Computability Theory at Work: Factoring Polynomials and Finding Roots

Russell Miller

Queens College \& CUNY Graduate Center
New York, NY

MAA MathFest
Portland, OR
7 August 2014

Basic Question for Today

Let F be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does $p(X)$ factor (nontrivially) in $F[X]$?
- Does $p(X)$ have a root in F ? (That is, does F contain a solution to $p(X)=0$?)

Basic Question for Today

Let F be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does $p(X)$ factor (nontrivially) in $F[X]$?
- Does $p(X)$ have a root in F ? (That is, does F contain a solution to $p(X)=0$?)

Question

Which of these two problems is more difficult?

Basic Question for Today

Let F be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does $p(X)$ factor (nontrivially) in $F[X]$?
- Does $p(X)$ have a root in F ? (That is, does F contain a solution to $p(X)=0$?

Question

Which of these two problems is more difficult?
For $p(X)$ of degree ≥ 2, having a root implies having a factorization. So, finding a root seems harder than finding a factorization.

Basic Question for Today

Let F be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does $p(X)$ factor (nontrivially) in $F[X]$?
- Does $p(X)$ have a root in F ? (That is, does F contain a solution to $p(X)=0$?

Question

Which of these two problems is more difficult?
For $p(X)$ of degree ≥ 2, having a root implies having a factorization. So, finding a root seems harder than finding a factorization.

But the negative answer is the hard one to prove! And if $p(X)$ has no factorization, then it has no root - so maybe the harder problem is the one about factorization?

Turing-Computable Fields

Defn.

A function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ is computable if there is a finite program (\equiv Turing machine) which computes it. (We allow φ to be a partial function, i.e. with domain $\subseteq \mathbb{N}$.)
A subset of \mathbb{N} is computable if its characteristic function is.

Defn.

A computable field F is a (finite or countable) field whose elements are $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$, in which the field operations + and \cdot are given by computable functions f and g :

$$
x_{i}+x_{j}=x_{f(i, j)} \quad x_{i} \cdot x_{j}=x_{g(i, j)}
$$

Turing-Computable Fields

Defn.

A function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ is computable if there is a finite program (\equiv Turing machine) which computes it. (We allow φ to be a partial function, i.e. with domain $\subseteq \mathbb{N}$.)
A subset of \mathbb{N} is computable if its characteristic function is.

Defn.

A computable field F is a (finite or countable) field whose elements are $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$, in which the field operations + and \cdot are given by computable functions f and g :

$$
x_{i}+x_{j}=x_{f(i, j)} \quad x_{i} \cdot x_{j}=x_{g(i, j)}
$$

The following fields are all isomorphic to computable fields:
$\mathbb{Q}, \mathbb{F}_{p}, \mathbb{Q}\left(X_{1}, X_{2}, \ldots\right), \mathbb{F}_{p}\left(X_{1}, X_{2}, \ldots\right), \overline{\mathbb{Q}}, \overline{\mathbb{F}_{p}}$ and all finitely generated extensions of these.

Background in Computability

Useful Facts

- There is a noncomputable set K which is computably enumerable (\equiv the image of a computable function with domain \mathbb{N}).
The Halting Problem is one example.
- There exists a universal Turing machine $\psi: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that every partial computable φ is given by $\psi(\boldsymbol{e}, \cdot)$ for some \boldsymbol{e}.
- There is a computable bijection from \mathbb{N} onto $\mathbb{N}^{*}=\bigcup_{k} \mathbb{N}^{k}$.

Interesting Fields

(1) There is a computable field F_{K} isomorphic to $\mathbb{Q}\left[\sqrt{p_{n}} \mid n \in K\right]$. (Recall: K is c.e. but not computable; p_{0}, p_{1}, \ldots are the primes.) In F_{K}, factoring and having roots are not computable, since

$$
n \in K \Longleftrightarrow\left(X^{2}-p_{n}\right) \text { has a root } \Longleftrightarrow\left(X^{2}-p_{n}\right) \text { factors. }
$$

(2) The field $\mathbb{Q}\left[\sqrt{p_{n}} \mid n \notin K\right]$ is not isomorphic to any computable field.

The Root Set and the Splitting Set

Since we can enumerate all elements of a computable field F, we can also enumerate all polynomials over F :

$$
F[X]=\left\{f_{0}(X), f_{1}(X), f_{2}(X), \ldots\right\} .
$$

Defn.

The splitting set S_{F} and the root set R_{F} of a computable field F are:

$$
\begin{aligned}
& S_{F}=\left\{n \in \mathbb{N}:(\exists \text { nonconstant } g, h \in F[X]) g(X) \cdot h(X)=f_{n}(X)\right\} \\
& R_{F}=\left\{n \in \mathbb{N}:(\exists a \in F) f_{n}(a)=0\right\} .
\end{aligned}
$$

F has a splitting algorithm if S_{F} is computable, and a root algorithm if R_{F} is computable.

The Root Set and the Splitting Set

Since we can enumerate all elements of a computable field F, we can also enumerate all polynomials over F :

$$
F[X]=\left\{f_{0}(X), f_{1}(X), f_{2}(X), \ldots\right\} .
$$

Defn.

The splitting set S_{F} and the root set R_{F} of a computable field F are:

$$
\begin{aligned}
& S_{F}=\left\{n \in \mathbb{N}:(\exists \text { nonconstant } g, h \in F[X]) g(X) \cdot h(X)=f_{n}(X)\right\} \\
& R_{F}=\left\{n \in \mathbb{N}:(\exists a \in F) f_{n}(a)=0\right\} .
\end{aligned}
$$

F has a splitting algorithm if S_{F} is computable, and a root algorithm if R_{F} is computable.

Bigger questions: find the irreducible factors of $p(X)$, and find all its roots in F. These questions reduce to the splitting set and the root set.

Splitting Algorithms

Theorem (Kronecker, 1882)

- The field \mathbb{Q} has a splitting algorithm: it is decidable which polynomials in $\mathbb{Q}[X]$ have factorizations in $\mathbb{Q}[X]$.
- Let F be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension $F(x)$ of F also has a splitting algorithm, which may be found uniformly in the minimal polynomial of x over F (or uniformly knowing that x is transcendental over F).

Recall that for $x \in E$ algebraic over F, the minimal polynomial of x over F is the unique monic irreducible $f(X) \in F[X]$ with $f(x)=0$.

Splitting Algorithms

Theorem (Kronecker, 1882)

- The field \mathbb{Q} has a splitting algorithm: it is decidable which polynomials in $\mathbb{Q}[X]$ have factorizations in $\mathbb{Q}[X]$.
- Let F be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension $F(x)$ of F also has a splitting algorithm, which may be found uniformly in the minimal polynomial of x over F (or uniformly knowing that x is transcendental over F).

Recall that for $x \in E$ algebraic over F, the minimal polynomial of x over F is the unique monic irreducible $f(X) \in F[X]$ with $f(x)=0$.

Corollary

For any algebraic computable field F, every finitely generated subfield $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ or $\mathbb{F}_{p}\left(x_{1}, \ldots, x_{n}\right)$ has a splitting algorithm, uniformly in the tuple $\left\langle x_{1}, \ldots, x_{d}\right\rangle$.

Comparing S_{F} and R_{F}

For all computable fields F, S_{F} and R_{F} are computably enumerable, but may not be computable. With an oracle for S_{F}, we can find all irreducible factors of any given polynomial $p \in F[X]$:
(1) Use S_{F} to determine whether p is irreducible in $F[X]$.
(2) If not, search through $F[X]$ for some nontrivial factorization of p, and return to Step 1 for each factor.
Therefore, R_{F} is decidable if one has access to an S_{F}-oracle. (In particular, if S_{F} is computable, so is R_{F}.) We say that R_{F} is Turing-reducible to S_{F}, written $R_{F} \leq_{T} S_{F}$.

Comparing S_{F} and R_{F}

For all computable fields F, S_{F} and R_{F} are computably enumerable, but may not be computable. With an oracle for S_{F}, we can find all irreducible factors of any given polynomial $p \in F[X]$:
(1) Use S_{F} to determine whether p is irreducible in $F[X]$.
(2) If not, search through $F[X]$ for some nontrivial factorization of p, and return to Step 1 for each factor.
Therefore, R_{F} is decidable if one has access to an S_{F}-oracle. (In particular, if S_{F} is computable, so is R_{F}.) We say that R_{F} is Turing-reducible to S_{F}, written $R_{F} \leq_{T} S_{F}$.

But can we compute S_{F} from an R_{F}-oracle?

$S_{F} \equiv{ }_{T} R_{F}$

Theorem (Rabin 1960; Frohlich \& Shepherdson 1956)

For every computable field $F, S_{F} \leq_{T} R_{F}$.

$S_{F} \equiv{ }_{T} R_{F}$

Theorem (Rabin 1960; Frohlich \& Shepherdson 1956)

For every computable field $F, S_{F} \leq_{T} R_{F}$.
The first proof, by Frohlich \& Shepherdson, uses symmetric polynomials. The more elegant proof, by Rabin, embeds F as a subfield $g(F)$ in a computable presentation of its algebraic closure \bar{F}. (Rabin's Theorem also shows that $g(F) \equiv{ }_{T} S_{F}$, with $g(F)$ viewed as a subset of \bar{F}.)

Comparing R_{F} and S_{F}

We know that $R_{F} \equiv_{T} S_{F}$. Is there any way to distinguish the complexity of these sets?

Comparing R_{F} and S_{F}

We know that $R_{F} \equiv{ }_{T} S_{F}$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is m-reducible to B, written $A \leq_{m} B$, if there is a computable function f such that:

$$
(\forall x)[x \in A \quad \Longleftrightarrow \quad f(x) \in B] .
$$

Comparing R_{F} and S_{F}

We know that $R_{F} \equiv{ }_{T} S_{F}$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is m-reducible to B, written $A \leq_{m} B$, if there is a computable function f such that:

$$
(\forall x)[x \in A \quad \Longleftrightarrow \quad f(x) \in B] .
$$

Theorem (M, 2010)

For all algebraic computable fields $F, S_{F} \leq_{m} R_{F}$. However, there exists such a field F with $R_{F} \not \leq_{m} S_{F}$.

Comparing R_{F} and S_{F}

We know that $R_{F} \equiv_{T} S_{F}$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is m-reducible to B, written $A \leq_{m} B$, if there is a computable function f such that:

$$
(\forall x)[x \in A \quad \Longleftrightarrow \quad f(x) \in B] .
$$

Theorem (M, 2010)

For all algebraic computable fields $F, S_{F} \leq_{m} R_{F}$. However, there exists such a field F with $R_{F} \mathbb{Z}_{m} S_{F}$.

Problem: Given a polynomial $p(X) \in F[X]$, compute another polynomial $q(X) \in F[X]$ such that
$p(X)$ factors $\Longleftrightarrow q(X)$ has a root.

$p(X)$ factors in $F[X] \Longleftrightarrow q(X)$ has a root in F.

Let F_{t} be the subfield $\mathbb{Q}\left[x_{0}, \ldots, x_{t-1}\right] \subseteq F$ (or $\mathbb{F}_{m}\left[x_{0}, \ldots, x_{t-1}\right] \subseteq F$). So every F_{t} has a splitting algorithm.

For a given $p(X)$, find a t with $p \in F_{t}[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_{t} of $p(X)$ over F_{t}, and the roots r_{1}, \ldots, r_{d} of $p(X)$ in K_{t}.
$p(X)$ factors in $F[X] \Longleftrightarrow q(X)$ has a root in F. Let F_{t} be the subfield $\mathbb{Q}\left[x_{0}, \ldots, x_{t-1}\right] \subseteq F \quad$ (or $\mathbb{F}_{m}\left[x_{0}, \ldots, x_{t-1}\right] \subseteq F$). So every F_{t} has a splitting algorithm.

For a given $p(X)$, find a t with $p \in F_{t}[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_{t} of $p(X)$ over F_{t}, and the roots r_{1}, \ldots, r_{d} of $p(X)$ in K_{t}.

Proposition

For $F_{t} \subseteq L \subseteq K_{t}: p(X)$ factors in $L[X] \Longleftrightarrow$ there is an S with $\emptyset \subsetneq S \subsetneq\left\{r_{1}, \ldots, r_{d}\right\}$ such that L contains all elementary symmetric polynomials in S.

Proof: If $p=p_{0} \cdot p_{1}$, let $S=\left\{r_{i}: p_{0}\left(r_{i}\right)=0\right\}$, and conversely.
$p(X)$ factors in $F[X] \Longleftrightarrow q(X)$ has a root in F. Let F_{t} be the subfield $\mathbb{Q}\left[x_{0}, \ldots, x_{t-1}\right] \subseteq F \quad$ (or $\mathbb{F}_{m}\left[x_{0}, \ldots, x_{t-1}\right] \subseteq F$). So every F_{t} has a splitting algorithm.

For a given $p(X)$, find a t with $p \in F_{t}[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_{t} of $p(X)$ over F_{t}, and the roots r_{1}, \ldots, r_{d} of $p(X)$ in K_{t}.

Proposition

For $F_{t} \subseteq L \subseteq K_{t}: \quad p(X)$ factors in $L[X]$ there is an S with $\emptyset \subsetneq S \subsetneq\left\{r_{1}, \ldots, r_{d}\right\}$ such that L contains all elementary symmetric polynomials in S.

Proof: If $p=p_{0} \cdot p_{1}$, let $S=\left\{r_{i}: p_{0}\left(r_{i}\right)=0\right\}$, and conversely.

Effective Theorem of the Primitive Element

Each finite algebraic field extension is generated by a single element, and there is an algorithm for finding such a generator.

$p(X)$ factors in $F[X] \Longleftrightarrow q(X)$ has a root in F.

For each intermediate field $F_{t} \subsetneq L_{S} \subsetneq K_{t}$ generated by the elementary symmetric polynomials in S, let x_{S} be a primitive generator. Let $q(X)$ be the product of the minimal polynomials $q_{S}(X) \in F_{t}[X]$ of each x_{S}.

$p(X)$ factors in $F[X] \Longleftrightarrow q(X)$ has a root in F.

For each intermediate field $F_{t} \subsetneq L_{S} \subsetneq K_{t}$ generated by the elementary symmetric polynomials in S, let x_{S} be a primitive generator. Let $q(X)$ be the product of the minimal polynomials $q_{S}(X) \in F_{t}[X]$ of each x_{S}.
\Rightarrow : If $p(X)$ factors in $F[X]$, then F contains some L_{S}. But then $x_{S} \in F$, and $q\left(x_{S}\right)=0$.

$p(X)$ factors in $F[X] \Longleftrightarrow q(X)$ has a root in F.

For each intermediate field $F_{t} \subsetneq L_{S} \subsetneq K_{t}$ generated by the elementary symmetric polynomials in S, let x_{S} be a primitive generator. Let $q(X)$ be the product of the minimal polynomials $q_{S}(X) \in F_{t}[X]$ of each x_{S}.
\Rightarrow : If $p(X)$ factors in $F[X]$, then F contains some L_{S}. But then $x_{S} \in F$, and $q\left(x_{S}\right)=0$.
\Leftarrow : If $q(X)$ has a root $x \in F$, then some $q_{S}(x)=0$, so x is F_{t}-conjugate to some x_{S}. Then some $\sigma \in \operatorname{Gal}\left(K_{t} / F_{t}\right) \operatorname{maps} x_{S}$ to x. But σ permutes the set $\left\{r_{1}, \ldots, r_{d}\right\}$, so x generates the subfield containing all elementary symmetric polynomials in $\sigma(S)$. Then F contains the subfield $L_{\sigma(S)}$, so $p(X)$ factors in $F[X]$.
Thus $S_{F} \leq_{m} R_{F}$.

Building an F with $R_{F} \mathbb{Z}_{m} S_{F}$

Strategy to show that a single φ_{e} is not an m-reduction from R_{F} to S_{F} : have a witness polynomial $q_{e}(X)=X^{5}-X-1$, say, of degree 5 , with splitting field K_{e} over \mathbb{Q} for which $\operatorname{Gal}\left(K_{e} / \mathbb{Q}\right)$ is the symmetric group \mathfrak{S}_{5} on the five roots (all irrational) of q_{e}. We wish to make

$$
q_{e} \in R_{F} \Longleftrightarrow \varphi_{e}\left(q_{e}\right) \downarrow \notin S_{F}
$$

If $\varphi_{e}\left(q_{e}\right)$ halts and equals some polynomial $p_{e}(X) \in \mathbb{Q}[X]$, then either keep $F=\mathbb{Q}$ (if p_{e} is reducible there), or add a root of q_{e} to \mathbb{Q} to form F (if $\operatorname{deg}\left(p_{e}\right)<2$), or ...

q_{e} has no root in $F \Longleftrightarrow p_{e}$ factors over F

Let L be the splitting field of $p_{e}(X)$ over \mathbb{Q}, containing all roots x_{1}, \ldots, x_{n} of p_{e}. If $\mathbb{Q}\left[x_{1}\right]$ contains no root r_{i} of $q_{e}(X)$, then let $F=\mathbb{Q}\left[x_{1}\right]$. Else say (WLOG) $r_{1}=h\left(x_{1}\right)$ for some $h(X) \in \mathbb{Q}[X]$. Then each $h\left(x_{j}\right) \in\left\{r_{1}, \ldots, r_{5}\right\}$, and each r_{i} is $h\left(x_{j}\right)$ for some j. Let F be the fixed field of the subgroup G_{12} :

$$
G_{12}=\left\{\sigma \in \operatorname{Gal}(L / \mathbb{Q}):\left\{\sigma\left(r_{1}\right), \sigma\left(r_{2}\right)\right\}=\left\{r_{1}, r_{2}\right\}\right\}
$$

Then each $\sigma \in G_{12}$ fixes $I=\left\{x_{j}: h\left(x_{j}\right) \in\left\{r_{1}, r_{2}\right\}\right\}$ setwise. So F contains all polynomials symmetric in I, and $p_{e}(X)$ splits in F. But there is a $\tau \in G_{12}$ which fixes no r_{i}. So $q_{e}(X)$ has no root in F.

Defeating all φ_{e} at once

The foregoing argument built a computable algebraic field F for which a given φ_{e} was not an m-reduction from R_{F} to S_{F}. This shows that there is no uniform m-reduction that works across all such fields.

To see that there is a single such field F with $R_{F} \not Z_{m} S_{F}$, we need to execute the same procedure as above for every possible m-reduction φ_{e}. The danger here is that, in adding the fixed field of G_{12} to F for one polynomial p_{e}, to satisfy φ_{e}, we might add elements which would upset the strategy for defeating other functions $\varphi_{e^{\prime}}$.

Solution: use a priority argument, in which each φ_{e} is assigned a natural number (in fact, e) as its priority. When two strategies clash, the one with higher priority (\equiv with smaller e) decides what to do, and the other one is injured and starts over with a new polynomial q_{e}. Each individual strategy will be re-started only finitely many times, and will eventually ensure that φ_{e} is not an m-reduction.

Standard References on Computable Fields

- A. Frohlich \& J.C. Shepherdson; Effective procedures in field theory, Phil. Trans. Royal Soc. London 248 (1956) 950, 407-432.
- M. Rabin; Computable algebra, general theory, and theory of computable fields, Transactions of the AMS 95 (1960), 341-360.
- G. Metakides \& A. Nerode; Effective content of field theory, Annals of Mathematical Logic 17 (1979), 289-320.
- M.D. Fried \& M. Jarden, Field Arithmetic (Berlin: Springer, 1986).
- V. Stoltenberg-Hansen \& J.V. Tucker; Computable rings and fields, in Handbook of Computability Theory, ed. E.R. Griffor (Amsterdam: Elsevier, 1999), 363-447.
- R. Miller; Is it easier to factor a polynomial or to find a root? Transactions of the AMS, 362 (2010) 10, 5261-5281.
- R.M. Steiner; Computable fields and the bounded Turing reduction, Annals of Pure and Applied Logic 163 (2012), 730-742.
- These slides will be available soon at qcpages.qc.cuny.edu/~rmiller/slides.html

