. Metakides & A. Nerode; Effective content of field theory, *Annals of Mathematical Logic* **17** (1979), 289–320.
- M.D. Fried & M. Jarden, Field Arithmetic (Berlin: Springer, 1986).
- V. Stoltenberg-Hansen & J.V. Tucker; Computable rings and fields, in *Handbook of Computability Theory*, ed. E.R. Griffor (Amsterdam: Elsevier, 1999), 363–447.
- R. Miller; Is it easier to factor a polynomial or to find a root? *Transactions of the AMS*, **362** (2010) 10, 5261–5281.
- R.M. Steiner; Computable fields and the bounded Turing reduction, *Annals of Pure and Applied Logic* **163** (2012), 730–742.
- These slides will be available soon at qcpages.qc.cuny.edu/~rmiller/slides.html